Articles | Volume 19, issue 1
https://doi.org/10.5194/gmd-19-447-2026
https://doi.org/10.5194/gmd-19-447-2026
Model evaluation paper
 | 
15 Jan 2026
Model evaluation paper |  | 15 Jan 2026

Evaluation of atmospheric sulfur dioxide simulated with the EMAC (version 2.55) Chemistry–Climate Model using satellite and ground-based observations

Ismail Makroum, Patrick Jöckel, Martin Dameris, Nicolas Theys, and Johannes De Leeuw

Related authors

Global transport of upper-tropospheric tropical tracers: multi-year insights from idealized simulations
Lianet Hernández Pardo, Joachim Curtius, Patrick Jöckel, Moritz Menken, and Anna Possner
EGUsphere, https://doi.org/10.5194/egusphere-2025-4338,https://doi.org/10.5194/egusphere-2025-4338, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Evaluation of stratospheric transport in three generations of Chemistry-Climate Models
Marta Abalos, Thomas Birner, Andreas Chrysanthou, Sean Davis, Alvaro de la Cámara, Sandip Dhomse, Hella Garny, Michaela I. Hegglin, Daan Hubert, Oksana Ivaniha, James Keeble, Marianna Linz, Daniele Minganti, Jessica Neu, David Plummer, Laura Saunders, Kasturi Shah, Gabriele Stiller, Kleareti Tourpali, Darryn Waugh, Nathan Luke Abraham, Hideharu Akiyoshi, Martyn P. Chipperfield, Patrick Jöckel, Béatrice Josse, Olaf Morgenstern, Timofei Sukhodolov, Shingo Watanabe, and Yousuke Yamashita
EGUsphere, https://doi.org/10.5194/egusphere-2025-6549,https://doi.org/10.5194/egusphere-2025-6549, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
CO2 variability and seasonal cycle in the UTLS: insights from EMAC model and AirCore observational data
Johannes Degen, Bianca C. Baier, Patrick Jöckel, J. Moritz Menken, Tanja J. Schuck, Colm Sweeney, and Andreas Engel
Atmos. Chem. Phys., 25, 15741–15763, https://doi.org/10.5194/acp-25-15741-2025,https://doi.org/10.5194/acp-25-15741-2025, 2025
Short summary
Effects of different emission inventories on tropospheric ozone and methane lifetime
Catherine Acquah, Laura Stecher, Mariano Mertens, and Patrick Jöckel
Atmos. Chem. Phys., 25, 13665–13686, https://doi.org/10.5194/acp-25-13665-2025,https://doi.org/10.5194/acp-25-13665-2025, 2025
Short summary
Airborne remote sensing of nitrous acid in the troposphere: potential sources of excess HONO
Benjamin Weyland, Simon Rosanka, Domenico Taraborrelli, Birger Bohn, Andreas Zahn, Florian Obersteiner, Eric Förster, Mariano Mertens, Patrick Jöckel, Helmut Ziereis, Katharina Kaiser, Horst Fischer, John N. Crowley, Nijing Wang, Achim Edtbauer, Jonathan Williams, Maria Dolores Andrés Hernández, John P. Burrows, Flora Kluge, Meike Rotermund, Andre Butz, and Klaus Pfeilsticker
EGUsphere, https://doi.org/10.5194/egusphere-2025-5085,https://doi.org/10.5194/egusphere-2025-5085, 2025
Short summary

Cited articles

Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J., Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L., Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M., Shindell, D., Skeie, R. B., Stein, A., Takemura, T., Tsyro, S., Vet, R., and Xu, X.: Global and regional trends of atmospheric sulfur, Scientific Reports, 9, https://doi.org/10.1038/s41598-018-37304-0, 2019. a
Aas, W., Fagerli, H., Alastuey, A., Cavalli, F., Degorska, A., Feigenspan, S., Brenna, H., Gliß, J., Heinesen, D., Hueglin, C., Holubová, A., Jaffrezo, J.-L., Mortier, A., Murovec, M., Putaud, J.-P., Rüdiger, J., Simpson, D., Solberg, S., Tsyro, S., Tørseth, K., and Yttri, K. E.: Trends in Air Pollution in Europe, 2000–2019, Aerosol and Air Quality Research, 24, 230237, https://doi.org/10.4209/aaqr.230237, 2024. a
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Andres, R. and Kasgnoc, A.: A time–averaged inventory of subaerial volcanic sulfur emissions, Journal of Geophysical Research: Atmospheres, 103, 25251–25261, https://doi.org/10.1029/98jd02091, 1998. a
Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P., and Trewin: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Summary., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 33–144, https://doi.org/10.1017/9781009157896.002, 2021. a, b
Download
Short summary
We use a state-of-the-art numerical chemistry-climate model to study the atmospheric sulfur dioxide budget. We simulate the atmospheric concentration of sulfur dioxide (SO2) and corresponding sulfur deposition fluxes and compare the results with observational data from a satellite instrument and with ground-based in-situ measurements. For the evaluation of the simulated atmospheric lifetime of SO2, we also simulate the fate of SO2 emitted by two volcanic eruptions that happened in 2019.
Share