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Abstract. Groundwater contaminant transport problems re-
main challenging with respect to their computing require-
ments. This often limits the exploration of the conceptual un-
certainty that is mainly related to large-scale geological fea-
tures — such as faults, fractures, and stratigraphic variations
— and limited characterization. Here, to facilitate geological
conceptual uncertainty exploration, we develop further the
use of graph representation for geological models to approx-
imate groundwater flow and transport. We consider a faulted
multi-heterogeneous-layer medium to test our approach. The
existing rank correlation between the shortest path distribu-
tion from a contaminant source to the model domain out-
let and the cumulative mass distribution at the outlet enables
us to perform scenario selection. The scenario selection ap-
proach relies on a metric combining the Jaccard dissimilar-
ity and the Wasserstein distance to compare binary images.
Among a set combining eight alternative scenarios, where
three faults can act as either a flow barrier or a preferential
path, we show that the use of graph approximations allows
us to retain or reject scenarios with confidence, as well as to
estimate the individual probability of a fault to act as a bar-
rier or a path. This methodology framework opens up pos-
sibilities to explore more thoroughly conceptual geological
uncertainty for processes affected by flow and transport.

1 Introduction

Understanding contaminant transport in subsurface hetero-
geneous environments is critical to predict pollutant fate and
to support effective mitigation strategies. Robust modeling
approaches are essential to capture the complexity of these
systems and to provide reliable predictions (Bear and Cheng,
2010; Ostad-Ali-Askari and Shayannejad, 2021). Traditional
approaches, such as solving partial differential equations
(PDEs) for flow and transport, have been extensively used to
model groundwater systems (Bear and Cheng, 2010). In par-
ticular, MODFLOW 6 is a modeler and solver of differential
equations for hydrogeology developed by the US Geologi-
cal Survey, which is widely used in the research community.
However, these methods often require high computational re-
sources (Karmakar et al., 2022), which restrains the explo-
ration of heterogeneity or geological structural uncertainty,
such as faults acting as a preferential flow path or a barrier,
despite their control on flow and transport conditions.

In recent years, new data-driven approaches have emerged
as surrogates for contaminant transport simulation. On the
one hand, entirely data-based structures have been developed
using various deep learning architectures like transformers
(Bai and Tahmasebi, 2022; Pang et al., 2024). On the other
hand, there have been recent attempts involving hybrid mod-
els like physics-informed neural networks (PINNs), which
also include differential equations and boundary conditions
as inputs (Meray et al., 2024). In both cases, the results are
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promising, but the number of simulations required for model
training and the lack of transferability remain challenging
(Luo et al., 2023). Additionally, tests have mainly been con-
ducted in 1D or 2D due to the significant complexity involved
in 3D simulations (Meray et al., 2024).

Graph theory offers a promising alternative to traditional
PDE-based models by simplifying the representation of com-
plex systems without the costly training of data-driven meth-
ods. For this approach, the first step is to create a graph to
represent a geological model. The choice of vertices, edges,
and their weights is crucial. Next, an algorithm, often for the
calculation of the shortest path or maximum flow, is applied
to the graph. In recent years, these graph-based methods have
been primarily used for studying fracture networks (Hyman
et al., 2018; Karra et al., 2018; O’Ghaffari et al., 2011). In
such cases, each intersection between fractures is modeled by
anode, and geometric and geological information is stored in
the edge weights. The use of graphs is particularly effective
for discrete fracture networks (DFNs) due to their high struc-
tural complexity, with the number of elements often being
too large to be solved by traditional finite-element methods.

Other studies use a graph-based method to approximate
the path of minimal hydraulic resistance (or maximal hy-
draulic conductivity) in a heterogeneous medium. Graphs are
generated with hydraulic resistance as weights, and graph al-
gorithms are applied. Mishra et al. (2024) simulate random
walks on a 3D graph to approximate CO; plume spreading
in a reservoir. Both Knudby and Carrera (2006) and Rizzo
and de Barros (2017) demonstrate in 2D that shortest-path al-
gorithms approximate quite well the trajectory of the fastest
particles in the plume and the drawdown signal.

The objective of this paper is to demonstrate how useful
and efficient graph-based approximations of flow and trans-
port can be in reducing geological concept uncertainty in
groundwater applications. To do so, we adapt the approach
of Rizzo and de Barros (2017), which is limited to a 2D
multi-Gaussian heterogeneous medium. Here, we go one step
further by integrating general flow direction information and
by doing a comparison with flow and transport simulations,
thus improving its consistency with subsurface flow and ex-
tending its application to a 3D case with increased complex-
ity in terms of heterogeneous aquifer properties by consider-
ing a faulted multi-heterogeneous-layer medium. In partic-
ular, rather than focusing solely on the best path between
the source and a set of target nodes, we calculate the min-
imal distance between the source and each node, resulting
in a distance map. We compare this distance distribution to
the distribution of cumulative mass passing through the out-
let to evaluate the accuracy of our model. We also assess the
robustness of the approximation under the uncertainty of pa-
rameters controlling the heterogeneity of subsurface proper-
ties. In addition to measuring the performance of this new
method for scenario selection, as compared to using more ex-
pensive physics-based numerical solvers, we provide a way
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to predict fault behavior a posteriori based on field measure-
ments.

The paper is organized as follows. The methodology em-
ployed is described in Sect. 2. The section starts by intro-
ducing the synthetic experimental setting (Sect. 2.1), includ-
ing a description of the medium heterogeneity and the neces-
sary conditions to numerically solve flow and transport equa-
tions. Then, Sect. 2.2 presents how we approximate flow and
contaminant transport using distance computation through
graphs. Section 2.3 specifies the modalities for observing
data from the physics-based model. Section 2.4 introduces
metrics to allow the comparison between distance maps from
graph computations and cumulative mass maps. Section 2.5
shows to what extent this method can be applied to the se-
lection of fault scenarios. Section 3 presents the general re-
sults, highlighting the correlation between the distance dis-
tributions and the distribution of cumulative masses, as well
as the effectiveness of the method for scenario selection. Fi-
nally, the conclusion and the possibilities for future experi-
ments are discussed in Sect. 5.

2 Method
2.1 Experimental setting

For this paper, we consider the following synthetic case, de-
picted in Fig. 1: a fault zone with three vertical faults and
three geological units, each characterized by different hetero-
geneous property field parameterizations, whose properties
are detailed below. The flow propagates primarily in the x
direction, with the system’s inlet and outlet being maintained
at a constant head. A contaminant is continuously injected
into approximately the middle of the model, and we study
the transport of this contaminant until it exits the model at
its outlet face. Flow in a heterogeneous porous medium is
modeled using Darcy’s law in conjunction with the continu-
ity equation, which, together, describe fluid motion based on
the principle of mass conservation. Contaminant transport
is modeled using the advection—diffusion equation (ADE),
which is based on Darcy’s law for advection and Fick’s law
for diffusion and dispersion. The flow and transport equa-
tions are solved using a finite-difference solver, applied on a
structured mesh. Faults influence the transport of the contam-
inant by locally altering the hydraulic conductivity. In this
synthetic case, we assume that the faults can either increase
or decrease the conductivity by a factor of 100 with respect
to the value assigned by the underlying multi-Gaussian field
in the absence of faults. As such, faults can act as either a
pathway (1) or a barrier (—1). Considering all possibilities,
there are eight possible fault scenarios, designated by a triplet
(f1. f>. f3) belonging to {—1, 1}*. The highly schematic ge-
ometry of the faults was chosen to maximize the variability
of the plume depending on the behavior of the faults. We add
further variability by testing 10 possible source positions (Ta-
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Figure 1. Geometry of the synthetic 3D simulation domain. The
domain has dimensions Ly =7000m, Ly =5000m, and L; =
1000 m and is discretized with a structured mesh of cell size of
Ax =100m, Ay =100m, and Az =25m. Three vertical fault
planes are located within the domain, and they are orthogonal to
the x—y plane shown in the figure. These faults can either increase
or decrease the local conductivity by a factor of 100, acting, respec-
tively, as pathways or barriers to flow. The figure also illustrates
the direction of the main flow (from left to right along the x axis)
and the approximate central location of the contaminant injection
source, randomly varied within a predefined region across scenar-
ios.

Table 1. Coordinates of the 10 randomly drawn contaminant source
positions.

Source ID X (m) Y (m) Z (m)
0 2011.82 2950.46 512.50
1 1644.16  2948.65 512.50
2 1811.83 2423.32 51250
3 232770 2409.12 512.50
4 2049.59  2027.56  512.50
5 2253.51 2538.14 512.50
6 1829.73  2788.43 512.50
7 1803.19  2453.50 512.50
8 1634.04 2403.11 512.50
9 1703.46  2262.31 512.50

ble 1), chosen randomly around a reference point with the co-
ordinates xg = 2000 m, y; = 2500 m, and zg = 512.5 m. This
results in a total of 80 scenarios, numbered from O to 79,
where the tens digit refers to their fault scenario and the units
digit refers to the source position.

The model dimensions are L, =7000m, Ly = 5000 m,
and L, = 1000 m. Spatial discretization is done in cells of
size Ax = 100m, Ay = 100 m, and Az = 25 m. The primary
direction of flow is along the x axis: the heads at the planes
x =0m and x =7000m are constant and equal to 100 and
0 m, respectively. The other boundaries of the model are con-
strained by zero flux. In our study, we assume a point source
(one cell) that continuously injects a contaminant at a rate of
50000 m3d—!, with a concentration of 100 units of mass per
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cubic meter (m?). Each scenario is characterized by unique
aquifer properties that are produced by combining stochastic
property field realizations. The subsurface consists of three
geological units with average conductivity of 3.5 x 107>,
8.0 x 10_4, and 2.0 x 1073 ms!, respectively, and constant
porosity of 0.25. For each scenario, the hydraulic log con-
ductivity (before the effects of faults) of each geological unit
is modeled by a spatial random field (SRF) with a multi-
Gaussian (MG) model, with standard deviations of 0.4, 0.5,
and 0.6, respectively, and a correlation length of 8Ax, 4Ay,
and 2Az. The faults are modeled directly on the regular-
grid voxel so that each fault occupies an ensemble of face-
connected voxels in the model. An example of sections of
the hydraulic conductivity field is shown in Fig. 2.

2.2 Graph generation and computation

In order to take advantage of Dijkstra’s algorithm to find the
shortest paths between graph nodes and to use such a formu-
lation as an approximation for subsurface contaminant flow
and transport, the underlying aquifer model has to be rep-
resented as a graph. Here, we explain how the regular-grid
discretization of an aquifer model can be converted into a
graph.

2.2.1 Graph generation

A graph G(V,E) is defined as a pair comprising a set V
of vertices and a set E of edges. Each edge e € E connects
two vertices in V' and may have an associated weight. In our
study, the graphs are directed, and they always have an asso-
ciated geometric dimension. Thus, for each edge e connect-
ing vertex v; to vertex vy, we use the vector e as the directed
vector between the two corresponding points in 3D space.
Lastly, a path is described as a sequence of vertices where
each pair of consecutive vertices is linked by an edge.

Though the graph is built as an oriented graph, it is similar
to a non-oriented graph: all edges are “duplicated” such that,
for an oriented edge connecting vertex v; to vertex vp, an
oriented edge connecting vertex v to vertex v exists. We use
oriented edges as a way to integrate general flow information,
such as the main flow direction.

The hydraulic conductivity fields used by physics-based
solvers like MODFLOW 6 are discrete fields, which can be
defined on both regular and non-regular grids depending on
the solver settings. In this work, we focus exclusively on hy-
draulic conductivity fields defined on regular grids within a
bounded 3D space. To construct the graph, we choose the
center of each cell in the discrete field mesh as vertices. Two
vertices are connected by an edge if their respective cells
share a face or a corner.

For an edge e ([ey, ey, e;]) connecting two vertices vy and
vy, we can calculate an approximation of the hydraulic con-
ductivity tensor K(e) along this edge using the harmonic
mean:

Geosci. Model Dev., 18, 7147-7163, 2025
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Figure 2. Sections of the hydraulic conductivity field (in ms_l) for the fault scenario (1,1, 1), where all three faults act as pathways (i.e.,
increase conductivity). The hydraulic conductivity field is generated using a multi-Gaussian spatial random field model with heterogeneous
geological units. (a) Horizontal section at depth index z/Az = 30. (b) Vertical section at lateral index y/Ay = 15. Fault planes are vertical
and orthogonal to the x—y plane. The orange dots represent the possible contaminant injection locations. The black arrow indicates the main
direction of flow (along the x axis). Axes are labeled in terms of discretization units.

K(e) =2- (K(w) ™' + K@) ™)', 1)

where K(v1) and K(vy) denote the hydraulic conductivity
tensors in the respective cells of vertices vy and vs.

For a given path I within 3D space, its hydraulic resis-
tance Rr is defined by the following formula (Rizzo and de
Barros, 2017):

Rr =/|K‘1(l)-dl|, P
T

with dl being the incremental length along the path I'.

The concept of hydraulic resistance to groundwater flow
is important because the fluid tends to follow paths of mini-
mal resistance (Le Goc et al., 2010). Note also the similarity
of this concept compared to that of electrical resistance. We
can discretize this definition to apply it to our model. For a
given oriented edge e € E, the hydraulic resistance R, can be
approximated by the following formula:

R. =K '(e)-el, A3)

where K(e) is the simplified tensor [K,y, Kyy, K;;] of the
hydraulic conductivity on the oriented edge e ([ex, ey, e;]).

Rizzo and de Barros (2017) use this value of hydraulic re-
sistance for their modeling. In our case, in 3D and for a point
source, we found that the results were more conclusive by
adding a corrective factor to this formula in the form of a
dot product, preventing paths from going “backwards”. For a
given edge e € E, its weight w, is defined as follows:

we = max(fg,-e,0)- R, @)

Geosci. Model Dev., 18, 7147-7163, 2025

where f 4, is the main direction of the flow.

To build the graph, we use all cells of the initial model,
keep identical information and resolutions, and do not per-
form upscaling or graph reduction. Thus, we obtain a graph
with exactly the same resolution as the original simulation
space (as many nodes in the graph as cells in the grid rep-
resentation), with edge weights that accurately approximate
the cost for the contaminant to traverse that edge.

2.2.2 Computation

The shortest-path problem is a classic problem in graph the-
ory. It has several variants, depending on the number of
sources and targets and the nature of the weights. In our case,
we aim to find the shortest paths between a single source
(the contaminant source) and all nodes in the last layer of the
model. The algorithm of choice in this case is Dijkstra’s al-
gorithm (Dijkstra, 1959). The graph utilized is the one gen-
erated in Sect. 2.2.1, with each edge e being assigned the
weight w, from Eq. (4).

Starting from the weighted and directed graph generated
in the previous section, we aim to apply a shortest-path al-
gorithm (Dijkstra’s algorithm) between the source and the
graph nodes corresponding to the model outlet face (for
which the hydraulic head is set to Om in Fig. 1). Here, the
source is a single point, and the model outlet face includes
2000 nodes. Rizzo and de Barros (2017) calculate only the
shortest path between the source and the target set. In con-
trast, we calculate the minimum distance between the source
and each node of the model outlet face. This process is not

https://doi.org/10.5194/gmd-18-7147-2025
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Figure 3. (a) Map of the cumulative mass at FTA for scenario 32. (b) Map of distances between the source and the model outlet face for
scenario 32. Both maps are plotted on the outlet face located at x = 7000 m using discretized coordinates y/Ay and z/Az. (¢, d) Histogram
and mean of two correlation coefficients between the negative of the distances and the cumulative mass over all 80 of the scenarios.

costly because, in general, Dijkstra’s algorithm needs to com-
pute all distances to obtain any particular one. We thus obtain
a distance value for each vertex in the last layer, resulting
in a 2D array that can be visualized as an image. An exam-
ple is provided in Fig. 3b. In practice, we used the function
“get_shortest_paths” from the Python igraph library (Csardi
and Nepusz, 2006), which is compiled in C++. In the fol-
lowing content, the distance map returned by Dijkstra’s al-
gorithm is denoted as I3.

2.3 Observation time

Equivalent simulations were performed with MODFLOW 6
to compare the shortest paths with concentrations calculated
numerically. To make the comparison possible, an observa-
tion time for the simulation must be chosen. Indeed, while
modeling the geological environment as a graph and calculat-
ing the shortest paths does not depend on time, the model out-
let face concentrations calculated by MODFLOW 6 can vary
considerably depending on the chosen observation time. The
question is which value should be compared with the values
returned by the Dijkstra algorithm and at which observation
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time. Logically, one can expect that the shortest-path algo-
rithm will better approximate the path taken by the fastest
particles of the fluid rather than the slowest ones. Therefore,
it seems reasonable to choose a relatively short observation
time, a first time of arrival (FTA). Here, we define it as the
time in the numerical simulation at the point when the cumu-
lative mass that has passed through the last layer reaches 1 %
of the injected mass during the first time step, similarly as in
Rizzo and de Barros (2017). For our observations on the last
layer of the model, we have chosen to examine the cumula-
tive mass that has passed through it since time ¢ = O rather
than the concentration to be less sensitive to this observation
time. An example is given in Fig. 3a. In what follows, the
cumulative mass map returned by MODFLOW 6 at FTA is
denoted as I,.

2.4 Metrics

Comparing briefly the distances map and the cumulative
mass map (Fig. 3a and b) over the 80 cases, one can see that
the distributions look quite dissimilar. The histograms dis-
playing Pearson and Spearman correlations between the two

Geosci. Model Dev., 18, 7147-7163, 2025
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Figure 4. Method to compare cumulative mass and distance maps. The cumulative mass maps are obtained from a numerical solver (in our
case, MODFLOW 6), while the distance maps are generated by our model using the shortest path to the outlet, computed with Dijkstra’s

algorithm.

distributions have been calculated and can be found in Fig. 3¢
and d. The average values for these correlations are around
0.2 for the Pearson correlation and above 0.9 for the Spear-
man correlation. This suggests that, while there is a relatively
weak correlation between the distributions themselves, the
rankings of the pixels exhibit a strong correlation. What in-
terests us more than the correlation between the two entire
arrays are the pixels in I, with significant cumulative mass.
The preservation of rank correlation enables us to compare
areas displaying high values of cumulative mass with areas
displaying the shortest distances, and, thus, we suggest that
the proposed proxy is relevant. We want to find a metric that
spatially compares the pixels in I, to the pixels in Iy with
low Dijkstra distances. Ideally, given a number n of pixels
in I;, displaying the highest values of cumulative mass, for a
perfect proxy, the pixels in Iy displaying the n shortest dis-
tances would share the same locations in the images. This
inspires the following method, represented in Fig. 4:

1. We identify pixels in I, where the cumulative mass ex-
ceeds a certain threshold, denoting them as significant
concentration zones, defining a set of n points Xp,.

2. The n pixels with the smallest distances are selected in
I4, defining a second set of points Xg.

3. For a certain similarity metric u, u(Xm, Xq) is com-
puted.

For step 1, the Otsu thresholding method is utilized (Otsu,
1979). This thresholding method minimizes the intra-class
variance for a distribution. It has the strong advantage of be-
ing non-parametric and is considered to be a reference in
computer graphics. For step 3 of comparing between the two
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sets of points, the problem is reduced to comparing two bi-
nary images, assigning the label 1 to points in the sets of
interest and the label O to others. Numerous metrics exist in
the machine learning literature for segmentation problems.
We have chosen to employ two complementary metrics: the
Jaccard similarity index and the normalized Wasserstein dis-
tance.

The Jaccard index, also known as the IoU (intersection
over union) ratio, quantifies the similarity between two finite
sample sets A and B as follows:

_JANB

J(A,B)=— """,
(4.8 |AU B|

4)
In our context, the sets in question are the non-zero pixels
Xm and Xy from each image. The Jaccard index is bene-
ficial because it evaluates the overlap between the spots in
both images and ranges from 0 (indicating total dissimilar-
ity) to 1 (indicating total similarity). However, its limitations,
as outlined in Wang et al. (2022), include a predisposition
towards larger areas rather than smaller ones. In the latter,
a single-pixel error might significantly impact the IoU ra-
tio. Moreover, the index drops to zero with no overlap be-
tween the spots, failing to differentiate between various non-
overlapping scenarios, including those where a spot’s shape
remains preserved despite translation.

Another valuable metric is the Wasserstein distance, or the
Earth mover distance, derived from optimal transport theory.
This measure assesses the dissimilarity between two distri-
butions or densities by calculating the “cost” of transferring
matter from one distribution to the other. The Wasserstein
distance can vary depending on the underlying distance met-
ric; in our study, we utilize the Euclidean distance, yielding

https://doi.org/10.5194/gmd-18-7147-2025
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the 2-Wasserstein distance (W»), which is the square root of
the loss from the following optimization problem:
W22(a,b) = min Zyj,i ”Zi —Z/j ||2 (6)

Ixn 4

yeRY i
stTl=a
r'1=»
r=0
with T = (y;,;),

where a € R” and b e R/ represent the sample weights
or, in other words, the mass distribution to be displaced,

,,,,,

from the two samples, respectively. The solution of the opti-
mization problem I' = (y; ;) is the optimal transport matrix
between the two samples.

In our case, we have two binary images, each of which
can be interpreted as a 2D uniform distribution over the pix-
els with a value of 1. Each such pixel is assigned a value of
1/k, where k is the number of pixels with a value of 1 in
the respective image, ensuring that the distribution is prop-
erly normalized. Thus, in Eq. (6), we take n = = |Xjy| the
number of elements of the sets X, and Xy, and we define the
weight vectors as follows:

T
a=b=(i.1)"

with (z;)ieq1,...,n) and (Zé)ie{l ,,,,, ) being the 2D coordinates
of the elements of the sets X, and Xy, respectively.

Directly dealing with this distance can be challenging due
to its dependence on the data type, including the sample size
and the characteristic distance between samples, and because
it does not scale between 0 and 1. An approach, as developed
in Wang et al. (2022), introduces the normalized Wasserstein
distance (NWD), which scales from 0 (indicating total dis-
similarity) to 1 (indicating total similarity):

W» (Xm , Xd) ) (7)

NWD(Xp,, Xq) = exp (— C

where C is “a constant closely related to the dataset” (Wang
et al., 2022). C is chosen as the average standard deviation
of the coordinates of the sets X;, and Xq, calculated across
multiple scenarios. The NWD has the advantage of better
accounting for results that are merely translated, correlating
closely with the distance between the centers of mass of the
distributions (Lipp and Vermeesch, 2023), but it has the dis-
advantage of overly penalizing cases where a dissimilar pixel
is very far from the areas of similarity between the two im-
ages.

To mitigate this, we have calculated the arithmetic mean of
the Jaccard index and the NWD as a similarity index, denoted
as u:

https://doi.org/10.5194/gmd-18-7147-2025
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NWD (X, Xq) + J X, Xq)
5 .

U Xm, Xq) = 3)

Thus, following the method above, we select the pixels
of interest in both images I, and I3, and we calculate their
similarity index using the function w. Therefore, we define
the function u*, which performs all of this for the two images
I, and I4 and returns their similarity:

w1 (I, Ig) = (X, Xq). )
2.5 Method of scenario selection

Suppose we are dealing with a geological setting where we
know the conductivity field and the source position, and we
have measurements of the cumulative fluid mass that has tra-
versed the output layer up to the present time. Faults are
present, but we are uncertain whether they behave as a pref-
erential path or barrier. Can we predict the nature of these
faults using our shortest-path method and our similarity met-
ric u? To address this question, we aim to compare the simi-
larity between binary images generated from MODFLOW 6
(which we consider to be our ground truth or reference data)
and those resulting from the shortest-path calculations, as de-
scribed in the preceding sections.

For a known source position j and conductivity field, let
S be the set of fault scenarios, and let nn y = | S| be the num-
ber of possible fault scenarios. Let us use, for each scenario
s, Im(s) and I4(s) as the arrays of, respectively, cumulative
mass and distance. Two methods to predict the fault scenario
are described in the following sections: one method selects a
set of scenarios to reduce uncertainty, while the other assigns
a probability to each fault for its behavior.

2.5.1 Scenario selection

We are striving to develop a method to identify, from a dis-
crete set of potential scenarios, which scenario aligns with
the actual measurements of cumulative mass in the output
layer. However, we have noted that, despite the accuracy of
the MODFLOW 6 simulation, certain scenarios lack suffi-
cient variability to be distinguished, especially when the fault
that distinguishes them has minimal or no impact on the
plume. Thus, given a reference scenario (so € S;), we aim
to devise a strategy (represented by a function f) to select a
set f(so) of scenarios (instead of one scenario) that includes
our reference scenario so. Equivalently, this function would
reject certain scenarios and thus reduce the uncertainty. This
function should rely exclusively on the cumulative mass map
I (so) of sp and the set of distance maps from all scenarios
{Ia(s), s € S;}. Ideally, we would like to find a function satis-
fying f(s) = {s} for every scenario s, but, as we said, this is
not always possible due to the low inter-scenario variability
of the model and the approximations of our method based on
shortest paths.

Geosci. Model Dev., 18, 7147-7163, 2025
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Thus, we define the success of a strategy f applied to sce-
nario s, denoted as Y (f,s):

Y(f,s) =Teren (10)

returning 1 if s € f(s) and returning 0 otherwise. We also
define w( f, s) — that, is the number of scenarios selected by
the strategy f for the scenario s:

w(f,s)=f(s)I. an

From these results, we can calculate, for a strategy f, the
success rate Y (f) and the average number w( f) over all 80
available scenarios (for all possible sources). We would like
to maximize the success rate while keeping the average num-
ber of selected scenarios low enough to reject the maximum
number of scenarios. Therefore, we seek a strategy with the

highest possible ratio ;E—J};
We may simply consider the strategy hy for ke
{1,...,nyr}, which always randomly selects a subset S of

size k. For this type of strategy, we obtain a linear response:
Y (hy) = % and w(s) = k. This dummy strategy serves as a
baseline for improvement; a good strategy should display a
metric above this linear response.

An idea for a method is for a certain threshold A € [0, 1] to
retain only the scenarios (s;) such that u* (I (s), Ia(s;)) > A.
We thus define the strategy g, for A € [0, 1]:

gn(s) ={r € Sj, w*(In(s).Ta(1)) = A}. (12)

Another idea is to select all of the scenarios with maximum
similarity /. This defines the u strategy:

u(s) = argmax (u* (In(s), La(j))). (13)

J€ES;
2.5.2 Prediction of each fault’s behavior

Another way to learn more about the reference scenario is to
attempt to predict the behavior of each individual fault rather
than directly seeking to identify the correct scenario. For a
given reference scenario sp, we want to calculate a value in-
terpreted as a similarity to predict the behavior of its fault
i (i €{1,2,3} in our example). For a given scenario sg, we
define the binary value F;(sg), which equals 1 if faulti is a
preferential path in scenario s and —1 if it is a barrier.

The sum of similarities between the reference scenario sg
and the scenarios where the fault i behaves as a path divided
by the sum of similarities to the reference scenario for all sce-
narios returns a value between 0 and 1 that can be interpreted
as a probability:

Z‘VES,',F,' (5)=1 ,LL* (Im(s0), Ly (s))
Zsesj w*(Im(s0), La(s))

P(Fi(so)=1) = (14)

Indeed, this ranges from O (if 59 is very dissimilar to the sce-
narios with i as a preferential path) to 1 (if s is very similar
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to these scenarios). Similarly, the probability for the fault i
to behave as a barrier for scenario sg can be seen as this nor-
malized sum:

erSj,F,-(s)z—lM*(Im(sO)v La(s))
> ses; (Im(s0). Ta(s))
=1—P(Fi(so) =1). (15)

P(Fi(so) =—1) =

This value ranges from 0 and 1 as well, allowing it to be
interpreted as a probability. This enables us to predict the
behavior of the fault by rounding it to 0 or 1.

3 Results
3.1 General graph approximation performances

The similarity index described in Sect. 2.4 has been applied
to analyze the results of the 80 scenarios. For each scenario,
a MODFLOW 6 simulation is run to obtain the cumulative
mass, a graph calculation is performed to obtain a distance
map, and the two outputs are compared via the similarity in-
dex. A representative sample of the results can be found in
Fig. 5, and the distribution of similarities is shown in Fig. 6.
The mean and median similarity over all scenarios are, re-
spectively, 0.62 and 0.74.

The similarity value is indicative since it was constructed
from two different measures and thus requires some interpre-
tation to decide whether or not the approximation is “good
enough”. Across all results, we observe that the approxima-
tion of X, by Xq is acceptable when the similarity value is
greater than 0.3. Note that what can be considered to be a
valid threshold for a good approximation is subject to the
user appreciation. If the user is more demanding then they
can choose a higher threshold, such as 0.4 or 0.5. In the case
of Fig. 5f, we observe that our method captures two out of the
three cumulative mass patches present in the MODFLOW 6
simulation and produces a similarity index of 0.31. We can
conclude that the distance map provides a good indication of
where the cumulative mass will be significantly present.

Another important result is the comparison of the com-
putational time between the graph-based method and the
physics-based method. We conducted our calculations using
our model, as well as two others with coarser (low resolu-
tion) and finer (high resolution) resolutions. For the low res-
olution, the discretization parameters Ax, Ay, and Az are
multiplied by 2, and these are divided by 2 for the high res-
olution, resulting in the cell volume being either multiplied
by or divided by 8. The computation times are presented in
Table 2. We observe that, for the method using graphs, gen-
erating the graph has a significantly higher cost than calcu-
lating the paths. Moreover, the graph generation followed by
Dijkstra’s calculation takes approximately 10 times less com-
putational time than the MODFLOW 6 simulation.
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Figure 5. Computation of the similarity for scenarios 0 (a), 76 (b), 36 (c¢), 8 (d), 27 (e), and 10 (f). For each case, on the left side is the
cumulative mass (Xp) at FTA from MODFLOW 6 to which an Otsu thresholding is applied. On the right side, the map of distances (Xq)
is shown, thresholded with the same number of pixels as for the cumulated mass map. The similarity values are shown on the top of each

figure. The axes are expressed in discretization units.
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Figure 6. Histogram of similarity index values computed over all
80 scenarios using the similarity formula from Eq. (9). For each
scenario, the similarity was calculated between the cumulative mass
map at FTA and the corresponding distance maps.
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Table 2. Duration of each simulation for three different model res-
olutions. The physics-based simulation is conducted with MOD-
FLOW 6, and the graph-based one is conducted with the igraph
library.

Physics-based Graph Dijkstra

simulation ~ generation computation

Low resolution 10.6s 1.5s 0.02s
Standard resolution 80s 10s 0.25s
High resolution 712s 95s 2.6

3.2 Scenario selection illustration using two examples

To illustrate the previous methods in a concrete case, we
choose scenario number 65 from our database (denoted as
s65), which has the source position 5 and corresponds to
the fault scenario triplet (1, —1,1) (i.e., faults 1 and 3 are
paths, and fault 2 is a barrier). Figure 7 shows the similar-
ity between the cumulative mass map I, (ses5) and each of
the distance maps from all fault scenarios I4(s),s € S5. We
can see that two fault scenarios stand out distinctly, namely
fault scenarios (1, —1,—1) and (1, —1, 1), which include the

Geosci. Model Dev., 18, 7147-7163, 2025
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Figure 7. Cross-similarity between the cumulative mass map at FTA of scenario 65 and the distance maps of all scenarios in S5 (a) and
between the cumulative mass map at FTA of scenario 12 and the distance maps of all scenarios in Sy (b), computed using the similarity

formula from Eq. (9).

Table 3. Probabilities P (F;(s) = 1) of each fault being a preferen-
tial path for scenario 12 and scenario 65.

Scenario \ faultID  Fault1 Fault2 Fault3
S12 0.35 0.49 0.53
565 0.80 0.19 0.51

correct scenario. Indeed, when fault 1 acts as a preferential
path and fault 2 as a barrier, most of the flow goes through
fault 1, which reaches the model outlet independently of fault
3 (that could act as either a barrier or a preferential path).
This means that fault 3 does not influence the shortest path
through the graph. Therefore, with the strategies defined in
Sect. 2.5.1, namely g, (with any threshold between 0.2 and
0.75), or with the strategy u, we can clearly isolate these two
scenarios from the rest, allowing us to reject six out of eight
fault scenarios. If we attempt to predict the faults individ-
ually (as in Sect. 2.5.2), we obtain the probabilities in the
second row of Table 3. The prediction is accurate for faults 1
and 2, but, for fault 3, the probability is very close to 0.5, not
allowing any conclusion. For scenario 65, we see that both
approaches allow for the clear identification of the nature of
two out of three faults.

Now, let us consider scenario s12 from our database, which
has the source position 2 and corresponds to the fault sce-
nario (—1,—1,1). Looking at Fig. 7, which shows the sim-
ilarity between the cumulative mass map I, (s;2) and each
of the distance maps from all fault scenarios I4(s),s € 2,
we can see that it is less clear here. Even if the correct fault
scenario has the highest cross-similarity, the difference com-
pared to the others is not substantial enough to make a confi-
dent prediction. Using the second method and looking at each
fault individually, we obtain the probabilities in third row of
Table 3. While the prediction for the first fault is clearly pre-
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dicted (correctly) to behave as a path, the prediction is poor
for faults 2 and 3, with probabilities slightly below or above
0.5. Thus, for this scenario, the results are less favorable, with
only one fault being confidently identified.

3.3 Scenario selection overall results

The results of the average success rate Y, computed over
pairs (80) of fault scenarios (8) and contaminant sources (10),
as a function of the average number of selected scenarios w,
are presented in Fig. 8. It is evident that all data points lie
significantly above the baseline curve of the A functions.
Specifically, selecting the g, function for A =0.5 yields a
precision of ¥ = 0.8 and an average number of selected sce-
narios w = 2, which can be interpreted to be a confidence of
80 % to select the right scenario when selecting the two best
scenarios. Close results are obtained with the u function. This
shows that, with this method, we are able to confidently re-
ject a good portion of the scenarios. Using the probabilities
calculated in Eq. (14), we can then calculate the recall and
precision for each fault in predicting its behavior. Because
there are two possible classes (barrier or path), recall and pre-
cision are calculated for both classes. The results are shown
in Fig. 9 with blue markers. Additionally, in Fig. 9, the recall
and precision scores obtained using the cumulative mass re-
sults from MODFLOW 6 from start to finish are shown with
orange markers. The fact that the precision and recall are not
equal to 1 demonstrates the inherent lack of variability in the
data; i.e., there exists ambiguity between scenarios that can-
not be resolved when using the physics-based solver. Even
with perfect measurement, we cannot determine the nature
of each fault with certainty a posteriori.

We can make the general observation that the results from
the graph-based models are within the range of the results
from the physics-based solver. Notably, for fault 2, the graph-
based model even outperforms the physics-based one in pre-
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Figure 8. Results of scenario identification for different selection
functions. Each point corresponds to one strategy f, and its coordi-
nates correspond to the average number of scenarios retained w( f)
and the success rate Y (f), computed over all 80 cases. The black-
cross markers refer to the dummy strategies &y, selecting a constant
number of random scenarios. The dot markers refer to the strategies
g»., retaining the scenarios with a cross-similarity over the thresh-
old X, with their color corresponding to the value of A according
to the color bar on the right. Finally, the red-cross marker refers
to the strategy u, selecting the scenarios with the maximal cross-
similarity. We can notice that both strategies g, and u are above the
line of the random strategies /.

dicting its behavior. This is because the graph method is
highly sensitive to the presence or absence of paths with
very high conductivity. Conversely, for fault 3 (the transverse
fault), the results are significantly worse. This is because the
Dijkstra paths are minimally influenced by the nature of fault
3 due to its geometry: whether it acts as a preferential path-
way or as a barrier, it only adds a constant to the length of all
of the paths.

4 Discussion

This study has confirmed and extended the findings of
Rizzo and de Barros (2017) by successfully demonstrating
the effectiveness of graph-based methods in approximating
contaminant transport in 3D subsurface environments with
faults. Using a graph modelization very similar to the one of
Rizzo and de Barros (2017), but embedding a few improve-
ments, we have shown that not only the shortest path but the
whole distance map generated by Dijkstra’s algorithm be-
tween the source and the model’s outlet is rank correlated
with the distribution of cumulative masses flowing through
the outlet. The proposed metric, combining both the Jac-
card index and Wasserstein distance and used to compare the
graph-based distances with the cumulative mass, is effective
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in comparing binary images and exhibits fairly good spatial
similarity between the two maps.

The proposed similarity metric tries to mitigate the draw-
backs of each of its components. On the one hand, the
Jaccard index penalizes the comparison of small areas as
a single-pixel error might significantly impact the IoU ra-
tio in that case, and it cannot discriminate between non-
overlapping scenarios. On the other hand, the NWD penal-
izes cases where a dissimilar pixel is very far from the ar-
eas of similarity between two images. However, one can note
that it is very sensitive to slight changes: a small shift both
decreases the Wasserstein component of the similarity and
decreases the Jaccard index.

In addition to the model presented in Sect. 2.1, we tested
our method in the absence of faults by varying the multi-
Gaussian field. The results are presented in Appendix A. We
first verified that our results align with those of Rizzo and de
Barros (2017). We also studied the uncertainty of the min-
imal distance point of the outlet and compared it with that
of the maximum cumulative mass point. We demonstrated
that the uncertainties were comparable and followed similar
trends for different field parameters. However, the absence of
very-high-conductivity paths (or very-low-conductivity bar-
riers), which the graph approximates quite well, can ex-
plain the mitigated performance of a graph-based approach
in a multi-Gaussian setting. So, the use of the proposed ap-
proach is particularly interesting in testing scenarios display-
ing strong hydraulic conductivity contrasts or very different
pathways.

These results suggest the potential use of graph-based
methods as a proxy for groundwater flow simulation, partic-
ularly when traditional methods are too costly to implement
and when the sought-after information is less about the con-
taminant concentration values and more about its location on
a control plane. This is relevant for scenario selection, which
can be achieved by comparing the locations of contaminants
at the outlet. Our experiment described in Sect. 2.5 allowed
us to assess the use of a graph-based method in fault scenario
selection. By comparing the similarity between the cumula-
tive mass result of a reference scenario and the graph simula-
tions, we can either reject a significant number of scenarios
to reduce uncertainty or calculate a fault-by-fault probability
of increasing or decreasing the conductivity. For two of the
three faults studied, our results are close to those obtained
with MODFLOW 6.

However, several questions and challenges related to the
use of graph-based methods remain unresolved after this
study. It is still necessary to explore the impact of the chosen
observation time for the physical data, as well as the possibil-
ity of 3D visualization of the shortest paths, and to test other
graph algorithms for approximating groundwater flow. Addi-
tionally, the difficulty in determining a thresholding method
for the distance seems to compromise the possibility of com-
pletely replacing physics-based methods. All of these ques-
tions are detailed in the following paragraphs.

Geosci. Model Dev., 18, 7147-7163, 2025
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Figure 9. Precision and recall for the classification for each fault, each method, and each class. (a) Class —1 (barrier) and (b) class 1 (path).

An aspect to consider is the attention given to the obser-
vation time. As mentioned in Sect. 2.3, we chose to perform
all our measurements at the first time of arrival (FTA). While
we use a percentage approach to determine the FTA, an al-
ternative could be to use a deconvolution approach (Luo and
Cirpka, 2008), potentially with greater computing expenses.
Then, with our dataset, we can calculate the time at which
the distribution of cumulative mass is closest to the distribu-
tion of distances. However, it would be necessary to study
the quality of the approximation at other observation times
as well.

Additionally, it would be interesting to test the scalability
of the approach (e.g., by increasing the regular grid resolu-
tion or simplifying the graph representation) or other graph
algorithms to approximate groundwater flow to potentially
increase the computing efficiency of the approach. In par-
ticular, the minimum-cost flow problem (Ahuja et al., 1993)
could be useful if it can be properly defined in this context.
Specifically, it would be necessary to find a geological value
to associate with the notion of capacity, knowing that hy-
draulic resistance can be used to represent the cost.

With this graph-based method, we can hope for a true 3D
visualization of the plume shape rather than just the distance
distribution at the outlet. We have conducted some prelimi-
nary tests in this direction. The initial idea was to recalcu-
late the distances between the source and each orthogonal
section of the graph using Dijkstra’s algorithm rather than
just the final section. However, this method was unsuccessful
due to the lack of consistency in the distance distribution be-
tween different sections. A more successful idea was to cal-
culate the number of paths passing through each node in the
3D mesh to identify the most visited nodes. Preliminary fig-
ures are presented in Appendix C. A more quantitative study,
such as comparing results with streamline-based approaches,
would be necessary.

Geosci. Model Dev., 18, 7147-7163, 2025

Finally, there are two paths open to make the graph-based
method fully independent from the physics-based results.
The first would be to find a thresholding method to distin-
guish the pixels of interest solely based on their distance. We
attempted this in Appendix B, but our results were mixed.
The second, more ambitious method would be to find a func-
tion @ that transforms the distfmce distribution I4 into an esti-
mate of the cumulative mass I,r = ®(Ig). Machine learning
approaches could be considered for this. Developing a truly
independent method could significantly reduce computation
time as graph generation and Dijkstra’s calculation are 10
times less costly than a physics-based simulation.

The investigation of the use of graph structures as proxies
for geological processes extends beyond the hydrogeological
application proposed here. While our work could have more
general applications to flow and transport in porous media,
it has not been tested yet and could be investigated in fu-
ture research. Regarding other fields of application, Mont-
sion et al. (2024) used Dijkstra distances as proxies for the
non-Euclidean distance in 2D between geological feature by
assigning weights to edges based on estimated flow prop-
erties, and these distances were, in turn, used as part of a
mineral prospectivity analysis. In the context of building 3D
geological models, graph neural networks are being used as
a framework for understanding relationships between obser-
vations (Hillier et al., 2021, 2023). In both cases, the possi-
bilities for constraining the modeling results with knowledge
graphs that share similar architectures (Enkhsaikhan et al.,
2021) provide the potential for mapping specific local knowl-
edge onto larger poorly understood regions.

5 Conclusions

GraphFlow allows for the calculation of Dijkstra paths to
generate a distance map for the last layer of the model.

https://doi.org/10.5194/gmd-18-7147-2025
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We have demonstrated, by developing an appropriate sim-
ilarity measure, that, for a synthetic case involving a fault
zone, these distance maps are highly rank correlated (aver-
age Spearman coefficient of 0.9) with the distribution of cu-
mulative masses at the first time of arrival (FTA). Moreover,
the spatial similarity of the pixels of interest is high (0.62 on
average for our similarity measure).

This result has enabled us to use this model for scenario
selection. For eight different fault scenarios, comparing their
distance maps significantly reduces uncertainty by selecting
a few plausible scenarios with confidence.

Several challenges remain in finding other applications for
this method. The main challenge is in making the model
independent of physics-based results: specifically, finding a
threshold based solely on distance to distinguish between
pixels of interest and pixels with negligible cumulative mass.

Appendix A: Validation of the graph-based
approximation method in a heterogeneous environment
without faults

We also tested our graph-based approximation method in a
heterogeneous environment without faults. We used the exact
same parameters, but instead of testing variability according
to fault behavior, we simulated 50 multi-Gaussian realiza-
tions for each geological unit, resulting in 50 different sce-
narios. There is only one source position with coordinates of
xg = 1050 m, ys =2550m, and zg = 512.5m.

As in the main body of the paper, the distribution of sim-
ilarity was calculated, with the mean and median being 0.37
and 0.38, respectively. These results, shown in Fig. Al, are
significantly lower but still acceptable (above the qualitative
threshold of 0.3). This can be explained by the absence of
very-high-conductivity paths (or very-low-conductivity bar-
riers), which the graph approximates quite well.

For these simulations, we also found it interesting to study
the sensitivity of the groundwater flow simulation results to
the parameters of the multi-Gaussian hydraulic conductivity
field. This has already been tested in numerous papers for
PDE-based methods only.

Cao et al. (2018) show that the characteristic size of the
plume for a 2D simulation and its variance (its uncertainty)
increase when the field variance o increases and also when
the correlation length A increases. Srzic et al. (2013) also
demonstrate that, as the heterogeneity of the field increases,
the uncertainty about the center of the plume increases as
well. We would like to see if the results from the shortest-
path method exhibit similar behavior in response to parame-
ter changes.
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Starting from reference values for the standard deviation
oo and the correlation length Ao, we successively apply a fac-
tor to vary both parameters. The variable we will focus on is
the standard deviation of the position of the point of maxi-
mum cumulative mass at the FTA (respectively, the point of
minimal distance). For each standard deviation o and corre-
lation length X, we generated 50 realizations of the MG field
and calculated the standard deviation of the coordinates of
the point of maximum cumulative mass at the FTA (respec-
tively, the point of minimal distance). This represents the un-
certainty of the result for the fixed parameters of standard
deviation o and correlation length A considering the fact that
the exact structure of the conductivity field is often unknown.
By decomposing the results on the y and z axes, we can visu-
alize the results in Fig. A2. We can observe that, in all cases,
the results from Dijkstra’s algorithm follow the trends of the
MODFLOW 6 results. Moreover, these trends are consistent
with previously observed results in the literature: as the cor-
relation length and standard deviation increase, the uncer-
tainty also increases. We can also notice the standard devi-
ations from Dijkstra’s algorithm are either equal to or signif-
icantly greater than those from MODFLOW 6. This means
that the uncertainty related to the structure of the conductiv-
ity field is not underestimated by Dijkstra’s method.

—— Median
— Mean

Simulations per bin
N

0.0 0.2 0.4 0.6 0.8 1.0
Similarity u

Figure Al. Histogram of the similarity index values over all 50
scenarios.
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Figure A2. Standard deviation of point of maximum cumulative mass coordinates (respectively, point of shortest graph distance coordi-
nates) for simulations with MODFLOW 6 in blue (respectively, with graph method in orange) as a function of the correlation length of the

conductivity field.

Appendix B: Thresholding methods for identifying
significant points based on distance

In Sect. 3, we observed the effectiveness of similarity: for
a given number n of pixels (corresponding to the number
of pixels where the cumulative mass at FTA is significant),
we compared the set of n pixels with the highest cumula-
tive mass at FTA X, with the set of n pixels with the small-
est distance Xy. However, even with this knowledge, with-
out physics-based data I, there is no straightforward way
to determine which points of I should be retained as loca-
tions where the contaminant is present in significant quanti-
ties based solely on the ranking of points according to their
distance. For instance, we cannot predict whether the cu-
mulative mass is uniform throughout the entire last layer or
highly localized. Therefore, we aim to automatically deter-
mine, using the distribution of distances, a threshold to dis-
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tinguish between significant and other points, returning an
estimation of the area idk where the contaminant is signifi-
cant. The Otsu algorithm does not work well directly on the
distance array I4 because the distribution is not suitable for
it. By examining the distributions of several scenarios (see
Fig. Bla and b), we observe the presence of a peak, typically
close to the minimum distance. Empirically, a correct thresh-
old value consistently lies before this peak.

An attempt we made was to apply an Otsu thresholding to
the signal before this peak. It is even possible to use multi-
class Otsu thresholding to estimate different cumulative mass
zones. The results are mixed, and some examples are shown
in Fig. Blc and d. Often, our auto-thresholding attempt over-
estimates the area of interest.

https://doi.org/10.5194/gmd-18-7147-2025
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Figure B1. (a, b) Densities of the distance for two different simulations. The densities have been computed with a Gaussian kernel. The
presence of a peak close to the shortest distance is to be noticed. (¢, d) Two different cases and their corresponding estimated thresholding
based on the distances. In both cases, the similarity is already quite good (> 0.5). The color bars on the right refer to the discrete classes after
the Otsu thresholding; this is not meant to approximate the cumulative mass values. The axes are expressed in discretization units.

Appendix C: A 3D visualization of Dijkstra pathways

For each vertex, we aim to count the number of Dijkstra
paths that pass through these nodes. Using the notations from
Sect. 2.2.1 and calling (7, ..., m000) the set of oriented
paths calculated by Dijkstra’s algorithm between the source
and the 2000 nodes of the model outlet face, we define the
number of paths passing through a vertex v € V as n*(v):

HOENDY

ie{l,...,n

(ChH

ﬂUEJT,' )
}

https://doi.org/10.5194/gmd-18-7147-2025

where 1{yer,) is an indicator function that equals 1 if the
vertex v belongs to the path 7r; and that equals O otherwise.
In practice, if we consider all of the paths between the
source and the last layer, we end up with nodes with a high
n* value, but these do not accurately correspond to the actual
flow paths of the contaminant. This occurs because arrival
points that are very far away or even at an infinite distance
(in the sense of Dijkstra) from the source are counted, mean-
ing the contaminant has no chance of reaching them. Thus,
we realized that restricting the number of nodes to m by se-
lecting only the m closest nodes (in the sense of Dijkstra) in

Geosci. Model Dev., 18, 7147-7163, 2025
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Figure C1. Visualization for two scenarios of the most visited nodes n* and the concentration C at FTA.

relation to the source yielded better results. For the exam-
ples, we arbitrarily chose m = 200, but this parameter war-
rants further exploration. Some examples of this method are
shown in Fig. C1.

Code and data availability. Our code and data to approximate
groundwater flow and transport simulations via a graph and to re-
produce the illustration examples with a set of illustrative notebooks
are available at https://doi.org/10.5281/zenodo.13328938 (Morac-
chini and Pirot, 2024) as the v1.0 release of https://github.com/
21moracchi/GraphFlow, last access: 8 October 2025) under the
MIT license.
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