Articles | Volume 18, issue 19
https://doi.org/10.5194/gmd-18-7147-2025
https://doi.org/10.5194/gmd-18-7147-2025
Model description paper
 | 
13 Oct 2025
Model description paper |  | 13 Oct 2025

GraphFlow v1.0: approximating groundwater contaminant transport with graph-based methods – an application to fault scenario selection

Léonard Moracchini, Guillaume Pirot, Kerry Bardot, Mark W. Jessell, and James L. McCallum

Related authors

Recovery of stratigraphic data with associated uncertainties from drillhole databases using litho2strat 1.0
Vitaliy Ogarko and Mark Jessell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1294,https://doi.org/10.5194/egusphere-2025-1294, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Modelling subglacial fluvial sediment transport with a graph-based model, Graphical Subglacial Sediment Transport (GraphSSeT)
Alan Robert Alexander Aitken, Ian Delaney, Guillaume Pirot, and Mauro A. Werder
The Cryosphere, 18, 4111–4136, https://doi.org/10.5194/tc-18-4111-2024,https://doi.org/10.5194/tc-18-4111-2024, 2024
Short summary
Tomofast-x 2.0: an open-source parallel code for inversion of potential field data with topography using wavelet compression
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024,https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
GeoPDNN 1.0: a semi-supervised deep learning neural network using pseudo-labels for three-dimensional shallow strata modelling and uncertainty analysis in urban areas from borehole data
Jiateng Guo, Xuechuang Xu, Luyuan Wang, Xulei Wang, Lixin Wu, Mark Jessell, Vitaliy Ogarko, Zhibin Liu, and Yufei Zheng
Geosci. Model Dev., 17, 957–973, https://doi.org/10.5194/gmd-17-957-2024,https://doi.org/10.5194/gmd-17-957-2024, 2024
Short summary
Utilisation of probabilistic magnetotelluric modelling to constrain magnetic data inversion: proof-of-concept and field application
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023,https://doi.org/10.5194/se-14-43-2023, 2023
Short summary

Cited articles

Ahuja, R., Magnanti, T., and Orlin, J.: Network Flows: Theory, Algorithms, and Applications, Prentice Hall, https://books.google.com.au/books?id=WnZRAAAAMAAJ (last access: 22 September 2025), 1993. a
Bai, T. and Tahmasebi, P.: Characterization of groundwater contamination: A transformer-based deep learning model, Advances in Water Resources, 164, https://doi.org/10.1016/j.advwatres.2022.104217, 2022. a
Bear, J. and Cheng, A. H.-D.: Modeling Groundwater Flow and Contaminant Transport, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-6682-5, 2010. a, b
Cao, G., Qin, R., Wu, Y., Wu, J., Zengguang, X., and Zhang, C.: Effects of source size, monitoring distance and aquifer heterogeneity on contaminant mass discharge and plume spread uncertainty, Environmental Fluid Mechanics, 18, https://doi.org/10.1007/s10652-017-9564-6, 2018. a
Csárdi, G. and Nepusz, T.: The igraph software package for complex network research. InterJournal, Complex Systems, 1695, GitHub [code], https://github.com/igraph/igraph (last access: 10 October 2025), 2006. a
Download
Short summary
To facilitate the exploration of alternative hydrogeological scenarios, we propose approximating costly physical simulations of contaminant transport by means of more affordable shortest-distance computations. This enables us to accept or reject scenarios within a predefined confidence interval. In particular, this can allow us to estimate the probability of a fault acting as a preferential path or a barrier.
Share