Articles | Volume 18, issue 6
https://doi.org/10.5194/gmd-18-1929-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-1929-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new global high-resolution wave model for the tropical ocean using WAVEWATCH III version 7.14
Axelle Gaffet
CORRESPONDING AUTHOR
Creocean, Zone Technocean – Chef de Baie, 10 Rue Charles Tellier, 17000 La Rochelle, France
UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
Xavier Bertin
UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
Damien Sous
Université de Pau et des Pays de l'Adour, E2S-UPPA, SIAME, 64600 Anglet, France
MIO, Université de Toulon, Bâtiment F, 83130 La Garde, France
Héloïse Michaud
Shom, 42 Avenue Gaspard Coriolis, BP 45017 – 31032 Toulouse CEDEX 5, France
Aron Roland
BGS IT&E, Darmstadt, Hesse, Germany
Emmanuel Cordier
Observatoire des Sciences de l'Univers de La Réunion (OSU-Réunion), UAR 3365, Université de La Réunion, CNRS, IRD, Météo France, Saint-Denis, France
Related authors
No articles found.
Damien Sous, Marc Pézérat, Solène Déalbéra, Héloïse Michaud, and Denis Morichon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2285, https://doi.org/10.5194/egusphere-2025-2285, 2025
Short summary
Short summary
The circulation of nearshore water is of primary importance for the health of coastal ecosystems and the coastal hazards, such as erosion. The present study focuses on the role played by bottom friction, which is particularly important in rocky or coral reef areas. Using field observations and numerical simulations, we show that the waves are able to increase the bottom friction and therefore affect the whole circulation and water level dynamics.
Betty John Kaimathuruthy, Isabel Jalón-Rojas, and Damien Sous
EGUsphere, https://doi.org/10.5194/egusphere-2025-529, https://doi.org/10.5194/egusphere-2025-529, 2025
Short summary
Short summary
Studies on plastic pollution have emerged as a rapidly growing field of research. Modelling microplastic transport in estuaries stems from their complex hydrodynamics and diverse particle behaviours affecting the dispersion and retention of microplastics. Our paper reviews key modelling approaches applied in estuaries analyzing their setups and parameterizations. We provide recommendations and future directions to improve the accuracy and modelling strategies for estuarine microplastic research.
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025, https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary
Short summary
This study presents a novel modeling approach for understanding microplastic transport in coastal waters. The model accurately replicates experimental data and reveals key transport mechanisms. The findings enhance our knowledge of how microplastics move in nearshore environments, aiding in coastal management and efforts to combat plastic pollution globally.
Léo Seyfried, Laurie Biscara, Héloïse Michaud, Fabien Leckler, Audrey Pasquet, Marc Pezerat, and Clément Gicquel
Earth Syst. Sci. Data, 16, 3345–3367, https://doi.org/10.5194/essd-16-3345-2024, https://doi.org/10.5194/essd-16-3345-2024, 2024
Short summary
Short summary
In Saint-Malo, France, an initiative to enhance marine submersion prevention began in 2018. Shom conducted an extensive sea campaign, mapping the bay's topography and exploring coastal processes. High-resolution data improve knowledge of the interactions between waves, tide and surge and determine processes responsible for submersion. Beyond science, these findings contribute crucially to a local warning system, providing a tangible solution to protect the community from coastal threats.
Ali Abdolali, Saeideh Banihashemi, Jose Henrique Alves, Aron Roland, Tyler J. Hesser, Mary Anderson Bryant, and Jane McKee Smith
Geosci. Model Dev., 17, 1023–1039, https://doi.org/10.5194/gmd-17-1023-2024, https://doi.org/10.5194/gmd-17-1023-2024, 2024
Short summary
Short summary
This article presents an overview of the development and implementation of Great Lake Wave Unstructured (GLWUv2.0), including the core model and workflow design and development. The validation was conducted against in situ data for the re-forecasted duration for summer and wintertime (ice season). The article describes the limitations and challenges encountered in the operational environment and the path forward for the next generation of wave forecast systems in enclosed basins like the GL.
Léo Seyfried, Laurie Biscara, Fabien Leckler, Audrey Pasquet, and Héloise Michaud
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-316, https://doi.org/10.5194/essd-2021-316, 2021
Manuscript not accepted for further review
Short summary
Short summary
The French Flooding Prevention Action Program of Saint-Malo focuses on improving the knowledge of coastal flooding risks. The proposed approach is to use in-situ data collection. Bathymetric and oceanographic measurement campaigns were conducted during the winter of 2018–2019. Topo-bathymetric and oceanographic datasets have been built from these measurement campaigns. These data allow the development and validation of numerical models to improve the prediction of coastal flooding risks.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Md. Jamal Uddin Khan, Fabien Durand, Xavier Bertin, Laurent Testut, Yann Krien, A. K. M. Saiful Islam, Marc Pezerat, and Sazzad Hossain
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, https://doi.org/10.5194/nhess-21-2523-2021, https://doi.org/10.5194/nhess-21-2523-2021, 2021
Short summary
Short summary
The Bay of Bengal is well known for some of the deadliest cyclones in history. At the same time, storm surge forecasting in this region is physically involved and computationally costly. Here we show a proof of concept of a real-time, computationally efficient, and physically consistent forecasting system with an application to the recent Supercyclone Amphan. While challenges remain, our study paves the path forward to the improvement of the quality of localized forecast and disaster management.
Cited articles
Abdolali, A., Roland, A., Van Der Westhuysen, A., Meixner, J., Chawla, A., Hesser, T. J., Smith, J. M., and Sikiric, M. D.: Large-scale hurricane modeling using domain decomposition parallelization and implicit scheme implemented in WAVEWATCH III wave model, Coast. Eng., 157, 103656, https://doi.org/10.1016/j.coastaleng.2020.103656, 2020. a, b, c, d, e, f
Abdolali, A., van der Westhuysen, A., Ma, Z., Mehra, A., Roland, A., and Moghimi, S.: Evaluating the accuracy and uncertainty of atmospheric and wave model hindcasts during severe events using model ensembles, Ocean Dynam., 71, 217–235, https://doi.org/10.1007/s10236-020-01426-9, 2021. a
Abdolali, A., Hesser, T. J., Anderson Bryant, M., Roland, A., Khalid, A., Smith, J., Ferreira, C., Mehra, A., and Sikiric, M. D.: Wave attenuation by vegetation: model implementation and validation study, Frontiers in Built Environment, 8, 891612, https://doi.org/10.3389/fbuil.2022.891612, 2022. a
Alday, M. and Ardhuin, F.: On consistent parameterizations for both dominant wind-waves and spectral tail directionality, J. Geophys. Res.-Oceans, 128, e2022JC019581, https://doi.org/10.1029/2022JC019581, 2023. a
Alves, J.-H., Tolman, H., Roland, A., Abdolali, A., Ardhuin, F., Mann, G., Chawla, A., and Smith, J.: NOAA's great lakes wave prediction system: a successful framework for accelerating the transition of innovations to operations, B. Am. Meteorol. Soc., 104, E837–E850, https://doi.org/10.1175/BAMS-D-22-0094.1, 2022. a
Andréfouët, S., Bruyère, O., Liao, V., and Le Gendre, R.: Hydrodynamical impact of the July 2022 “Code Red” distant mega-swell on Apataki Atoll, Tuamotu Archipelago, Global Planet. Change, 228, 104194, https://doi.org/10.1016/j.gloplacha.2023.104194, 2023. a
Ardhuin, F., O'Reilly, W. C., Herbers, T. H. C., and Jessen, P. F.: Swell transformation across the Continental Shelf. Part I: Attenuation and directional broadening, J. Phys. Oceanogr., 33, 1921–1939, https://doi.org/10.1175/1520-0485(2003)033<1921:STATCS>2.0.CO;2, 2003. a
Ardhuin, F., Rogers, E., Babanin, A., Filipot, J.-F., Magne, R., Roland, A., Van Der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., and Collard, F.: Semi-empirical dissipation source functions for ocean waves: Part I, definition, calibration and validation, J. Phys. Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1, 2010. a
Ardhuin, F., Tournadre, J., Queffeulou, P., Girard-Ardhuin, F., and Collard, F.: Observation and parameterization of small icebergs: drifting breakwaters in the southern ocean, Ocean Model., 39, 405–410, https://doi.org/10.1016/j.ocemod.2011.03.004, 2011. a
Ardhuin, F., Collard, F., Chapron, B., Girard-Ardhuin, F., Guitton, G., Mouche, A., and Stopa, J. E.: Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A, Geophys. Res. Lett., 42, 2317–2325, https://doi.org/10.1002/2014GL062940, 2015. a
Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N., Chapron, B., Gula, J., and Molemaker, J.: Small scale open ocean currents have large effects on wind wave heights, J. Geophys. Res.-Oceans, 122, 4500–4517, https://doi.org/10.1002/2016JC012413, 2017. a
Battjes, J. A. and Janssen, J. P. F. M.: Energy Loss and Set-Up Due to Breaking of Random Waves, 569–587, American Society of Civil Engineers, https://doi.org/10.1061/9780872621909.034, 1978. a
Benoit, M.: Implementation and test of improved methods for evaluation of nonlinear quadruplet interactions in a third generation wave model, in: Coastal Engineering 2006, 526–538, World Scientific Publishing Company, San Diego, California, USA, https://doi.org/10.1142/9789812709554_0046, 2007. a
Bentamy, A. and Croize-Fillon, D.: Gridded surface wind fields from Metop/ASCAT measurements, Int. J. Remote Sens., 33, 1729–1754, https://doi.org/10.1080/01431161.2011.600348, 2012. a
Bertin, X., de Bakker, A., van Dongeren, A., Coco, G., André, G., Ardhuin, F., Bonneton, P., Bouchette, F., Castelle, B., Crawford, W. C., Davidson, M., Deen, M., Dodet, G., Guérin, T., Inch, K., Leckler, F., McCall, R., Muller, H., Olabarrieta, M., Roelvink, D., Ruessink, G., Sous, D., Stutzmann, E., and Tissier, M.: Infragravity waves: from driving mechanisms to impacts, Earth-Sci. Rev., 177, 774–799, https://doi.org/10.1016/j.earscirev.2018.01.002, 2018. a
Biscara, L. and Maspataud, A.: France d'outre-mer: mise à disposition d'une nouvelle gamme de MNT bathymétriques de référence, meriGéo 2020/de la côte à l'océan – L'information géographique en mouvement, https://doi.org/10.13140/RG.2.2.29381.47840, 2018. a
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res.-Oceans, 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999. a
Bretherton, F. P., Garrett, C. J. R., and Lighthill, M. J.: Wavetrains in inhomogeneous moving media, P. Roy. Soc. A-Math. Phy., 302, 529–554, https://doi.org/10.1098/rspa.1968.0034, 1968. a
Brus, S. R., Wolfram, P. J., Van Roekel, L. P., and Meixner, J. D.: Unstructured global to coastal wave modeling for the Energy Exascale Earth System Model using WAVEWATCH III version 6.07, Geosci. Model Dev., 14, 2917–2938, https://doi.org/10.5194/gmd-14-2917-2021, 2021. a, b
Buckley, M. L., Lowe, R. J., Hansen, J. E., and Van Dongeren, A. R.: Wave setup over a fringing reef with large bottom roughness, J. Phys. Oceanogr., 46, 2317–2333, https://doi.org/10.1175/JPO-D-15-0148.1, 2016. a
Campos, R. M., Gramcianinov, C. B., de Camargo, R., and da Silva Dias, P. L.: Assessment and calibration of ERA5 severe winds in the Atlantic Ocean using satellite data, Remote Sens.-Basel, 14, 4918, https://doi.org/10.3390/rs14194918, 2022. a
Canavesio, R.: Distant swells and their impacts on atolls and tropical coastlines. The example of submersions produced by lagoon water filling and flushing currents in French Polynesia during 1996 and 2011 mega swells, Global Planet. Change, 177, 116–126, https://doi.org/10.1016/j.gloplacha.2019.03.018, 2019. a, b
Chelton, D. B., Schlax, M. G., Freilich, M. H., and Milliff, R. F.: Satellite measurements reveal persistent small-scale features in ocean winds, Science, 303, 978–983, https://doi.org/10.1126/science.1091901, 2004. a
Chelton, D. B., Samelson, R. M., and Farrar, J. T.: The effects of uncorrelated measurement noise on SWOT estimates of sea surface height, velocity, and vorticity, J. Atmos. Ocean. Tech., 39, 1053–1083, https://doi.org/10.1175/JTECH-D-21-0167.1, 2022. a
Chupin, C., Ballu, V., Testut, L., Tranchant, Y.-T., and Aucan, J.: Nouméa: a new multi-mission calibration and validation site for past and future altimetry missions?, Ocean Sci., 19, 1277–1314, https://doi.org/10.5194/os-19-1277-2023, 2023. a
Cooper, J., Jackson, D., and Gore, S.: A groundswell event on the coast of the British Virgin Islands: spatial variability in morphological impact, J. Coast. Res., 65, 696–701, https://doi.org/10.2112/SI65-118.1, 2013. a
Cordier, E., Jaquemet, S., Benoit, Y., David, M., Ferreira, S., Stamenoff, P., Bigot, L., Bureau, S., Fiat, S., menkes, c., Varillon, D., and Hocdé, R.: ReefTEMPS-OI – The Indian Ocean Island coastal ocean observation network, OSU-Réunion, https://doi.org/10.26171/7PCX-VM26, 2024. a
Delpey, M. T., Ardhuin, F., Collard, F., and Chapron, B.: Space-time structure of long ocean swell fields, J. Geophys. Res.-Oceans, 115, C12037, https://doi.org/10.1029/2009JC005885, 2010. a
Dodet, G., Piolle, J.-F., Quilfen, Y., Abdalla, S., Accensi, M., Ardhuin, F., Ash, E., Bidlot, J.-R., Gommenginger, C., Marechal, G., Passaro, M., Quartly, G., Stopa, J., Timmermans, B., Young, I., Cipollini, P., and Donlon, C.: The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations, Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, 2020. a, b
Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Sastre-Marugán, M., S le, T., Trei, W., Žagar, M., Badger, J., Gottschall, J., Sanz Rodrigo, J., and Mann, J.: The Making of the New European Wind Atlas – Part 2: Production and evaluation, Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, 2020. a
Dutheil, C., Andrefouët, S., Jullien, S., Le Gendre, R., Aucan, J., and Menkes, C.: Characterization of south central Pacific Ocean wind regimes in present and future climate for pearl farming application, Mar. Pollut. Bull., 160, 111584, https://doi.org/10.1016/j.marpolbul.2020.111584, 2020. a, b
Ferziger, J. and Peric, M.: Computational Methods for Fluid Dynamics, vol. 3, Springer Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-56026-2, 2002. a
Ford, M., Merrifield, M. A., and Becker, J. M.: Inundation of a low-lying urban atoll island: Majuro, Marshall Islands, Nat. Hazards, 91, 1273–1297, https://doi.org/10.1007/s11069-018-3183-5, 2018. a
Gaffet, A., Bertin, X., Sous, D., Michaud, H., and Roland, A.: A new global high resolution model for the tropical ocean using WAVEWATCH III version 7.14 – WaveWatchIII codebase, Zenodo [code], https://doi.org/10.5281/zenodo.14011562, 2024a. a
Gaffet, A., Bertin, X., Sous, D., Michaud, H., and Roland, A.: A new global high resolution model for the tropical ocean using WAVEWATCH III version 7.14 – Unstructured grid configuration files, Zenodo [code]. https://doi.org/10.5281/zenodo.13341123, 2024b. a
Gaffet, A., Bertin, X., Sous, D., and Michaud, H.: A new global high resolution model for the tropical ocean using WAVEWATCH III version 7.14 – Simulation output files, Zenodo [data set], https://doi.org/10.5281/zenodo.14601438, 2025. a
Gattuso, J.-P., Brewer, P., Hoegh-Guldberg, O., Kleypas, J., Pörtner, H.-O., and Schmidt, D.: Cross-chapter box on Ocean acidification, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change, Cambridge University Press, 129–131, ISBN: 9781107641655, 2014. a
Giardino, A., Nederhoff, K., and Vousdoukas, M.: Coastal hazard risk assessment for small islands: assessing the impact of climate change and disaster reduction measures on Ebeye (Marshall Islands), Reg. Environ. Change, 18, 2237–2248, https://doi.org/10.1007/s10113-018-1353-3, 2018. a, b
Graf, M., Scherrer, S. C., Schwierz, C., Begert, M., Martius, O., Raible, C. C., and Brönnimann, S.: Near surface mean wind in Switzerland: climatology, climate model evaluation and future scenarios, Int. J. Climatol., 39, 4798–4810, https://doi.org/10.1002/joc.6108, 2019. a
Gutiérrez, C., Molina, M., Ortega, M., López-Franca, N., and Sánchez, E.: Low-wind climatology (1979–2018) over Europe from ERA5 reanalysis, Clim. Dynam., 62, 4155–4170, https://doi.org/10.1007/s00382-024-07123-3, 2024. a
Hasselmann, S. and Hasselmann, K.: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral, J. Phys. Oceanogr., 15, 1369–1377, https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2, 1985. a
Hasselmann, S., Hasselmann, K., Allender, J. H., and Barnett, T. P.: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models, J. Phys. Oceanogr., 15, 1378–1391, https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2, 1985. a, b
Hersbach, H. and Janssen, P. A. E. M.: Improvement of the short-fetch behavior in the Wave Ocean Model (WAM), J. Atmos. Ocean. Tech., 16, 884–892, https://doi.org/10.1175/1520-0426(1999)016<0884:IOTSFB>2.0.CO;2, 1999. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hoeke, R. K., McInnes, K. L., Kruger, J. C., McNaught, R. J., Hunter, J. R., and Smithers, S. G.: Widespread inundation of Pacific islands triggered by distant-source wind-waves, Global Planet. Change, 108, 128–138, https://doi.org/10.1016/j.gloplacha.2013.06.006, 2013. a
Jullien, S., Aucan, J., Kestenare, E., Lengaigne, M., and Menkes, C.: Unveiling the global influence of tropical cyclones on extreme waves approaching coastal areas, Nat. Commun., 15, 6593, https://doi.org/10.1038/s41467-024-50929-2, 2024. a
Karypis, G.: METIS and ParMETIS, in: Encyclopedia of Parallel Computing, edited by: Padua, D., Springer US, Boston, MA, 1117–1124, https://doi.org/10.1007/978-0-387-09766-4_500, 2011. a
Kennedy, A. B., Westerink, J. J., Smith, J. M., Hope, M. E., Hartman, M., Taflanidis, A. A., Tanaka, S., Westerink, H., Cheung, K. F., Smith, T., Hamann, M., Minamide, M., Ota, A., and Dawson, C.: Tropical cyclone inundation potential on the Hawaiian Islands of Oahu and Kauai, Ocean Model., 52/53, 54–68, https://doi.org/10.1016/j.ocemod.2012.04.009, 2012. a
Khan, S. S., Echevarria, E. R., and Hemer, M. A.: Ocean swell comparisons between Sentinel-1 and WAVEWATCH III around Australia, J. Geophys. Res.-Oceans, 126, e2020JC016265, https://doi.org/10.1029/2020JC016265, 2021. a
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M.: Dynamics and Modelling of Ocean Waves, , Cambridge, UK: Cambridge University Press, 554 pp., ISBN 0521577810, August 1996. a
Lecacheux, S., Pedreros, R., Le Cozannet, G., Thiébot, J., De La Torre, Y., and Bulteau, T.: A method to characterize the different extreme waves for islands exposed to various wave regimes: a case study devoted to Reunion Island, Nat. Hazards Earth Syst. Sci., 12, 2425–2437, https://doi.org/10.5194/nhess-12-2425-2012, 2012. a, b
Lefèvre, J.-M.: High swell warnings in the Caribbean Islands during March 2008, Nat. Hazards, 49, 361–370, https://doi.org/10.1007/s11069-008-9323-6, 2009. a
Leonard, B. P.: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Method. Appl. M., 88, 17–74, https://doi.org/10.1016/0045-7825(91)90232-U, 1991. a
Liu, A. K. and Mollo-Christensen, E.: Wave propagation in a solid ice pack, J. Phys. Oceanogr., 18, 1702–1712, https://doi.org/10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2, 1988. a
Liu, A. K., Holt, B., and Vachon, P. W.: Wave propagation in the marginal ice zone: Model predictions and comparisons with buoy and synthetic aperture radar data, J. Geophys. Res., 96, 4605–4621, https://doi.org/10.1029/90JC02267, 1991. a
Liu, Q., Babanin, A. V., Rogers, W. E., Zieger, S., Young, I. R., Bidlot, J., Durrant, T., Ewans, K., Guan, C., Kirezci, C., Lemos, G., MacHutchon, K., Moon, I., Rapizo, H., Ribal, A., Semedo, A., and Wang, J.: Global wave hindcasts using the observation based source terms: description and validation, J. Adv. Model. Earth Sy., 13, e2021MS002493, https://doi.org/10.1029/2021MS002493, 2021. a
Marechal, G. and Ardhuin, F.: Surface currents and significant wave height gradients: matching numerical models and high-resolution altimeter wave heights in the Agulhas Current Region, J. Geophys. Res.-Oceans, 126, e2020JC016564, https://doi.org/10.1029/2020JC016564, 2021. a
Martins, K., Bonneton, P., Lannes, D., and Michallet, H.: Relation between orbital velocities, pressure, and surface elevation in nonlinear nearshore water waves, J. Phys. Oceanogr., 51, 3539–3556, https://doi.org/10.1175/JPO-D-21-0061.1, 2021. a
Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., and Floc'h, F.: Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe, Geophys. Res. Lett., 43, 2135–2143, https://doi.org/10.1002/2015GL067492, 2016. a
Masuda, A.: Nonlinear energy transfer between wind waves, J. Phys. Oceanogr., 10, 2082–2093, https://doi.org/10.1175/1520-0485(1980)010<2082:NETBWW>2.0.CO;2, 1980. a
Mentaschi, L., Kakoulaki, G., Vousdoukas, M., Voukouvalas, E., Feyen, L., and Besio, G.: Parameterizing unresolved obstacles with source terms in wave modeling: a real-world application, Ocean Model., 126, 77–84, https://doi.org/10.1016/j.ocemod.2018.04.003, 2018. a, b
Mentaschi, L., Vousdoukas, M., Garcia-Sanchez, G., Montblanc, T. F., Voukouvalas, E., Federico, I., Abdolali, A., Zhang, Y. J., and Feyen, L.: A global unstructured, coupled, high- resolution hindcast of waves and storm surges, Front. Mar. Sci., 10, 1233679, https://doi.org/10.3389/fmars.2023.1233679, 2023. a, b
Monteiro, N. M., Oliveira, T. C., Silva, P. A., and Abdolali, A.: Wind–wave characterization and modeling in the Azores Archipelago, Ocean Eng., 263, 112395, https://doi.org/10.1016/j.oceaneng.2022.112395, 2022. a
Moon, I.-J., Ginis, I., Hara, T., and Thomas, B.: A physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions, Mon. Weather Rev., 135, 2869–2878, https://doi.org/10.1175/MWR3432.1, 2007. a
Moukalled, F., Mangani, L., and Darwish, M.: Erratum to: The finite volume method in computational fluid dynamics, in: Fluid Mechanics and Its Applications, vol. 113, E1–E1, Springer International Publishing, Cham, Springer, https://doi.org/10.1007/978-3-319-16874-6_21, 2016. a
Munk, W. H., Miller, G. R., Snodgrass, F. E., Barber, N. F., and Deacon, G. E. R.: Directional recording of swell from distant storms, Philos. T. R. Soc. S.-A, 255, 505–584, https://doi.org/10.1098/rsta.1963.0011, 1997. a
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Rica, C., DeConto, R. M., Ghosh, T., Hay, J., Islands, C., Isla, F., Marzeion, B., Meyssignac, B., Sebesvari, Z., Biesbroek, R., Buchanan, M. K., de Campos, R. S., Cozannet, G. L., Domingues, C., Dangendorf, S., Döll, P., Duvat, V. K. E., Edwards, T., Ekaykin, A., Frederikse, T., Gattuso, J.-P., Kopp, R., Lambert, E., Lawrence, J., Narayan, S., Nicholls, R. J., Renaud, F., Simm, J., Smit, A., Woodruff, J., Wong, P. P., Xian, S., Abe-Ouchi, A., Gupta, K., and Pereira, J.: Sea level rise and implications for low-lying islands, Coasts and Communities, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 355, 126–129, 2019. a
Pineau-Guillou, L., Ardhuin, F., Bouin, M.-N., Redelsperger, J.-L., Chapron, B., Bidlot, J.-R., and Quilfen, Y.: Strong winds in a coupled wave–atmosphere model during a North Atlantic storm event: evaluation against observations, Q. J. Roy. Meteor. Soc., 144, 317–332, https://doi.org/10.1002/qj.3205, 2018. a
Quilfen, Y. and Chapron, B.: On denoising satellite altimeter measurements for high-resolution geophysical signal analysis, Adv. Space Res., 68, 875–891, https://doi.org/10.1016/j.asr.2020.01.005, 2021. a
Rapizo, H., Durrant, T. H., and Babanin, A. V.: An assessment of the impact of surface currents on wave modeling in the Southern Ocean, Ocean Dynam., 68, 939–955, https://doi.org/10.1007/s10236-018-1171-7, 2018. a
Rascle, N. and Ardhuin, F.: A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization, Ocean Model., 70, 174–188, https://doi.org/10.1016/j.ocemod.2012.12.001, 2013. a, b, c, d
Renfrew, I. A., Barrell, C., Elvidge, A. D., Brooke, J. K., Duscha, C., King, J. C., Kristiansen, J., Cope, T. L., Moore, G. W. K., Pickart, R. S., Reuder, J., Sandu, I., Sergeev, D., Terpstra, A., Våge, K., and Weiss, A.: An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: the impact of sea ice distribution, Q. J. Roy. Meteor. Soc., 147, 691–712, https://doi.org/10.1002/qj.3941, 2021. a
Roland, A. and Ardhuin, F.: On the developments of spectral wave models: numerics and parameterizations for the coastal ocean, Ocean Dynam., 64, 833–846, https://doi.org/10.1007/s10236-014-0711-z, 2014. a, b
Samou, M. S., Bertin, X., Sakho, I., Lazar, A., Sadio, M., and Diouf, M. B.: Wave climate variability along the coastlines of Senegal over the last four decades, Atmosphere-Basel, 14, 1142, https://doi.org/10.3390/atmos14071142, 2023. a
Schlembach, F., Passaro, M., Quartly, G. D., Kurekin, A., Nencioli, F., Dodet, G., Piollé, J.-F., Ardhuin, F., Bidlot, J., Schwatke, C., Seitz, F., Cipollini, P., and Donlon, C.: Correction: Schlembach, F., et al.: Round robin assessment of radar altimeter low resolution mode and delay-Doppler retracking algorithms for significant wave height, Remote Sens., 13, 1182, https://doi.org/10.3390/rs13061182, 2021. a, b
Smithers, S. and Hoeke, R.: Geomorphological impacts of high-latitude storm waves on low-latitude reef islands – observations of the December 2008 event on Nukutoa, Takuu, Papua New Guinea, Geomorphology, 222, 106–121, https://doi.org/10.1016/j.geomorph.2014.03.042, 2014. a
Stopa, J. E. and Cheung, K. F.: Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis, Ocean Model., 75, 65–83, https://doi.org/10.1016/j.ocemod.2013.12.006, 2014. a
Stopa, J. E., Ardhuin, F., and Girard-Ardhuin, F.: Wave climate in the Arctic 1992–2014: seasonality and trends, The Cryosphere, 10, 1605–1629, https://doi.org/10.5194/tc-10-1605-2016, 2016. a
Tolman, H. L.: Treatment of unresolved islands and ice in wind wave models q, Ocean Model., 5, 219–231, 2003. a
Tracy, B. and Resio, D.: Theory and Calculation of the Nonlinear Energy Transfer between Sea Waves in Deep Water, Tech. rep., WES Report 11, US Army Corps of Engineers, https://apps.dtic.mil/sti/citations/ADA117989 (last access: July 2024), 1982. a
van Vledder, G. P., Herbers, T. H. C., Jensen, R. J., Resio, D. T., and Tracy, B.: Modelling of non-linear quadruplet wave-wave interactions in operational wave models, Coast. Eng., 200, 797–811, https://doi.org/10.1061/40549(276)62, 2012. a
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital bathymetric model of the world's oceans, Earth and Space Science, 2, 331–345, https://doi.org/10.1002/2015EA000107, 2015. a
Webb, D. J.: Non-linear transfers between sea waves, Deep-Sea Res., 25, 279–298, https://doi.org/10.1016/0146-6291(78)90593-3, 1978. a
Xie, S. P., Liu, W. T., Liu, Q., and Nonaka, M.: Far-reaching effects of the Hawaiian Islands on the Pacific Ocean-atmosphere system, Science, 292, 2057–2060, https://doi.org/10.1126/science.1059781, 2001. a
Zheng, K., Sun, J., Guan, C., and Shao, W.: Analysis of the global swell and wind sea energy distribution using WAVEWATCH III, Adv. Meteorol., 2016, 8419580, https://doi.org/10.1155/2016/8419580, 2016. a
Short summary
This study presents a new global wave model that improves predictions of sea states in tropical areas by using a high-resolution grid and corrected wind fields. The model is validated globally with satellite data and nearshore using in situ data. The model allows for the first time direct comparisons with in situ data collected at 10–30 m water depth, which is very close to shore due to the steep slope usually surrounding volcanic islands.
This study presents a new global wave model that improves predictions of sea states in tropical...