Articles | Volume 17, issue 24
https://doi.org/10.5194/gmd-17-8955-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-8955-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
Katherine A. Muller
CORRESPONDING AUTHOR
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Peishi Jiang
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Glenn Hammond
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Tasneem Ahmadullah
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Hyun-Seob Song
Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA
Ravi Kukkadapu
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Nicholas Ward
Pacific Northwest National Laboratory, Sequim, WA 98382, USA
Madison Bowe
Pacific Northwest National Laboratory, Sequim, WA 98382, USA
Rosalie K. Chu
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Qian Zhao
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Vanessa A. Garayburu-Caruso
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Alan Roebuck
Pacific Northwest National Laboratory, Sequim, WA 98382, USA
Xingyuan Chen
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Related authors
Michael Nole, Katherine Muller, Glenn Hammond, Xiaoliang He, and Peter Lichtner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1343, https://doi.org/10.5194/egusphere-2025-1343, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Subsurface injection of carbon dioxide (CO2) can be used for a variety of purposes including geologic carbon storage and enhanced oil recovery. Recently, CO2 injection into reactive host rocks has been explored as a way to transform CO2 into dense solid minerals. We present a simulation framework for modeling flow of CO2 due to injection and subsequent reactions that take place to mineralize CO2.
Michael Nole, Katherine Muller, Glenn Hammond, Xiaoliang He, and Peter Lichtner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1343, https://doi.org/10.5194/egusphere-2025-1343, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Subsurface injection of carbon dioxide (CO2) can be used for a variety of purposes including geologic carbon storage and enhanced oil recovery. Recently, CO2 injection into reactive host rocks has been explored as a way to transform CO2 into dense solid minerals. We present a simulation framework for modeling flow of CO2 due to injection and subsequent reactions that take place to mineralize CO2.
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025, https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Short summary
Developing scientific software and making sure it functions properly requires a significant effort. As we advance our understanding of natural systems, however, there is the need to develop yet more complex models and codes. In this work, we present a piece of software that facilitates this work, specifically with regard to reactive processes. Existing tried-and-true codes are made available via this new interface, freeing up resources to focus on the new aspects of the problems at hand.
Mingjie Shi, Nate McDowell, Huilin Huang, Faria Zahura, Lingcheng Li, and Xingyuan Chen
Biogeosciences, 22, 2225–2238, https://doi.org/10.5194/bg-22-2225-2025, https://doi.org/10.5194/bg-22-2225-2025, 2025
Short summary
Short summary
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate the resistance and resilience of ecosystem functions to wildfires that occurred in the Columbia River basin in 2015. The carbon state exhibits lower resistance and resilience than the ecosystem fluxes. The random forest feature importance analysis indicates that burn severity plays a minor role in the resilience of grassland and a relatively major role in the resilience of forest and savanna.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Kristin Jones, Lenaïg G. Hemery, Nicholas D. Ward, Peter J. Regier, Mallory C. Ringham, and Matthew D. Eisaman
Biogeosciences, 22, 1615–1630, https://doi.org/10.5194/bg-22-1615-2025, https://doi.org/10.5194/bg-22-1615-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement is a marine carbon dioxide removal method that aims to mitigate the effects of climate change. This method causes localized increases in ocean pH, but the biological impacts of such changes are not well known. Our study investigated the response of two nearshore invertebrate species to increased pH and found the sea hare to be sensitive to pH changes, whereas the isopod was more resilient. Understanding interactions with biology is important as this field expands.
Maggi M. Laan, Stephanie G. Fulton, Vanessa A. Garayburu-Caruso, Morgan E. Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Amy E. Goldman, Samantha Grieger, Robert O. Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin L. M. Zionce, Sophia A. McKever, Allison Myers-Pigg, Opal Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1109, https://doi.org/10.5194/egusphere-2025-1109, 2025
Short summary
Short summary
Respiration is a process that combines carbon and oxygen to generate energy for living organisms. Within a river, respiration in sediments and water have variable contributions to respiration of the whole river system. Contrary to conventional wisdom, we found that water column respiration did not increase systematically moving from small streams to big rivers. Instead, it was locally influenced by temperature, nutrients and suspended solids.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Robert E. Danczak, Amy E. Goldman, Mikayla A. Borton, Rosalie K. Chu, Jason G. Toyoda, Vanessa A. Garayburu-Caruso, Emily B. Graham, Joseph W. Morad, Lupita Renteria, Jacqueline R. Hager, Shai Arnon, Scott Brooks, Edo Bar-Zeev, Michael Jones, Nikki Jones, Jorg Lewandowski, Christof Meile, Birgit M. Muller, John Schalles, Hanna Schulz, Adam Ward, and James C. Stegen
EGUsphere, https://doi.org/10.1101/2024.01.10.575030, https://doi.org/10.1101/2024.01.10.575030, 2025
Short summary
Short summary
As dissolved organic matter (DOM) is transported from land to the ocean through rivers, it interacts with the environment and some is converted to CO2. We used high-resolution carbon analysis to show that DOM from seven rivers exhibited ecological patterns particular to the corresponding river. These results indicate that local processes play an outsized role in shaping DOM. By understanding these interactions across environments, we can predict DOM across spatial scales or under perturbations.
Morgan E. Barnes, Jesse Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg
EGUsphere, https://doi.org/10.5194/egusphere-2025-21, https://doi.org/10.5194/egusphere-2025-21, 2025
Short summary
Short summary
Wildfires impact nutrient cycles on land and in water. We used burning experiments to understand the types of phosphorous (P), an essential nutrient, that might be released to the environment after different types of fires. We found that the amount of P moving through the environment post-fire is dependent on the type of vegetation and degree of burning which may influence when and where this material is processed or stored.
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Stephanie G. Fulton, Morgan Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Samantha Grieger, Robert Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin McCann, Sophia A. McKever, Allison Myers-Pigg, Opal C. Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3038, https://doi.org/10.5194/egusphere-2023-3038, 2024
Preprint archived
Short summary
Short summary
This research examines oxygen use in rivers, which is central to the carbon cycle and water quality. The study focused on an environmentally diverse river basin in the western United States and found that oxygen use in river water was very slow and influenced by factors like water temperature and concentrations of nutrients and carbon in the water. Results suggest that in the study system, most of the oxygen use occurs via mechanisms directly or indirectly associated with riverbed sediments.
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023, https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary
Short summary
We developed a novel deep learning approach to estimate the parameters of a computationally expensive hydrological model on only a few hundred realizations. Our approach leverages the knowledge obtained by data-driven analysis to guide the design of the deep learning model used for parameter estimation. We demonstrate this approach by calibrating a state-of-the-art hydrological model against streamflow and evapotranspiration observations at a snow-dominated watershed in Colorado.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Heewon Jung, Hyun-Seob Song, and Christof Meile
Geosci. Model Dev., 16, 1683–1696, https://doi.org/10.5194/gmd-16-1683-2023, https://doi.org/10.5194/gmd-16-1683-2023, 2023
Short summary
Short summary
Microbial activity responsible for many chemical transformations depends on environmental conditions. These can vary locally, e.g., between poorly connected pores in porous media. We present a modeling framework that resolves such small spatial scales explicitly, accounts for feedback between transport and biogeochemical conditions, and can integrate state-of-the-art representations of microbes in a computationally efficient way, making it broadly applicable in science and engineering use cases.
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023, https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Short summary
We present a robust and highly scalable implementation of numerical forward modeling and inversion algorithms for geophysical electrical resistivity tomography data. The implementation is publicly available and developed within the framework of PFLOTRAN (http://www.pflotran.org), an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The paper details all the theoretical and implementation aspects of the new capabilities along with test examples.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Manab Kumar Dutta, Krishnan Sreelash, Damodaran Padmalal, Nicholas D. Ward, and Thomas S. Bianchi
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-200, https://doi.org/10.5194/bg-2022-200, 2022
Revised manuscript not accepted
Short summary
Short summary
Indian estuaries contribute to 2.62 % and 1.09 % of global riverine DIC and DOC export to the ocean, respectively. Major Indian estuaries emit ~9718 Gg yr-1 and 3.27 Gg yr-1 of CO2 and CH4 to the atmosphere, respectively, which contributes ~0.67 % and ~0.12 % to global CO2 and CH4 outgassing from estuaries.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022, https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary
Short summary
We used a deep learning method called long short-term memory (LSTM) to fill gaps in data collected by hydrologic monitoring networks. LSTM accounted for correlations in space and time and nonlinear trends in data. Compared to a traditional regression-based time-series method, LSTM performed comparably when filling gaps in data with smooth patterns, while it better captured highly dynamic patterns in data. Capturing such dynamics is critical for understanding dynamic complex system behaviors.
Glenn E. Hammond
Geosci. Model Dev., 15, 1659–1676, https://doi.org/10.5194/gmd-15-1659-2022, https://doi.org/10.5194/gmd-15-1659-2022, 2022
Short summary
Short summary
This paper describes a simplified interface for implementing and testing new chemical reactions within the reactive transport simulator PFLOTRAN. The paper describes the interface, providing example code for the interface. The paper includes several chemical reactions implemented through the interface.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Cited articles
Ahamed, F., You, Y., Burgin, A., Stegen, J. C., Scheibe, T. D., and Song, H. S.: Exploring the determinants of organic matter bioavailability through substrate-explicit thermodynamic modeling, Front. Water, 5, 1169701, https://doi.org/10.3389/frwa.2023.1169701, 2023.
Bahureksa, W., Tfaily, M. M., Boiteau, R. M., Young, R. B., Logan, M. N., McKenna, A. M., and Borch, T.: Soil organic matter characterization by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS): A critical review of sample preparation, analysis, and data interpretation, Environ. Sci. Technol., 55, 9637–9656, https://doi.org/10.1021/acs.est.1c01135, 2021.
Cooper, W. T., Chanton, J. C., D'Andrilli, J., Hodgkins, S. B., Podgorski, D. C., Stenson, A. C., Tfaily, M. M., and Wilson, R. M.: A history of molecular level analysis of natural organic matter by FTICR mass spectrometry and the paradigm shift in organic geochemistry, Mass Spectrom. Rev., 41, 215–239, https://doi.org/10.1002/mas.21663, 2022.
Cover, T. M. and Thomas, J. A.: Elements of information theory (Wiley series in telecommunications and signal processing), Wiley-Interscience, ISBN-13 9780471241959, 2006.
Desmond-Le Quéméner, E. and Bouchez, T.,: A thermodynamic theory of microbial growth. The ISME J., 8, 1747–1751, https://doi.org/10.1038/ismej.2014.7, 2014.
Emerick, A. A. and Reynolds, A. C.: Ensemble smoother with multiple data assimilation, Comput. Geosci., 55, 3–15, https://doi.org/10.1016/j.cageo.2012.03.011, 2013.
Fatichi, S., Manzoni, S., Or, D., and Paschalis, A.: A mechanistic model of microbially mediated soil biogeochemical processes: a reality check, Global Biogeochem. Cy., 33, 620–648, https://doi.org/10.1029/2018GB006077, 2019.
Garayburu-Caruso, V. A., Stegen, J. C., Song, H. S., Renteria, L., Wells, J., Garcia, W., Resch, C. T., Goldman, A. E., Chu, R. K., Toyoda, J., and Graham, E. B.: Carbon limitation leads to thermodynamic regulation of aerobic metabolism, Environ. Sci. Technol. Lett., 7, 517–524, https://doi.org/10.1021/acs.estlett.0c00258, 2020.
Goldman, A. E., Arnon, S., Bar-Zeev, E., Chu, R. K., Danczak, R. E., Daly, R. A., Delgado, D., Fansler, S., Forbes, B., Garayburu-Caruso, V. A., Graham, E. B., Laan, M., McCall, M. L., McKever, S., Patel, K. F., Ren, H., Renteria, L., Resch, C. T., Rod, K. A., Tfaily, M., Tolic, N., Torgeson, J. M., Toyoda, J. G., Wells, J., Wrighton, K. C., Stegen, J. C., and WHONDRS Consortium T: WHONDRS Summer 2019 Sampling Campaign: Global River Corridor Sediment FTICR-MS, Dissolved Organic Carbon, Aerobic Respiration, Elemental Composition, Grain Size, Total Nitrogen and Organic Carbon Content, Bacterial Abundance, and Stable Isotopes (v8), River Corridor and Watershed Biogeochemistry SFA, ESS-DIVE repository [data set], https://doi.org/10.15485/1729719, 2020.
Hammond, G. E.: The PFLOTRAN Reaction Sandbox, Geosci. Model Dev., 15, 1659–1676, https://doi.org/10.5194/gmd-15-1659-2022, 2022.
Hammond, G. E., Lichtner, P. C., and Mills, R. T.: Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN, Water Resour. Res., 50, 208–228, https://doi.org/10.1002/2012WR013483, 2014.
Jiang, P., Chen, X., Chen, K., Anderson, J., Collins, N., and Gharamti, M.: DART-PFLOTRAN: An ensemble-based data assimilation system for estimating subsurface flow and transport model parameters, Environ. Model. Softw., 142, 105074, https://doi.org/10.1016/j.envsoft.2021.105074, 2021.
Jiang, P., Son, K., Mudunuru, M. K., and Chen, X.: Using mutual information for global sensitivity analysis on watershed modelling, Water Resour. Res., 58, e2022WR032932, https://doi.org/10.1029/2022WR032932, 2022.
Kim, J. and Blair, N. E.: Biomarker heatmaps: visualization of complex biomarker data to detect storm-induced source changes in fluvial particulate organic carbon, Earth Sci. Inform., 16, 2915–2924, https://doi.org/10.1007/s12145-023-01039-y, 2023.
Kinzelbach, W., Schafer, W., and Herzer, J.: Numerical modeling of natural and enhanced denitrification processes in aquifers, Water Resour. Res., 27, 1123–1135, https://doi.org/10.1029/91WR00474, 1991.
Kleerebezem, R. and Van Loosdrecht, M. C.: A generalized method for thermodynamic state analysis of environmental systems, Crit. Rev. Env. Sci. Tech., 40, 1–54, https://doi.org/10.1080/10643380802000974, 2010.
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., and Ivanov, P.: Jupyter Notebooks-a publishing format for reproducible computational workflows, Elpub, IOS Press, 87–90, https://doi.org/10.3233/978-1-61499-649-1-87, 2016.
Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N., Reichstein, M., Schimel, J. P., Torn, M. S., and Wieder, W. R.: Persistence of soil organic carbon caused by functional complexity, Nat. Geosci., 13, 529–534, https://doi.org/10.1038/s41561-020-0612-3, 2020.
Muller, K. A., Jiang, P., Hammond, G., Ahmadullah, T., Song, H., Kukkadapu, R., Ward, N., Bowe, M., Chu, R. K., Zhao, Q., Garayburu-Caruso, V. A., Roebuck, A., and Chen, X.: Data and Scripts associated with “Lambda-PFLOTRAN: Workflow for Incorporating Organic Matter Chemistry Informed by Ultra High Resolution Mass Spectrometry into Biogeochemical Modeling”, River Corridor and Watershed Biogeochemistry SFA, ESS-DIVE repository [code and data set], https://doi.org/10.15485/2281403, 2024.
Robertson, A. D., Paustian, K., Ogle, S., Wallenstein, M. D., Lugato, E., and Cotrufo, M. F.: Unifying soil organic matter formation and persistence frameworks: the MEMS model, Biogeosciences, 16, 1225–1248, https://doi.org/10.5194/bg-16-1225-2019, 2019.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A., and Nannipieri, P.: Persistence of soil organic matter as an ecosystem property, Nature, 478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Song, H. S., Stegen, J. C., Graham, E. B., Lee, J. Y., Garayburu-Caruso, V. A., Nelson, W. C., Chen, X., Moulton, J. D., and Scheibe, T. D.: Representing organic matter thermodynamics in biogeochemical reactions via substrate-explicit modelling, Front. Microbiol., 11, 531756, https://doi.org/10.3389/fmicb.2020.531756, 2020.
Stegen, J. C., Johnson, T., Fredrickson, J. K., Wilkins, M. J., Konopka, A. E., Nelson, W. C., Arntzen, E. V., Chrisler, W. B., Chu, R. K., Fansler, S. J., and Graham, E. B.: Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology, Nat. Commun., 9, 585, https://doi.org/10.1038/s41467-018-02922-9, 2018.
Stegen, J. C., Garayburu-Caruso, V. A., Danczak, R. E., Goldman, A. E., Renteria, L., Torgeson, J. M., and Hager, J.: Maximum respiration rates in hyporheic zone sediments are primarily constrained by organic carbon concentration and secondarily by organic matter chemistry, Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, 2023.
Stephanopoulos, G., Aristidou, A. A., and Nielsen, J.: Metabolic engineering: principles and methodologies, ISBN-13 9780126662603, 1998.
Tfaily, M. M., Chu, R. K., Toyoda, J., Tolić, N., Robinson, E. W., Paša-Tolić, L., and Hess, N. J.: Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry, Anal. Chim. Ac., 972, 54–61, 2017.
Tolic, N., Liu, Y., Liyu, A., Shen, Y., Tfaily, M. M., Kujawinski, E. B., Longnecker, K., Kuo, L. J., Robinson, E. W., Paša-Tolić, L., and Hess, N. J.: Formularity: software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra, Anal. Chem., 89, 12659–12665, 2017.
Wang, G., Post, W. M., and Mayes, M. A.: Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamics analyses, Ecol. Appl., 23, 255–272, https://doi.org/10.1890/12-0681.1, 2013.
Ward, N. D., Keil, R. G., Medeiros, P. M., Brito, D. C., Cunha, A. C., Dittmar, T., Yager, P. L., Krusche, A. V., and Richey, J. E.: Degradation of terrestrially derived macromolecules in the Amazon River, Nat. Geosci., 6, 530–533, https://doi.org/10.1038/ngeo1817, 2013.
Ward, N. D, Muller, K. A., Chen, X., Zhao, Q., Chu, R., Cheng, Z., Wietsma, T. W., and Kukkadapu, R. K.: Interactive Effects of Salinity, Redox State, Soil type, and Colloidal Size Fractionation on Greenhouse Gas Production in Coastal Wetland Soils, ESS Open Archive [preprint], https://doi.org/10.22541/essoar.170158332.29336750/v1, 2023.
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to...