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Abstract. Organic matter (OM) composition plays a cen-
tral role in microbial respiration of dissolved organic mat-
ter and subsequent biogeochemical reactions. Here, a di-
rect connection of organic matter chemistry and thermody-
namics to reactive transport simulators has been achieved
through the newly developed Lambda-PFLOTRAN work-
flow tool that succinctly incorporates carbon chemistry data
generated from Fourier transform ion cyclotron resonance
mass spectrometry (FTICR-MS) into reaction networks to
simulate organic matter degradation and the resulting biogeo-
chemistry. Lambda-PFLOTRAN is a Python-based work-
flow, executed through a Jupyter notebook interface, that di-
gests raw FTICR-MS data, develops a representative reaction
network based on substrate-explicit thermodynamic model-
ing (also termed lambda modeling due to its key thermody-
namic parameter λ used therein), and completes a biogeo-
chemical simulation with the open source, reactive flow and
transport code PFLOTRAN. The workflow consists of the
following five steps: configuration, thermodynamic (lambda)
analysis, sensitivity analysis, parameter estimation, and sim-
ulation output and visualization. Two test cases are provided
to demonstrate the functionality of the Lambda-PFLOTRAN
workflow. The first test case uses laboratory incubation data
of temporal oxygen depletion to fit lambda parameters (i.e.,
maximum utilization rate and microbial carrying capac-
ity). A slightly more complex second test case fits multiple
lambda formulation and soil organic matter release parame-

ters to temporal greenhouse gas generation measured during
a soil incubation. Overall, the Lambda-PFLOTRAN work-
flow facilitates upscaling by using molecular-scale charac-
terization to inform biogeochemical processes occurring at
larger scales.

1 Introduction

Microbial respiration of dissolved organic carbon (DOC) is
a main driver of environmental biogeochemical processes.
Mechanistic biogeochemical models often rely on lumping
organic matter into a few distinct carbon pools (e.g., dis-
solved, sorbed, mineral-associated or refractory, labile) (e.g.,
Fatichi et al., 2019; Robertson et al., 2019; Wang et al., 2013)
but do not fully consider the properties of the organic mat-
ter (OM) compounds individually. Pooled carbon approaches
have benefits, such as assigning variable levels of bioavail-
ability. However, this approach does not capture the complex
temporal dynamics of respiration driven by OM composition,
as aerobic respiration rates have been linked to organic car-
bon concentration, thermodynamics of the OM (Stegen et al.,
2018; Garayburu-Caruso et al., 2020), and the diversity of
OM compounds present (Lehmann et al., 2020; Stegen et al.,
2023). Such findings highlight the importance of incorporat-
ing individual OM chemistry into biogeochemical modeling
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to capture, and ultimately predict, system behavior more ac-
curately.

There are many advanced instrumentation techniques ca-
pable of detecting and identifying individual OM formu-
las that comprise a bulk OM sample (e.g., GC-MS, HPLC-
MS, FTICR-MS). For instance, FTICR-MS is a powerful,
high resolution method that identifies molecular formulas for
individual organic compounds. In any given environmental
sample, FTICR-MS (or other ultra high resolution methods)
will typically resolve thousands of discrete OM molecular
formulas, each with a unique mass and elemental compo-
sition (Cooper et al., 2022; Bahureksa et al., 2021). How-
ever, untargeted analytical techniques like FTICR-MS are
only able to determine whether a compound is present and
cannot quantify the total concentration associated with each
OM molecule. Still, such techniques do provide immense
amounts of characterization data encompassing a deeper an-
alytical window than when measuring a small number of in-
dividual biomarkers quantitatively (e.g., Ward et al., 2013).
Utilizing such high resolution molecular data in reactive
transport modeling frameworks affords a new opportunity
to advance carbon cycling in terrestrial, riverine, and coastal
systems despite various theoretical and computational chal-
lenges.

Substrate-explicit thermodynamic modeling (SXTM) pro-
vides an avenue for incorporating individual OM reactivity
based on thermodynamics (Song et al., 2020) into reactive
transport models. The SXTM procedure takes the individual
chemical formula derived from FTICR-MS (or another high
resolution technique) and uses its thermodynamic properties
to generate an oxidation reaction for each molecular formula
present in a sample. The corresponding reaction stoichiome-
try is then determined by considering catabolic, anabolic, and
metabolic reactions and balancing the energy for the overall
metabolic reaction, allowing for the development of an aero-
bic respiration expression for each OM formula.

Still, the sheer number of compounds identified in each
sample proves difficult for model integration. Typically, re-
active transport simulators consider only a small number of
primary species in their reaction networks, and most could
not support modeling each of the thousands of organic mat-
ter molecules individually. Here, the developed Lambda-
PFLOTRAN workflow addresses this challenge by group-
ing, or binning, similar compounds based on their thermo-
dynamic properties, allowing for the number of species con-
sidered within the reaction network to be reduced and thus
decreasing the required computational resources.

Lambda-PFLOTRAN is a Python-based workflow that di-
gests raw FTICR-MS data, develops a representative re-
action network based on substrate-explicit thermodynamic
modeling (Song et al., 2020), and completes a biogeo-
chemical simulation with the open source, parallel reac-
tive flow and transport code PFLOTRAN (Hammond et al.,
2014). PFLOTRAN is developed using an open-source GNU
LGPL license. The term “lambda” is used here because λ

is a key parameter in the SXTM that quantifies the ther-
modynamic favorability of aerobic respiration of OM. The
connection between the unique reaction network developed
for each FTICR-MS sample hinges on the use of PFLO-
TRAN’s reaction sandbox capability (Hammond, 2022). The
reaction sandbox gives the ability to define additional cus-
tom, kinetic reactions beyond standard formulations (e.g.,
mineral precipitation–dissolution, Michaelis–Menten). The
Lambda-PFLOTRAN workflow enables upscaling by using
molecular-scale information to inform larger-scale biogeo-
chemical processes occurring throughout a watershed, which
can be simulated with PFLOTRAN. Herein we describe the
Lambda-PFLOTRAN workflow process, including the gov-
erning expressions, workflow steps, data requirements, and
associated assumptions and limitations. Two illustrative test
cases are also included to demonstrate the workflow.

2 Methods

2.1 Conceptual model

The respiration modeling herein is based on the thermo-
dynamic theory of Desmond-Le Quéméner and Bouchez
(2014), which was updated for multiple OM formulas by
Song et al. (2020). The generalized form of OM molecules is
assumed to take the form of CaHbNcOdPeSzf . Each molec-
ular formula then undergoes respiration (i.e., reaction with
oxygen) based on the following general reaction expression:

yOMi
OMi + yH2OH2O+ yHCO−3

HCO−3 + yNH+4
NH+4

+ yHPO−4
HPO−4 + yHS−HS−+ yH+H+

+ ye−e
−
+ yO2O2+ yBBM= 0. (1)

This generalized expression is used to describe the oxidation
of any OM molecule, i, and has been normalized to 1 mole
of biomass (BM) produced. BM is assumed to have a for-
mula of CH1.8O0.5N0.2 (Stephanopoulos et al., 1998; Kleere-
bezem and Van Loosdrecht, 2010). OMi represents the OM
molecules as informed by FTICR-MS. Each y represents the
reaction stoichiometry for that reactant (y < 0) or product
(y > 0). While this expression is specific to cases where oxy-
gen is the electron acceptor, such an expression could be up-
dated for alternative electron acceptors.

Substrate-explicit thermodynamic modeling expressions
developed by Song et al. (2020) were implemented in a re-
action sandbox within PFLOTRAN. The expressions were
implemented in a general manner, allowing for flexibility
in handling variations in FTICR-MS data and several user-
adjustable analysis configurations.

The microbial growth kinetics are described by Eq. (2):

µkin
i = µ

max exp

(
−

α
∣∣yOM,i

∣∣
1000Vh[OM.i ]

)
exp

(
−

α
∣∣yO2,i

∣∣
1000Vh[O2]

)
, (2)
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where µkin
i is the unregulated uptake rate of reaction for

OMi [h−1], µmax is the maximal microbial growth rate
[h−1], yOM,i is the stoichiometry for OMi [mol-OM mol-
biomass−1], and Vh is the microbial harvest volume [m3].
[OMi] is the organic matter concentration of OMi [mol-
OM L−1], yO2,i is the stoichiometry for O2 for respiration of
OMi [mol-O2 mol-biomass−1], [O2] is the oxygen concen-
tration [mol-O2 L−1], α is a microbial unit conversion [mol-
biomass], and 1000 is the conversion of cubic meters to liters.
Given the physical interpretation of Vh as the microbial har-
vest volume, it is assumed here that the value of Vh is the
same for both OMi and O2.

Further, using a cybernetic modeling approach (following
Song et al., 2020), all the unregulated uptake rates (µkin

i ) are
normalized by the sum of the unregulated uptake rates across
all the reactions, i, following Eq. (3):

ui =
µi

kin∑n
i=1µi

kin , (3)

where ui is the fraction of the unregulated rate [–]. The final
regulated rate ri [h−1] for each reaction is then computed
following Eq. (4):

ri = uiµ
kin
i . (4)

For implementation within PFLOTRAN, the use of inhibi-
tion terms was required to prevent negative concentrations
once a reactant is nearly depleted. For a reaction to proceed,
all reactant species must be present above a minimum con-
centration, even if the reactants do not explicitly control the
respiration rate (i.e., species other than OM and O2; Eq. 2).
If a reactant concentration falls below a threshold concentra-
tion, the respiration rate is inhibited. Reactant inhibition is
computed by Eq. (5) (Kinzelbach et al., 1991) for reactant
species j :

Ij = 05+
arctan([Cj ] −Cthj ) · f

π
, (5)

where Cth,i is the threshold concentration [M] and f is
the threshold scaling factor [–]. The default Cthj value is
10−20 M.

The reaction rates are also inhibited by the microbial car-
rying capacity of the system, Icc, as follows in Eq. (6):

Icc = 1−
[BM]
CC

, (6)

where [BM] is the biomass concentration [mol-BM L−1] and
CC is the biomass carrying capacity [mol-BM L−1]. Icc has
a non-negativity constraint, so if [BM]>CC, then Icc = 0.

These inhibition factors are applied to the overall rate ex-
pression as shown in Eq. (7):

ri,inhibited = riICC
∏

Ij∀yi,j < 0. (7)

The overall individual species rates, d[Cj ]/dt [mol-
species L−1 h−1], are then computed as follows with Eq. (8):

dCj
dt
= (
∑n

i=1
yi,j ri,inhibited) [BM] , (8)

where j is the species index. The total number of species
includes seven general species (i.e., HCO−3 , NH+4 , HPO−4 ,
HS−, H+, O2, and BM in Eq. 1) and the OM species con-
sidered (i.e., typically 10). i is the reaction index, and n is
the total number of reactions as based on the total number of
OM species (typically with this workflow n= 10). yi,j is the
stoichiometric coefficient for species j in reaction i.

The expression for biomass is also modified to account for
biomass decay (note that all biomass stoichiometries are 1 by
definition):

dBM
dt
= (
∑n

i=1
yi,j ri,inhibited) [BM]− kdeg [BM] , (9)

where kdeg is the biomass decay rate [h−1].

2.2 Lambda analysis and binning

To reduce the number of organic compounds considered in
the simulation, OM molecules are grouped, or binned, based
on their λ value computed by Eq. (10):

λ=
1Gr,anabolic+1Gr,dissipation

(−1Gr,catabolic)
, (10)

where 1G are the Gibbs energies for the anabolic and
catabolic reactions and the associated dissipation energy, re-
spectively. The value of λ is indicative of how many times the
catabolic reaction needs to be completed to provide the en-
ergy required to synthesize 1 mole of biomass. Lower λ val-
ues suggest higher thermodynamic favorability of OM respi-
ration. Using the chemical formula determined for each OM
molecule, the energy balance equations are solved, providing
the overall reaction stoichiometry Eq. (1), and the λ is calcu-
lated. Using the λ value for each molecule, the cumulative
probability distribution for the sample is produced (Fig. 2).

It is this conversion from individual compounds to a distri-
bution that is critical for reducing the entire sample to a rep-
resentative set of expressions. The λ bins are then formed by
splitting the cumulative probability distribution into equally
weighted sections by which to define the overall sample. The
illustrative example shown in Fig. 2 demonstrates the sam-
ple distribution being divided into 10 sections (i.e., in this
case each section contains 10 % of the overall sample distri-
bution).

Each section is used to determine a representative organic
matter formula and the associated reaction and stoichiome-
try of that λ bin. The group of representative reactions (one
per bin) is called the reaction network. A demonstrative re-
action network defined by λ analysis and binning is shown in
Table 1.
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Figure 1. Flowchart of the Lambda-PFLOTRAN workflow.

Table 1. Reaction network developed from lambda theory for Test Case 1a.

Bin Representative organic matter λ yOM yHCO3
− yNH+4

yHPO−4
yHS− yH+ yO2

number species formula

1 C31H44N0.33O4.8P0.6S0.3 0.021 −0.05 0.64 −0.17 −0.18 0.03 0.02 −1.07
2 C26H39N0.20O7.0P0.6S0.1 0.026 −0.07 0.68 −0.10 −0.19 0.04 0.01 −1.06
3 C22H36N0.24O7.5P0.5S0.1 0.031 −0.08 0.69 −0.02 −0.18 0.04 0.01 −1.06
4 C20H32N0.28O7.3P0.4S0.1 0.035 −0.08 0.72 −0.08 −0.18 0.04 0.01 −1.05
5 C19H29N0.48O7.9P0.3S0.2 0.041 −0.09 0.79 −0.17 −0.16 0.03 0.02 −1.04
6 C18H26N0.68O8.1P0.2S0.2 0.046 −0.10 0.85 −0.27 −0.13 0.02 0.02 −1.03
7 C17H24N0.69O8.1P0.2S0.2 0.053 −0.11 0.90 −0.32 −0.12 0.02 0.02 −1.02
8 C15H20N0.67O7.6P0.2S0.2 0.062 −0.13 0.94 −0.42 −0.11 0.02 0.03 −1.00
9 C13H19N1.13O8.4P0.1S0.2 0.073 −0.15 1.01 −0.48 −0.03 0.01 0.03 −1.00
10 C10H15N1.56O6.5P0.1S0.2 0.100 −0.21 1.17 −0.75 0.12 0.01 0.04 −0.97

Currently, the representative OM molecule that defines
each bin is computed as the average chemical formula of all
the molecules present in that λ section. The disadvantage of
this approach is that unrealistic compounds are defined as
representative molecules instead of realistic molecules. The
issue with selecting a single but real compound from within
each λ section resides in chemical complexity and variation –
for instance, some molecules may contain low levels of phos-
phorous or sulfur and others may not contain either element

in the chemical formula. Thus, requiring the representative
chemical formula to be a real compound present in the sam-
ple would create a bias which would propagate through the
reaction network and into the resulting biogeochemical sim-
ulation results.

2.3 Lambda-PFLOTRAN workflow

The Lambda-PFLOTRAN workflow digests raw FTICR-MS
data, calculates the λ distribution for the sample, generates

Geosci. Model Dev., 17, 8955–8968, 2024 https://doi.org/10.5194/gmd-17-8955-2024
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Figure 2. Lambda binning to convert raw FTICR-MS into a repre-
sentative reaction network using the cumulative distribution func-
tion (CDF) for Test Case 1a. The vertical lines display the average
λ value for each of the 10 bins (left to right: λ bins 1 to 10).

the λ bins and the corresponding reaction network, and com-
pletes a biogeochemical simulation using PFLOTRAN. Fur-
ther, we incorporated sensitivity analysis and ensemble data
assimilation to enable an in-depth exploration of the impact
of reaction parameters on respiration as well as a straightfor-
ward parameter estimation method to fit model parameters to
experimental data.

The workflow is implemented through a user-friendly
Jupyter notebook interface (Kluyver et al., 2016), where a
user can configure the simulation parameters by adjusting
initial concentrations, the λ binning configuration, parameter
values and/or ranges, and data assimilation options. Based
on the user’s data file and the associated parameters, scripts
within the Jupyter notebook write the corresponding PFLO-
TRAN input files, including the OM molecules and aque-
ous chemistry. The PFLOTRAN simulations are completed
locally through a Docker container, making this capability
much more user-friendly and accessible. The progress of the
data assimilation tool used for parameter fitting is illustrated
in the Jupyter notebook. The resulting best-fit final biogeo-
chemical simulation is output visually with plots and as a
text file (when applicable).

The Lambda-PFLOTRAN workflow steps are shown in
Fig. 1 and described in detail in the following subsections.

2.3.1 Step 1 – workflow configuration

The first step is to set up the workflow configuration for a
Lambda-PFLTORAN application. This includes specifying
the file and folder locations of the following information:
(1) a FTICR-MS raw data file (.csv); (2) an initial species
concentration file (.csv) that includes the starting molar con-
centrations for HCO−3 , NH+4 , HPO2−

4 , HS−, H+, O2, BM,
and total organic carbon (TOC); (3) a PFLOTRAN database
template file; (4) a PFLOTRAN executable file; (5) a work-

flow output folder; and, when completing parameter estima-
tion, (6) the data observation file (.csv) if applicable.

The user is also asked to configure the workflow settings
related to (1) the Lambda analysis configuration, including
the number of λ bins and the method to define the λ bins (i.e.,
cumulative vs. uniform); (2) the respiration modeling param-
eter setup, including the list of parameters to be estimated
and their associated upper and lower bounds; and (3) the data
assimilation configuration (see below).

2.3.2 Step 2 – organic matter chemistry using Lambda
analysis

With only an input of FTICR-MS data, the workflow first
performs the Lambda analysis (Sect. 2.2) to group OM
molecules into various λ bins based on each compound’s
thermodynamics (Fig. 2) and to produce the corresponding
reaction network for respiration (Table 1). The default num-
ber of λ bins is 10, although this can be adjusted in the work-
flow configuration by the user if desired. The generated re-
action network is then automatically parsed by the workflow
into a text file that can be read by PFLOTRAN.

2.3.3 Step 3 – sensitivity analysis using mutual
information

This step performs the global sensitivity analysis of the pa-
rameters to be estimated. Ensemble parameters are first gen-
erated by randomly sampling them from their predefined
ranges in the configuration step and saving them into an
HDF5 file. Then, the workflow generates a PFLOTRAN in-
put deck to conduct ensemble simulations using the ensem-
ble parameters. The generated ensemble model states enable
a global sensitivity analysis using mutual information (Cover
and Thomas, 2006; Jiang et al., 2022) as follows:

I (X;Y )=H (Y)−H (Y |X)

=

∑
X=x

∑
Y=y

p(x,y) log
(
p(x,y)

p (x)p (y)

)
, (11)

where x and y are the specific values of X and Y , respec-
tively; H(Y) is the Shannon entropy of Y ; H(Y |X) is the
conditional entropy of Y given X; and p is the probability
density function. Higher I values indicate higher sensitivity
between X and Y . Besides sensitivity analysis, the ensemble
parameter and states also serve as the prior information for
parameter estimation at the next step.

2.3.4 Step 4 – parameter estimation using an ensemble
smoother for multiple data assimilation

The workflow adopts an ensemble smoother for multiple
data assimilation (Emerick and Reynolds, 2013; Jiang et al,
2021), abbreviated as ESMDA, for data assimilation in this
step. Rooted in an ensemble Kalman filter, ESMDA is an it-
erative data assimilation approach that assimilates observa-
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tions of the entire time period multiple times to reduce the
uncertainty of the estimated or posterior parameters. During
each iteration of ESMDA, the model parameters are updated
based on the following equation:

mu
k,l =m

f
k,l +C

f
MD,l

(
Cf

DD,l +αlCD

)−1

·

(
dobs+

√
αlC

1
2
Dzk − d

f
k,l

)
,

k = 1,. . .,Ne and l = 1, . . .,L, (12)

where the subscripts k and l are the indices of the ensem-
ble member and the iteration, respectively; the superscripts
“u” and “f” are the updated and forecast parameters or states,
respectively; Ne is the number of ensemble members; L is
the number of iterations; mf

k,l and mu
k,l are the kth ensem-

ble member of the forecast or prior and updated or posterior
parameters, respectively, at the lth iteration; dobs is the obser-
vation; zk is the observation noise sampled from independent
standard normal distributions for the kth ensemble member;
df
k,l is the kth ensemble member of the predicted observation

states by the model usingmf
k,l ; C

f
MD,l is the cross-covariance

matrix between the prior parameters mf
l and the predicted

observation state df
l ; C

f
DD,l is the auto-covariance matrix of

the predicted observation states df
l ;CD is the auto-covariance

matrix of the observation error; and αl is the inflation coeffi-
cient at the lth iteration with the sum of all αl values equal to
1.

Here, the assimilation starts by taking the ensemble model
parameters/states in Step 3 as well as the provided observa-
tions and calculating the posterior parameters using the en-
semble Kalman filter, updating the prior parameters with the
current posterior for the next iteration, and then repeating the
whole process multiple times (typically three to five itera-
tions, as defined by the user). The final estimated parameters
are obtained from the posterior parameter at the last iteration
and are updated in the HDF5 parameter file. The parameter
estimation is implemented in a way that allows assimilation
of either a single species (e.g., Test Case 1) or multiple ob-
served species simultaneously through a simple change in the
inputs. For example, if temporal experimental or field data
are available for oxygen, pH, and total carbon, all of these
data sources could be fitted simultaneously, with only minor
adjustments to the Jupyter notebook.

2.3.5 Step 5 – simulation output and visualization

The last step performs the ensemble simulation of the bio-
geochemical modeling a final time using the estimated pa-
rameters in Step 4. Optionally, users can further pick the
realization with the best performance. The user has the op-
tion of selecting their preferred goodness-of-fit metric from
the following options as a means of selecting the best-
performing simulation: R squared (R2), root mean squared
error (RMSE), modified Kling–Gupta efficiency (mKGE),

Nash–Sutcliffe model efficiency coefficient (NSE), or cor-
relation coefficient (CorC). Based on the selection, the fi-
nal time series of aqueous chemistry, oxygen consumption,
CO2 production, λ-binned, and total organic carbon concen-
trations will be computed and plotted.

3 Test cases

3.1 Test Case 1 – oxygen-depleted incubation
experiments

In the first illustrative example, the workflow was used to
fit µmax to laboratory incubation experiments where oxygen
levels were measured over 2 h in a closed reactor. The in-
cubation experiments were completed as part of the World-
wide Hydrobiogeochemistry Observation Network for Dy-
namic River Systems (WHONDRS) program (Goldman et
al., 2020). For these incubations, sediment was taken from
three locations within a stream, i.e., upstream (Test Case 1a),
midstream (Test Case 1b), and downstream (Test Case 1c), in
the Yakima River basin in Washington, USA, for subsequent
laboratory respiration experiments. FTICR-MS was used to
determine the OM chemistry from each sediment sample,
resulting in variable formulas being identified in each sam-
ple. Formula assignments for all the samples included herein
were completed using Formultitude (Tolic et al., 2017). To-
tal dissolved organic carbon concentration paired with the
FTICR-MS sample and biomass measurements taken at the
start of each experiment were used as the initial concen-
trations for each of the simulations. Due to the absence of
quantitative data related to how the total carbon mass is dis-
tributed between the various OM compounds, the total car-
bon concentration (on a per-C basis) was assumed to be split
equally between each of the λ bins. The total organic carbon
concentration was distributed into each λ bin using Eq. (13).
While this assumption results in an equal distribution of car-
bon between the bins, consequently it assigns different initial
species concentrations due to varying carbon concentrations
between the molecules:

[Cλbin]0 =
[TOC]

nλbinnCλbin
, (13)

where [Cλbin]0 is the initial species concentration in each λ
bin [mol L−1]; TOC is the total organic carbon measured
[mol-carbon L−1]; nλbin is the number of λ bins [–]; and
nCλbin is the number of carbon molecules in the assumed
formula for the λ bins [mol-carbon mol-molecule−1].

Using the Lambda-PFLOTRAN workflow, the FTICR-
MS data from each laboratory experiment were digested
into the corresponding λ bins to create the individual
reaction network. The Jupyter notebook for this exam-
ple is “Test_Case1-WHONDRS.ipynb” and is available at
https://doi.org/10.15485/2281403 (Muller et al., 2024).
µmax was fitted to the provided experimental oxygen data.

The final λ-binned fit, along with the corresponding carbon

Geosci. Model Dev., 17, 8955–8968, 2024 https://doi.org/10.5194/gmd-17-8955-2024
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Figure 3. Test Case 1a results – (a) oxygen consumption where the Lambda-PFLOTRAN workflow was used to fit the (blue line) experi-
mental respiration data (red dots) and (b) the total carbon consumption. (c) Individual organic matter consumption by λ bin and (d) biogeo-
chemistry, including O2 (aq) (blue), biomass (green), NH+4 (orange), HS− (purple), and HPO−4 (red). (e) CO2 production for the upstream
incubation. The dashed orange lines (a, b, and e) show the simulation results assuming a generic OM species of CH2O for comparison.

consumption (individual and total) and aqueous chemistry, is
displayed in Fig. 3 (and in Figs. S1 and S2 in the Supplement
for Test Cases 1b (midstream) and 1c (downstream), respec-
tively). To evaluate the use of λ-binned OM obtained from
FTICR-MS (Fig. 3), the workflow was also run for a base-
line case where µmax was fitted again but this time assuming
a generic bulk OM form of CH2O for comparison. The reac-
tion network developed for a generic OM molecule of CH2O
is shown in Eq. (14).

2.03CH2O+ 0.98O2+ 0.2NH+4
→ 1.03HCO−3 + 1.23H++ 0.4H2O+CH1.8O0.5N0.2 (14)

This reaction network is used in the Lambda-PFLOTRAN
workflow for bulk OM simulations.

The fittedµmax value for the λ-binned model is 0.25 min−1

(R2
= 0.99), and the µmax value fitted to the bulk OM CH2O

model is 0.032 min−1 (R2
= 0.96). Vh and CC are fixed at

assumed values of 10 m3 and 1 M, respectively, in both sim-
ulations.

However, even over the short time frame of this simula-
tion (i.e., only 120 min), the difference between assuming
the generic CH2O and using the more detailed organic matter
chemistry resulted in different predictions of total carbon and
CO2 generation. The bulk OM model predicts more carbon
consumption and greater CO2 production than the λ-binned
model. The bulk OM model estimates that 50 % of the ini-
tial total carbon is consumed over the first 120 min, whereas
the λ-binned model predicts 34 % consumption. Similarly,
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Figure 4. Test Case 2 results – (a) CO2 production where the Lambda-PFLOTRAN workflow was used to fit (blue line) experimental
respiration data (red dots) and (b) the corresponding total organic carbon. (c) Individual organic matter consumption by λ bin. (d) The
corresponding biogeochemistry, including O2 (aq) (blue), biomass (green), NH+4 (orange), HS− (purple), and HPO−4 (red). The dots indicate
the experimental data. The dashed orange lines in the top two panels show simulation results assuming a generic OM species of CH2O for
comparison. The fitted parameters for the λ-binned model are krelease = 5.5×10−12 d−1, µmax = 37.6 d−1, Vh = 5.0 m3, CC= 0.12 M, and
kdeg = 1×10−3 d−1 (R2

= 0.953), and the fitted bulk OM CH2O model values are krelease = 2.0×10−12 d−1,µmax = 47 d−1, Vh = 1.0 m3,
CC= 0.77 M, and kdeg = 0.15 d−1 (R2

= 0.909).

the bulk OM model estimates approximately 35 % more
CO2 generation as compared to the λ-binned model. The ef-
fects on aqueous chemistry over this short duration are more
muted, albeit still present.

3.2 Test Case 2 – respiration incubation experiments

Test Case 2 uses soil respiration incubation data from Ward
et al. (2023) aimed at investigating the influence of soil
type, oxygen condition (aerobic vs. anaerobic), and seawa-
ter exposure (fresh vs. saline) on respiration extent and rate.
For these experiments, temporal measurements were col-

lected for CO2 generation, DOC, organic matter formulas
via FTICR-MS, and other bulk aqueous chemistry (i.e., pH,
NH+4 , and other metals and ions), creating a rich dataset
for calibration of system-specific lambda model parameters.
These incubations were set up by adding dry soil to the re-
actor and then adding water (resulting in a soil :water ra-
tio ranging from 1 : 11 to 1 : 16). The soil and water were
shaken vigorously for 5 min and then sampled for the ini-
tial time point prior to officially starting the incubation. For
the aerobic experiments, the reactor headspace was cycled
every 24 h to measure the CO2 generated but also to ensure
that the system was kept aerobic. This was only performed
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Figure 5. Test Case 2 – sensitivity analysis output during parameter estimation: sensitivity of five fitted parameters (krelease, µmax, Vh, CC,
and kdeg) to temporal aqueous CO2 concentrations as a function of time.

5 d per week, with no measurements taken on the weekend
due to logistical constraints. Upon experiment completion,
the increase in DOC concentrations indicated that organic
carbon was being kinetically released from the soil into the
aqueous phase over the course of the 21 d experiment. Sim-
ilarly, measured NH+4 concentrations also increased during
the experiment. To address this within our reactive trans-
port model, a source of nitrogen was assumed to be released
from the soil as well (Nrelease). Both carbon and nitrogen re-
leases are included in this example and are assumed to fol-
low a zero-order constant release rate. Any organic carbon
released from the soil was fractionated into each λ bin on the
same per-carbon basis assumed for the initial total organic
carbon. This was implemented through a dependent function
that calculated the release of carbon into each λ bin based on
a fitted single bulk krelease rate. Mathematically, in PFLO-
TRAN the constant oxygen conditions were implemented
through a gas–liquid partitioning expression with a fast ex-
change term. These three additional processes were added to
describe the experimental conditions of Test Case 2 more ac-
curately (i.e., release of carbon, nitrogen, and sustained aer-
obic conditions). However, a PFLOTRAN input deck can be
expanded and customized to include a host of additional pro-
cesses and full geochemistry for a specific system of interest.
For instance, aqueous complexation, mineral dissolution and
precipitation, sorption, and redox reactions can be added, all
of which can influence the resultant pH and carbon, nitrogen,
and other nutrient dynamics.

The workflow was used to fit µmax, Vh, CC, kdeg, and
krelease to the temporal CO2 generation for a single aerobic
soil incubation (Fig. 4). The Jupyter notebook for this exam-
ple is “Test_Case2-Colloids.ipynb”.

For the purposes for showcasing the workflow, five param-
eters were estimated in this test case example, and as a result
the models are overparameterized given the amount of data
available. Parameter sensitivity over the course of the simu-
lation time is shown in Fig. 5 and suggests that this system
is highly sensitive to Vh. It should be noted that both these

model fits are also highly sensitive to the allowable parameter
space as defined by the lower and upper parameter bounds. In
general, parameterization efforts are inherently challenging.
For Lambda-PFLOTRAN, which models microbially medi-
ated processes, we recommend initially focusing on con-
straining the biomass parameters (i.e., CC, kdeg, and Vh) by
measuring temporal changes in the biomass concentrations.
Further, Vh and µmax are typically highly sensitive and often
correlated. However, since Vh represents the theoretical vol-
ume accessible to microbes and cannot be measured directly,
we suggest fixing Vh within the range 1–10 m3. If these mi-
crobial parameters can be constrained adequately, the fo-
cus can shift to µmax, the maximum microbial growth rate,
which significantly influences the overall respiration and is
expected to exhibit the highest variability across different lo-
cations and conditions.

Any additional experimental data, collected either during
incubations or through independent experiments (e.g., car-
bon release from the soil in an abiotic system), would be ex-
pected to help constrain the model and improve the parame-
terization. Additionally, it is unclear why the model is unable
to capture the total organic carbon behavior in Test Case 2.
One potential explanation is that some of the released organic
carbon may not be fully bioavailable and thus the model may
be compensating for this by artificially reducing the concen-
tration of OM available for respiration.

4 Variability and impact of organic matter speciation

The variability in OM speciation was briefly assessed by
comparing FTICR-MS data from Test Cases 1 and 2. Each
identified OM species was classified into one of nine com-
pound classes. For Test Case 1, the average of the three Test
Case 1 samples (1a – upstream, 1b – midstream, and 1c –
downstream) was computed. The predominant classes were
proteins (34± 1 %), lignin (26± 1 %), and lipids (13± 2 %),
with the errors representing the standard deviation among
the Test Case 1a–c samples. The low standard deviation sug-
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Figure 6. Distribution of organic matter compound classes: (a) Test Case 1 and (b) Test Case 2. Note: Test Case 1 is the average of Test Case
samples 1a–c. ConHC: condensed hydrocarbon; UnsatHC: unsaturated hydrocarbon.

gests consistent reproducibility in OM speciation for samples
taken from nearby locations. In contrast, OM in Test Case 2
was primarily composed of lignin (37.4 %) and concentrated
hydrocarbons (32 %). The full distribution of the compound
classes is presented in Fig. 6.

The influence of the sample OM speciation on the λ-
binned reaction networks was also assessed. Figure 7 illus-
trates the impact of OM speciation on the corresponding λ-
binned reaction networks, with three key observations. First,
the variability in OM speciation between the different sam-
ples is evident when comparing Test Case 1 and Test Case 2.
To enhance visual clarity, the range of the Test Case 1 sam-
ples (1a–c) is depicted as a grey-shaded region showing the
spread between the minimum and maximum values of the
three samples. For Test Case 2, data from the single FTICR-
MS sample are represented by blue dots. Test Case 1 and
Test Case 2 have distinct λ-derived reaction networks, as in-
dicated by the little overlap between the grey region and the
blue dots in Fig. 7b–i.

Second, the λ-binning process captures the OM speciation
variation within a sample. To illustrate this intrasample vari-
ability, a line representing the average of all the λ bins is
shown in Fig. 7 (grey line for Test Case 1, blue line for Test
Case 2). The difference between the reaction network coef-
ficients (vertical axis) for the λ binning (grey-shaded area
and blue dots) and the test case average lines highlights the
extent of this variability. Finally, although the λ-binning pro-
cess resulted in a similar number of carbon atoms to OM
molecules within each λ bin for both test cases (Fig. 7a), the
resulting stoichiometric coefficients in the reaction networks
differ significantly (Fig. 7b–h). These stoichiometric differ-
ences lead to variations in biogeochemical outcomes, such
as OM-to-oxygen utilization ratios during aerobic respiration

(Fig. 7i). These differences are due to the additional elements
beyond carbon in the OM molecules (i.e., nitrogen, oxygen,
sulfur, hydrogen, and phosphorus).

To further assess and isolate the effect of OM speciation,
extended forward simulations were performed by only vary-
ing FTICR-MS input data (Fig. 8). FTICR-MS samples from
Test Cases 1a–c and Test Case 2 were tested. These sim-
ulations replicate Fig. 3 (i.e., Test Case 1a conditions and
fitted µmax values) with the expectation of OM speciation
and demonstrate the significant impact of OM chemistry and
speciation on the overall predicted behavior, especially over
longer time periods.

The clear variability in OM speciation, differences be-
tween a generic OM reaction network and one informed
by FTICR-MS, and the impact of OM chemistry on bio-
geochemical predictive simulations underscore the impor-
tance of incorporating site-specific OM chemistry informed
by ultra high resolution characterization into biogeochemical
models.

5 Conclusions

Overall, the Lambda-PFLOTRAN workflow provides an im-
portant link between molecular-scale organic matter charac-
terization and reactive transport simulations. This workflow
allows for the influence of organic matter composition to be
utilized within simulators to provide a more comprehensive
understanding of the system chemistry and behavior, mov-
ing beyond the standard assumption of bulk organic matter
chemistry and composition. While there are current limita-
tions due to how composition is characterized and quanti-
fied, this workflow connecting characterization information

Geosci. Model Dev., 17, 8955–8968, 2024 https://doi.org/10.5194/gmd-17-8955-2024



K. A. Muller et al.: Lambda-PFLOTRAN 1.0 8965

Figure 7. Comparison of the λ-binned reaction network parameters. (a) Number of carbons in the OM. Stoichiometric coefficient y for
(b) OM, (c) O2, (d) HCO−3 , (e) NH+4 , (f) HS−, (g) HPO−4 , and (h) H+. (i) Ratio of the OM/O2 coefficients for Test Cases 1a–c (grey dots),
the average of all λ bins for Test Case 1 (grey line) and Test Case 2 (blue “x”), and the average of all λ bins for Test Case 2 (blue line). The
grey-shaded area highlights the range of values for Test Cases 1a–c for better visual comparison.

to simulations is an important advancement that can be re-
fined as these laboratory techniques improve over time.

One of the major limitations surrounding this method
is the lack of understanding of organic matter compound
bioavailability, resulting in a large conceptual gap as to how
various organic carbon compounds may be utilized by mi-
crobes. In the absence of such information, all identified or-
ganic matter molecules are assumed to have equal bioavail-
ability within this modeling framework when, in reality,
compounds will exhibit varying degrees of bioavailability de-
pending on factors such as the associated size fraction, car-
bon pool, and environmental factors (Schmidt et al., 2011;
Ahamed et al., 2023). Until improved understanding is es-
tablished to discern individual compound bioavailability, this
will remain a limitation.

Another limitation of this method involves the analytical
limitations of organic carbon characterization and quantifi-
cation. For instance, FTICR-MS focuses on water-soluble
organic matter, which may provide a basis for the types of
carbon identified by this technique (Tfaily et al., 2017). Ad-
ditionally, as mentioned previously, FTICR-MS is qualita-
tive. It does not provide structural information and will not
differentiate between different isomers that have the same
molecular formulas, and it is only able to identify whether
a molecular formula is present or absent and not the con-
centration associated with each peak. Here, this has been ad-
dressed by assuming an equal distribution of total carbon be-
tween the formulas within each λ bin on a per-carbon ba-
sis. This caveat can easily be updated in the workflow if new
analytical advances are made that provide more quantitative
information. Some existing approaches could be suitable for
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Figure 8. Influence of OM speciation on oxygen consumption.
FTICR-MS data from Test Cases 1a–c (grey-shaded area) and Test
Case 2 (blue line) were used as inputs. Bulk CH2O OM (green
line) was also plotted for reference. Best-fit µmax values for Test
Case 1a were used (i.e., λ-binned µmax = 0.25 min−1; bulk OM
µmax = 0.032 min−1).

this type of modeling, such as using quantitative biomarkers
that cover major compound classes (Kim and Blair, 2023),
but further advances in obtaining both high resolution and
quantitative OM characterization would greatly aid our un-
derstanding and modeling of ecosystems.
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