Articles | Volume 18, issue 5
https://doi.org/10.5194/gmd-18-1561-2025
https://doi.org/10.5194/gmd-18-1561-2025
Model description paper
 | 
11 Mar 2025
Model description paper |  | 11 Mar 2025

sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces

Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat

Related authors

SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
Julien Chauchat, Zhen Cheng, Tim Nagel, Cyrille Bonamy, and Tian-Jian Hsu
Geosci. Model Dev., 10, 4367–4392, https://doi.org/10.5194/gmd-10-4367-2017,https://doi.org/10.5194/gmd-10-4367-2017, 2017
Short summary

Related subject area

Oceanography
The Ross Sea and Amundsen Sea Ice–Sea Model (RAISE v1.0): a high-resolution ocean–sea ice–ice shelf coupling model for simulating the Dense Shelf Water and Antarctic Bottom Water in the Ross Sea, Antarctica
Zhaoru Zhang, Chuan Xie, Chuning Wang, Yuanjie Chen, Heng Hu, and Xiaoqiao Wang
Geosci. Model Dev., 18, 1375–1393, https://doi.org/10.5194/gmd-18-1375-2025,https://doi.org/10.5194/gmd-18-1375-2025, 2025
Short summary
Sensitivity of the tropical Atlantic to vertical mixing in two ocean models (ICON-O v2.6.6 and FESOM v2.5)
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025,https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary
A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025,https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary
HOTSSea v1: a NEMO-based physical Hindcast of the Salish Sea (1980–2018) supporting ecosystem model development
Greig Oldford, Tereza Jarníková, Villy Christensen, and Michael Dunphy
Geosci. Model Dev., 18, 211–237, https://doi.org/10.5194/gmd-18-211-2025,https://doi.org/10.5194/gmd-18-211-2025, 2025
Short summary

Cited articles

Amoudry, L. O.: Extension of k-ω turbulence closure to two-phase sediment transport modelling: Application to oscillatory sheet flows, Adv. Water Resour., 72, 110–121, 2014. a, b
Baykal, C., Sumer, B., Fuhrman, D., Jacobsen, N., and Fredsøe, J.: Numerical simulation of scour and backfilling processes around a circular pile in waves, Coast. Eng., 122, 87–107, 2017. a
Boyer, F., Guazzelli, E., and Pouliquen, O.: Unifying Suspension and Granular Rheology, Phys. Rev. Lett., 107, 188301, https://doi.org/10.1103/PhysRevLett.107.188301, 2011. a
Chassagne, R., Bonamy, C., and Chauchat, J.: A frictional–collisional model for bedload transport based on kinetic theory of granular flows: discrete and continuum approaches, J. Fluid Mech., 964, A27, https://doi.org/10.1017/jfm.2023.335, 2023. a
Chauchat, J.: A comprehensive two-phase flow model for unidirectional sheet-flows, J. Hydraul. Res., 56, 15–28, 2018. a
Download
Short summary
Most of the tools available to model sediment transport do not account for complex physical mechanisms such as surface-wave-driven processes. In this study, a new model, sedInterFoam, allows us to reproduce numerically complex configurations in order to investigate coastal sediment transport applications dominated by surface waves and to gain insight into the complex physical processes associated with breaking waves and morphodynamics.
Share