Articles | Volume 17, issue 24
https://doi.org/10.5194/gmd-17-8955-2024
https://doi.org/10.5194/gmd-17-8955-2024
Model description paper
 | 
19 Dec 2024
Model description paper |  | 19 Dec 2024

Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling

Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen

Related authors

Reviews and syntheses: Opportunities for robust use of peak intensities from high-resolution mass spectrometry in organic matter studies
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024,https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Modeling Commercial-Scale CO2 Storage in the Gas Hydrate Stability Zone with PFLOTRAN v6.0
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-162,https://doi.org/10.5194/gmd-2024-162, 2024
Preprint under review for GMD
Short summary
Alquimia v1.0: A generic interface to biogeochemical codes – A tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin Andre, Jeffrey Johnson, Glenn Hammond, Benjamin Sulman, Konstantin Lipnikov, Marcus Day, James Beisman, Daniil Svyatsky, Hang Deng, Peter Lichtner, Carl Steefel, and David Moulton
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-108,https://doi.org/10.5194/gmd-2024-108, 2024
Preprint under review for GMD
Short summary
Ecosystem leaf area, gross primary production, and evapotranspiration responses to wildfire in the Columbia River Basin
Mingjie Shi, Nate McDowell, Huilin Huang, Faria Zahura, Lingcheng Li, and Xingyuan Chen
EGUsphere, https://doi.org/10.22541/au.171053013.30286044/v2,https://doi.org/10.22541/au.171053013.30286044/v2, 2024
Short summary
Biological response of eelgrass epifauna, Taylor’s sea hare (Phyllaplysia taylori) and eelgrass isopod (Idotea resecata), to elevated ocean alkalinity
Kristin Jones, Lenaïg Hemery, Nicholas Ward, Peter Regier, Mallory Ringham, and Matthew Eisaman
EGUsphere, https://doi.org/10.5194/egusphere-2024-972,https://doi.org/10.5194/egusphere-2024-972, 2024
Short summary

Related subject area

Biogeosciences
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024,https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024,https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024,https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024,https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary

Cited articles

Ahamed, F., You, Y., Burgin, A., Stegen, J. C., Scheibe, T. D., and Song, H. S.: Exploring the determinants of organic matter bioavailability through substrate-explicit thermodynamic modeling, Front. Water, 5, 1169701, https://doi.org/10.3389/frwa.2023.1169701, 2023. 
Bahureksa, W., Tfaily, M. M., Boiteau, R. M., Young, R. B., Logan, M. N., McKenna, A. M., and Borch, T.: Soil organic matter characterization by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS): A critical review of sample preparation, analysis, and data interpretation, Environ. Sci. Technol., 55, 9637–9656, https://doi.org/10.1021/acs.est.1c01135, 2021. 
Cooper, W. T., Chanton, J. C., D'Andrilli, J., Hodgkins, S. B., Podgorski, D. C., Stenson, A. C., Tfaily, M. M., and Wilson, R. M.: A history of molecular level analysis of natural organic matter by FTICR mass spectrometry and the paradigm shift in organic geochemistry, Mass Spectrom. Rev., 41, 215–239, https://doi.org/10.1002/mas.21663, 2022. 
Cover, T. M. and Thomas, J. A.: Elements of information theory (Wiley series in telecommunications and signal processing), Wiley-Interscience, ISBN-13 9780471241959, 2006. 
Desmond-Le Quéméner, E. and Bouchez, T.,: A thermodynamic theory of microbial growth. The ISME J., 8, 1747–1751, https://doi.org/10.1038/ismej.2014.7, 2014. 
Download
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.