Chauchat, J., Cheng, Z., Nagel, T., Bonamy, C., and Hsu, T.-J.: SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport, Geosci. Model Dev., 10, 4367–4392,
https://doi.org/10.5194/gmd-10-4367-2017, 2017.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Delisle, M.-P. C., Kim, Y., Mieras, R. S., and Gallien, T. W.: Numerical investigation of sheet flow driven by a near-breaking transient wave using SedFoam, Eur. J. Mech. B-Fluids, 96, 51–64, 2022. a
Ding, J. and Gidaspow, D.: A bubbling fluidization model using kinetic theory of granular flow, AIChE J., 36, 523–538, 1990. a
Dohmen-Janssen, C. M. and Hanes, D. M.: Sheet flow dynamics under monochromatic nonbreaking waves, J. Geophys. Res.-Oceans, 107, 13-1–13-21, 2002.
a,
b,
c,
d
Dong, P. and Zhang, K.: Intense near-bed sediment motions in waves and currents, Coast. Eng., 45, 75–87, 2002. a
Ergun, S.: Fluid Flow through Packed Columns, Chem. Eng. Prog., 48, 89–94, 1952. a
Hirt, C. and Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201–225, 1981. a
Hsu, T.-J., Jenkins, J. T., and Liu, P. L.-F.: On two-phase sediment transport: sheet flow of massive particles, P. Roy. Soc. Lond. A Mat., 460, 2223–2250, 2004.
a,
b
Jacobsen, N. G. and Fredsøe, J.: Formation and development of a breaker bar under regular waves. Part 2: Sediment transport and morphology, Coast. Eng., 88, 55–68, 2014. a
Jacobsen, N. G., Fuhrman, D. R., and Fredsøe, J.: A wave generation toolbox for the open-source CFD library: OpenFoam
®, Int. J. Numer. Meth. Fl., 70, 1073–1088, 2012.
a,
b,
c
Kim, Y., Cheng, Z., Hsu, T.-J., and Chauchat, J.: A Numerical Study of Sheet Flow Under Monochromatic Nonbreaking Waves Using a Free Surface Resolving Eulerian Two-Phase Flow Model, J. Geophys. Res.-Oceans, 123, 4693–4719, 2018.
a,
b,
c,
d,
e
Kim, Y., Mieras, R. S., Cheng, Z., Anderson, D., Hsu, T.-J., Puleo, J. A., and Cox, D.: A numerical study of sheet flow driven by velocity and acceleration skewed near-breaking waves on a sandbar using SedWaveFoam, Coast. Eng., 152, 103526,
https://doi.org/10.1016/j.coastaleng.2019.103526, 2019.
a
Kim, Y., Mieras, R. S., Anderson, D., and Gallien, T.: A Numerical Study of Sheet Flow Driven by Skewed-Asymmetric Shoaling Waves Using SedWaveFoam, J. Mar. Sci. Eng., 9, 936,
https://doi.org/10.3390/jmse9090936, 2021.
a
Klostermann, J., Schaake, K., and Schwarze, R.: Numerical simulation of a single rising bubble by VOF with surface compression, Int. J. Numer. Meth. Fl., 71, 960–982, 2013.
a,
b,
c,
d,
e
Lee, C.-H., Low, Y. M., and Chiew, Y.-M.: Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour, Phys. Fluids, 28, 053305,
https://doi.org/10.1063/1.4948987, 2016.
a
Lee, C.-H., Xu, C., and Huang, Z.: A three-phase flow simulation of local scour caused by a submerged wall jet with a water-air interface, Adv. Water Resour., 129, 373–384, 2019.
a,
b
Mathieu, A., Chauchat, J., Bonamy, C., and Nagel, T.: Two-Phase Flow Simulation of Tunnel and Lee-Wake Erosion of Scour below a Submarine Pipeline, Water, 11, 1727,
https://doi.org/10.3390/w11081727, 2019.
a
Mathieu, A., Chauchat, J., Bonamy, C., Balarac, G., and Hsu, T.-J.: A finite-size correction model for two-fluid large-eddy simulation of particle-laden boundary layer flow, J. Fluid Mech., 913, A26,
https://doi.org/10.1017/jfm.2021.4, 2021.
a,
b,
c,
d
Mathieu, A., Cheng, Z., Chauchat, J., Bonamy, C., and Hsu, T.-J.: Numerical investigation of unsteady effects in oscillatory sheet flows, J. Fluid Mech., 943, A7,
https://doi.org/10.1017/jfm.2022.405, 2022.
a
Mathieu, A., Kim, Y., Hsu, T.-J., Bonamy, C., and Chauchat, J.: sedInterFoam, Zenodo [data set and code],
https://doi.org/10.5281/zenodo.10577879, 2024.
a,
b
Montellà, E., Chauchat, J., Chareyre, B., Bonamy, C., and Hsu, T.: A two-fluid model for immersed granular avalanches with dilatancy effects, J. Fluid Mech., 925, A13,
https://doi.org/10.1017/jfm.2021.666, 2021.
a
Montellà, E., Chauchat, J., Bonamy, C., Weij, D., Keetels, G., and Hsu, T.: Numerical investigation of mode failures in submerged granular columns, Flow, 3, E28,
https://doi.org/10.1017/flo.2023.23, 2023.
a
Nagel, T., Chauchat, J., Bonamy, C., Liu, X., Cheng, Z., and Hsu, T.-J.: Three-dimensional scour simulations with a two-phase flow model, Adv. Water Resour., 138, 103544,
https://doi.org/10.1016/j.advwatres.2020.103544, 2020.
a,
b,
c
Ozel, A., Fede, P., and Simonin, O.: Development of filtered Euler-Euler two-phase model for circulating fluidised bed: High resolution simulation, formulation and a priori analyses, Int. J. Multiphas. Flow, 55, 43–63, 2013. a
Pham-Van-Bang, D., Lefrançois, E., Sergent, P., and Bertrand, F.: MRI experimental and finite elements modeling of the sedimentation-consolidation of mud, Houille Blanche, 94, 39–44, 2008. a
Rusche, H.: Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, PhD thesis, Imperial College London,
https://www.researchgate.net/publication/271830940_Computational_Fluid_Dynamics_of_Dispersed_Two-Phase_Flows_at_High_Phase_Fractions (last access: 1 March 2025), 2003.
a,
b,
c
Salimi-Tarazouj, A., Hsu, T.-J., Traykovski, P., and Chauchat, J.: Eulerian Two-Phase Model Reveals the Importance of Wave Period in Ripple Evolution and Equilibrium Geometry, J. Geophys. Res.-Earth, 126, e2021JF006132, 2021a. a
Salimi-Tarazouj, A., Hsu, T.-J., Traykovski, P., Cheng, Z., and Chauchat, J.: A Numerical Study of Onshore Ripple Migration Using a Eulerian Two-phase Model, J. Geophys. Res.-Oceans, 126, e2020JC016773,
https://doi.org/10.1029/2020JC016773, 2021b.
a
Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., and Warner, J. C.: Modeling the Morphodynamics of Coastal Responses to Extreme Events: What Shape Are We In?, Annu. Rev. Mar. Sci., 14, 457–492, 2022. a
Sumer, B., Truelsen, C., Sichmann, T., and Fredsøe, J.: Onset of scour below pipelines and self-burial, Coast. Eng., 42, 313–335, 2001. a
Sumer, B. M., Sen, M. B., Karagali, I., Ceren, B., Fredsøe, J., Sottile, M., Zilioli, L., and Fuhrman, D. R.: Flow and sediment transport induced by a plunging solitary wave, J. Geophys. Res.-Oceans, 116, C01008,
https://doi.org/10.1029/2010JC006435, 2011.
a,
b,
c,
d,
e,
f,
g,
h,
i
Tsai, B., Mathieu, A., Montellà, E. P., Hsu, T.-J., and Chauchat, J.: An Eulerian two-phase flow model investigation on scour onset and backfill of a 2D pipeline, Eur. J. Mech. B-Fluids, 91, 10–26, 2022.
a,
b
van der A, D. A., Ribberink, J. S., van der Werf, J. J., O'Donoghue, T., Buijsrogge, R. H., and Kranenburg, W. M.: Practical sand transport formula for non-breaking waves and currents, Coast. Eng., 76, 26–42, 2013. a
Wen, C. Y. and Yu, Y. H.: A generalized method for predicting the minimum fluidization velocity, AIChE J., 12, 610–612, 1966. a
Yu, X., Hsu, T.-J., Jenkins, J. T., and Liu, P. L.-F.: Predictions of vertical sediment flux in oscillatory flows using a two-phase, sheet-flow model, Adv. Water Resour., 48, 2–17, 2012. a