Articles | Volume 6, issue 6
https://doi.org/10.5194/gmd-6-1851-2013
https://doi.org/10.5194/gmd-6-1851-2013
Model description paper
 | 
01 Nov 2013
Model description paper |  | 01 Nov 2013

MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 1: Theory

M. De Dominicis, N. Pinardi, G. Zodiatis, and R. Lardner

Related authors

CranSLIK v1.0: stochastic prediction of oil spill transport and fate using approximation methods
B. J. Snow, I. Moulitsas, A. J. Kolios, and M. De Dominicis
Geosci. Model Dev., 7, 1507–1516, https://doi.org/10.5194/gmd-7-1507-2014,https://doi.org/10.5194/gmd-7-1507-2014, 2014
MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 2: Numerical simulations and validations
M. De Dominicis, N. Pinardi, G. Zodiatis, and R. Archetti
Geosci. Model Dev., 6, 1871–1888, https://doi.org/10.5194/gmd-6-1871-2013,https://doi.org/10.5194/gmd-6-1871-2013, 2013

Related subject area

Oceanography
Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023,https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Open-ocean tides simulated by ICON-O, version icon-2.6.6
Jin-Song von Storch, Eileen Hertwig, Veit Lüschow, Nils Brüggemann, Helmuth Haak, Peter Korn, and Vikram Singh
Geosci. Model Dev., 16, 5179–5196, https://doi.org/10.5194/gmd-16-5179-2023,https://doi.org/10.5194/gmd-16-5179-2023, 2023
Short summary
Using Probability Density Functions to Evaluate Models (PDFEM, v1.0) to compare a biogeochemical model with satellite-derived chlorophyll
Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath
Geosci. Model Dev., 16, 4639–4657, https://doi.org/10.5194/gmd-16-4639-2023,https://doi.org/10.5194/gmd-16-4639-2023, 2023
Short summary
Data assimilation sensitivity experiments in the East Auckland Current system using 4D-Var
Rafael Santana, Helen Macdonald, Joanne O'Callaghan, Brian Powell, Sarah Wakes, and Sutara H. Suanda
Geosci. Model Dev., 16, 3675–3698, https://doi.org/10.5194/gmd-16-3675-2023,https://doi.org/10.5194/gmd-16-3675-2023, 2023
Short summary
Using the COAsT Python package to develop a standardised validation workflow for ocean physics models
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023,https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary

Cited articles

Al-Rabeh, A. H., Lardner, R. W., and Gunay, N.: Gulfspill Version 2.0: a software package for oil spills in the Arabian Gulf, Environ. Modell. Softw., 15, 425–442, 2000.
Ambjörn, C.: Seatrack Web, Forecasts of Oil Spills, a New Version, Environ. Res. Eng. Manage., 3, 60–66, 2007.
ASA: OILMAP for Windows (technical manual), Narrangansett, Rhode Island: ASA Inc, 1997.
ASCE: State-of-the-Art Review of Modeling Transport and Fate of Oil Spills, J. Hydraulic Eng., 122, 594–609, 1996.
Berry, A., Dabrowski, T., and Lyons, K.: The oil spill model OILTRANS and its application to the Celtic Sea, Mar. Pollut. Bull., 64, 2489–2501, 2012.