Articles | Volume 17, issue 23
https://doi.org/10.5194/gmd-17-8697-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-8697-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DalROMS-NWA12 v1.0, a coupled circulation–ice–biogeochemistry modelling system for the northwest Atlantic Ocean: development and validation
Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4R2, Canada
Arnaud Laurent
Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4R2, Canada
Christoph Renkl
Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4R2, Canada
Jinyu Sheng
CORRESPONDING AUTHOR
Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4R2, Canada
Katja Fennel
Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4R2, Canada
Eric Oliver
Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4R2, Canada
Related authors
No articles found.
Yucheng Zi, Zhenxia Long, Jinyu Sheng, Gaopeng Lu, Will Perrie, and Ziniu Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2990, https://doi.org/10.5194/egusphere-2025-2990, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated how boreal winter sea surface temperatures anomaly in the central tropical Pacific impact the Antarctic stratosphere months later. Using 45 years of reanalysis data, we found that warmer sea surface lead to a warmer Antarctic stratosphere and increased ozone during the subsequent austral winter. This link, driven by the planetary waves and reinforced by regional sea-ice loss, provides a new way to make long-range forecasts for stratospheric conditions and ozone.
Arnaud Laurent, Bin Wang, Dariia Atamanchuk, Subhadeep Rakshit, Kumiko Azetsu-Scott, Chris Algar, and Katja Fennel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3361, https://doi.org/10.5194/egusphere-2025-3361, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Surface ocean alkalinity enhancement, through the release of alkaline materials, is a technology that could increase the storage of anthropogenic carbon in the ocean. Halifax Harbour (Canada) is a current test site for operational alkalinity addition. Here, we present a model of Halifax Harbour that simulates alkalinity addition at various locations of the harbour and quantifies the resulting net CO2 uptake. The model can be relocated to study alkalinity addition in other coastal systems.
Lina Garcia-Suarez, Katja Fennel, Neha Mehendale, Tronje Peer Kemena, and David Peter Keller
EGUsphere, https://doi.org/10.22541/essoar.173758192.24328151/v2, https://doi.org/10.22541/essoar.173758192.24328151/v2, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study shows that regional ocean warming can make the Gulf Stream appear to shift north, even when its path remains stable in a changing climate. Temperature-based proxies, like the Gulf Stream North Wall, overestimate changes in its position. Methods based on sea surface height provide a more accurate view. These results help improve how we track changes in ocean currents and avoid misinterpreting signs of climate-related shifts.
Yu Zhang, Jintao Gu, Shengli Chen, Jianyu Hu, Jinyu Sheng, and Jiuxing Xing
Ocean Sci., 21, 1047–1063, https://doi.org/10.5194/os-21-1047-2025, https://doi.org/10.5194/os-21-1047-2025, 2025
Short summary
Short summary
Current observations at two moorings in the northern South China Sea reveal that mesoscale eddies can transfer energy with near-inertial oscillations (NIOs). Numerical experiments are conducted to investigate important parameters affecting energy transfer between mesoscale eddies and NIOs, which demonstrate that the energy transferred by mesoscale eddies is larger with stronger winds and higher strength of the mesoscale eddy. Anticyclonic eddies can transfer more energy than cyclonic eddies.
Gianpiero Cossarini, Andrew Moore, Stefano Ciavatta, and Katja Fennel
State Planet, 5-opsr, 12, https://doi.org/10.5194/sp-5-opsr-12-2025, https://doi.org/10.5194/sp-5-opsr-12-2025, 2025
Short summary
Short summary
Marine biogeochemistry refers to the cycling of chemical elements resulting from physical transport, chemical reaction, uptake, and processing by living organisms. Biogeochemical models can have a wide range of complexity, from a single nutrient to fully explicit representations of multiple nutrients, trophic levels, and functional groups. Uncertainty sources are the lack of knowledge about the parameterizations, the initial and boundary conditions, and the lack of observations.
Christoph Renkl, Eric C. J. Oliver, and Keith R. Thompson
Ocean Sci., 21, 181–198, https://doi.org/10.5194/os-21-181-2025, https://doi.org/10.5194/os-21-181-2025, 2025
Short summary
Short summary
Mean dynamic topography (MDT) describes variations in the mean sea surface height above a reference surface called a geoid. We show that MDT predicted by a regional ocean model, including a significant tilt of several centimeters along the coast of Nova Scotia, is in good agreement with estimates based on sea level observations. We demonstrate that this alongshore tilt of MDT can provide a direct estimate of the average alongshore current and also of the area-integrated nearshore circulation.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023, https://doi.org/10.5194/tc-17-2665-2023, 2023
Short summary
Short summary
Sea ice is a dynamic carbon reservoir. Its seasonal growth and melt modify the carbonate chemistry in the upper ocean, with consequences for the Arctic Ocean carbon sink. Yet, the importance of this process is poorly quantified. Using two independent approaches, this study provides new methods to evaluate the error in air–sea carbon flux estimates due to the lack of biogeochemistry in ice in earth system models. Those errors range from 5 % to 30 %, depending on the model and climate projection.
Arnaud Laurent, Haiyan Zhang, and Katja Fennel
Biogeosciences, 19, 5893–5910, https://doi.org/10.5194/bg-19-5893-2022, https://doi.org/10.5194/bg-19-5893-2022, 2022
Short summary
Short summary
The Changjiang is the main terrestrial source of nutrients to the East China Sea (ECS). Nutrient delivery to the ECS has been increasing since the 1960s, resulting in low oxygen (hypoxia) during phytoplankton decomposition in summer. River phosphorus (P) has increased less than nitrogen, and therefore, despite the large nutrient delivery, phytoplankton growth can be limited by the lack of P. Here, we investigate this link between P limitation, phytoplankton production/decomposition, and hypoxia.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Bin Wang, Katja Fennel, and Liuqian Yu
Ocean Sci., 17, 1141–1156, https://doi.org/10.5194/os-17-1141-2021, https://doi.org/10.5194/os-17-1141-2021, 2021
Short summary
Short summary
We demonstrate that even sparse BGC-Argo profiles can substantially improve biogeochemical prediction via a priori model tuning. By assimilating satellite surface chlorophyll and physical observations, subsurface distributions of physical properties and nutrients were improved immediately. The improvement of subsurface chlorophyll was modest initially but was greatly enhanced after adjusting the parameterization for light attenuation through further a priori tuning.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but there is an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Cited articles
Allen, J. S., Newberger, N. A., and Federiuk, J.: Upwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing, J. Phys. Oceanogr., 25, 1843–1866, https://doi.org/10.1175/1520-0485(1995)025<1843:UCOTOC>2.0.CO;2, 1995.
Babb, D. G., Kirillov, S., Galley, R. J., Straneo, F., Ehn, J. K., Howell, S. E. L., Brady, M., Ridenour, N. A., and Barber, D. G.: Sea ice dynamics in Hudson Strait and its impact on winter shipping operations, J. Geophys. Res.-Oceans, 126, e2021JC018024, https://doi.org/10.1029/2021JC018024, 2021.
Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E. M., van den Broeke, M. R., and Noel, B.: Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results, J. Geophys. Res.-Oceans, 123, 1827–1837, https://doi.org/10.1002/2017JC013605, 2018.
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999.
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic-viscous-plastic method revisited, Ocean Model., 71, 2–12, https://doi.org/10.1016/j.ocemod.2013.05.013, 2013.
Bourgault, D. and Koutitonsky, V. G.: Real-time monitoring of the freshwater discharge at the head of the St. Lawrence Estuary, Atmos.-Ocean, 37, 203–220, https://doi.org/10.1080/07055900.1999.9649626, 1999.
Briegleb, B. P. and Light, B.: A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, National Center for Atmospheric Research, https://doi.org/10.5065/D6B27S71, 2007.
Buongiorno Nardelli, B., Droghei, R., and Santoleri, R.: Multi-dimensional interpolation of SMOS sea surface salinity with surface temperature and in situ salinity, Remote Sens. Environ., 180, 392–402, https://doi.org/10.1016/j.rse.2015.12.052, 2016.
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V., Coatanoan, C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer Montégut, C., Carval, T., Reverdin, G., Pouliquen, S., and Le Traon, P.-Y.: The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements, Ocean Sci., 9, 1–18, https://doi.org/10.5194/os-9-1-2013, 2013.
Chapman, D. C.: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model, J. Phys. Oceanogr., 15, 1060–1075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2, 1985.
Chassignet, E. P. and Xu, S.: Impact of horizontal resolution ( ° to °) on Gulf Stream separation, penetration, and variability, J. Phys. Oceanogr., 47, 1999–2021, https://doi.org/10.1175/JPO-D-17-0031.1, 2017.
Chelton, D., DeSzoeke, R. A., Schlax, M. G, El Naggar, K., and Siwertz, N.: Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433–460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998.
Chen, K. and He, R.: Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model, Ocean Sci., 11, 503–517, https://doi.org/10.5194/os-11-503-2015, 2015.
Crameri, F.: Scientific colour maps, Zenodo [software], https://doi.org/10.5281/zenodo.1243862, 2018.
Dai, A.: Dai and Trenberth Global River Flow and Continental Discharge Dataset, NCAR Research Data Archive [data set], https://doi.org/10.5065/D6V69H1T, 2017.
Drinkwater, K.: On the mean and tidal currents in Hudson Strait, Atmos.-Ocean, 26, 252–266, https://doi.org/10.1080/07055900.1988.9649302, 1988.
Dupont, F., Higginson, S., Bourdallé-Badie, R., Lu, Y., Roy, F., Smith, G. C., Lemieux, J.-F., Garric, G., and Davidson, F.: A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans, Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015, 2015.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Ezer, T. and Mellor, G. L.: A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids, Ocean Model., 6, 379–403, https://doi.org/10.1016/S1463-5003(03)00026-X, 2004.
Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., and Young, G. S.: Cool-skin and warm-layer effects on sea surface temperature, J. Geophys. Res., 101, 1295–1308, https://doi.org/10.1029/95JC03190, 1996a.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for Tropical-Ocean Global Atmosphere Coupled-Ocean Atmosphere Ocean Experiment, J. Geophys. Res., 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996b.
Fennel, K., Wilkin, J., Levin, J., Moisan, J., O'Reilly, J., and Haidvogel, D.: Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget, Global Biogeochem. Cy., 20, GB3007, https://doi.org/10.1029/2005GB002456, 2006.
Fennel, K., Wilkin, J., Previdi, M., and Najjar, R.: Denitrification effects on air-sea CO2 flux in the coastal ocean: Simulations for the northwest North Atlantic, Geophys. Res. Lett., 35, L24608, https://doi.org/10.1029/2008GL036147, 2008.
Fennel, K., Hu, J., Laurent, A., Marta-Almeida, M., and Hetland, R.: Sensitivity of hypoxia predictions for the north- ern Gulf of Mexico to sediment oxygen consumption and model nesting, J. Geophys. Res.-Oceans, 118, 990–1002, https://doi.org/10.1002/jgrc.20077, 2013.
Fennel, K., Mattern, J. P., Doney, S., Bopp, L., Moore, A., Wang, B., and Yu, L.: Ocean biogeochemical modelling, Nat. Rev. Methods Primers, 2, 76, https://doi.org/10.1038/s43586-022-00154-2, 2022.
Frajka-Williams, E. and Rhines, P. B.: Physical controls and interannual variability of the Labrador Sea spring phytoplankton bloom in distinct regions, Deep-Sea Res. Pt. I, 57, 541–552, https://doi.org/10.1016/j.dsr.2010.01.003, 2010.
Garçon, V. C., Oschlies, A., Doney, S. C., McGillicuddy, D., and Waniek, J.: The role of mesoscale variability on plankton dynamics in the North Atlantic, Deep-Sea Res. Pt. II, 48, 2199–2226, https://doi.org/10.1016/S0967-0645(00)00183-1, 2001.
Gatien, M. G.: A study in the slope water region south of Halifax, J. Fish. Res. Board Can., 33, 2213–2217, https://doi.org/10.1139/f76-270, 1976.
GEBCO Compilation Group: GEBCO 2019 Grid, British Oceanographic Data Centre, National Oceanography Centre, NERC, UK [data set], https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e, 2019.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchister, E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L., Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M., Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System, J. Comput. Phys., 227, 3595–3624, https://doi.org/10.1016/j.jcp.2007.06.016, 2008.
Han, G., Hannah, C. G., Loder, J. W., and Smith, P. C.: Seasonal variation of the three-dimensional mean circulation over the Scotian Shelf, J. Geophys. Res., 102, 1011–1025, https://doi.org/10.1029/96JC03285, 1997.
Hedstrom, K. S.: Technical manual for a coupled sea-ice/ocean circulation model (Version 5), U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region, 2018.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service Climate Data Store [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.-M.: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021.
Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2, 1997.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: CICE: The Los Alamos sea ice model documentation and software user's manual version 5.1 LA-CC-06-012, Los Alamos National Laboratory, 2015.
Ikeda, M., Yao, T., and Yao, Q.: Seasonal evolution of sea ice cover and shelf water off Labrador simulated in a coupled ice-ocean model, J. Geophys. Res., 101, 16465–16489, https://doi.org/10.1029/96JC00716, 1996.
Jacob, R., Larson, J., and Ong, E.: M x N communication and parallel interpolation in Community Climate System Model version 3 using the Model Coupling Toolkit, Int. J. High Perform. Comput. Appl., 19, 293–307, https://doi.org/10.1177/1094342005056116, 2005.
Jin, M., Deal, C., Maslowski, W., Matrai, P., Roberts, A., Osinski, R., Lee, Y. J., Frants, M., Elliott, S., Jefferey, N., Hunke, E., and Wang, S.: Effects of model resolution and ocean mixing on forced ice-ocean physical and biogeochemical simulations using global and regional system models, J. Geophys. Res.-Oceans, 123, 358–377, https://doi.org/10.1002/2017JC013365, 2018.
Johnson, K. S. and Claustre, H.: Bringing biogeochemistry into the Argo age, Eos, 97, https://doi.org/10.1029/2016EO062427, 2016.
Killworth, P. D.: Time interpolation of forcing fields in ocean models, J. Phys. Oceanogr., 26, 136–143, https://doi.org/10.1175/1520-0485(1996)026<0136:TIOFFI>2.0.CO;2, 1996.
Körtzinger, A., Send, U., Wallace, D. W. R., Karstensen, J., and DeGrandpre, M.: Seasonal cycle of O2 and PCO2 in the central Labrador Sea: Atmospheric, biological, and physical implications, Global Biogeochem. Cy., 22, GB1014, https://doi.org/10.1029/2007GB003029, 2008.
Kristensen, N. M., Debernard, J. B., Maartenson, S., Wang, K., and Hedstrom, K.: metno/metroms: Version 0.3 – before merge (v0.3), Zenodo [code], https://doi.org/10.5281/zenodo.1046114, 2017.
Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit: A new Fortran90 toolkit for building Multiphysics parallel coupled models, Int. J. High Perform. Comput. Appl., 19, 277–292, https://doi.org/10.1177/1094342005056115, 2005.
Laurent, A., Fennel, K., and Kuhn, A.: An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean, Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, 2021.
Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Álvarez, M., Becker, S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Jones, S. D., Karlsen, M. K., Lo Monaco, C., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., Woosley, R. J., and Key, R. M.: An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2021, Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, 2021.
Lavender, K. L., Davis, R. E., and Brechner, O. W.: Mid-depth recirculation observed in the interior Labrador and Irminger seas by direct velocity measurements, Nature, 407, 66–69, https://doi.org/10.1038/35024048, 2000.
Lavoie, D., Lambert, N., Starr, M., Chassé, J., Riche, O., Le Clainche, Y., Azetsu-Scott, K., Béjaoui, B., Christian, J. R., and Gilbert, D.: The Gulf of St. Lawrence Biogeochemical Model: A management tool for fisheries and ocean management, Front. Mar. Sci., 8, 732269, https://doi.org/10.3389/fmars.2021.732269, 2021.
Le Fouest, V., Zakardjian, B., and Saucier, F. J.: Plankton ecosystem response to freshwater-associated bulk turbidity in the subarctic Gulf of St. Lawrence (Canada): A modelling study, J. Marine Syst., 81, 75–85, https://doi.org/10.1016/j.jmarsys.2009.12.003, 2010.
Legendre, L., Ackley, S. F., Dieckmann, G. S., Gulliksen, B., Horner, R., Hoshiai, T., Melnikov, I. A., Reeburgh, W. S., Spindler, M., and Sullivan, C. W: Ecology of sea ice biota: 2. Global significance, Polar Biol., 12, 429–444, https://doi.org/10.1007/bf00243114, 1992.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time ° high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Lellouche, J.-M., Greiner, E., Bourdallé-Badie, R., Garric, G., Melet, A., Drévillon, M., Clement, B., Hamon, M., Le Galloudec, O., Regnier, C., Candela, T., Testut, C.-E., Gasparin, F., Ruggiero, G., Mounir, B., Yann, D., and Le Traon, P.-Y.: The Copernicus Global ° Oceanic and Sea Ice GLORYS12 Reanalysis, Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876, 2021.
Lipscomb, W. H. and Hunke, E. C.: Modeling sea ice transport using incremental mapping, Mon. Weather Rev., 132, 1341–1354, https://doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2, 2004.
Lu, Y., Higginson, S., Nudds, S., Prinsenberg, S., and Garric, G.: Model simulated volume fluxes through the Canadian Arctic Archipelago and Davis Strait: Linking monthly variations to forcings in different seasons, J. Geophys. Res.-Oceans, 119, 1927–1942, https://doi.org/10.1002/2013JC009408, 2014.
Luo, H., Bracco, A., and Zhang, F.: The seasonality of convective events in the Labrador Sea, J. Climate, 27, 6456–6471, https://doi.org/10.1175/JCLI-D-14-00009.1, 2014.
Ma, Z., Han, G., and Chassé, J.: Simulation of circulation and ice over the Newfoundland and Labrador Shelves: The mean and seasonal cycle, Atmos.-Ocean, 54, 248–263, https://doi.org/10.1080/07055900.2015.1077325, 2016.
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary conditions for long-term integration of regional oceanic models, Ocean Model., 3, 1–20, https://doi.org/10.1016/S1463-5003(00)00013-5, 2001.
Marchesiello, P., Debreu, L., and Couvelard, X.: Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution, Ocean Model., 26, 156–169, https://doi.org/10.1016/j.ocemod.2008.09.004, 2009.
Martz, T. R., DeGrandpre, M. D., Strutton, P. G., McGillis, W. R., and Drennan, W. M.: Sea surface pCO2 and carbon export during the Labrador Sea spring-summer bloom: An in situ mass balance approach, J. Geophys. Res., 114, C09008, https://doi.org/10.1029/2008JC005060, 2009.
Mason, E., Molemaker, J., Shchepetkin, A. F., Colas, F., McWilliams, J. C., and Sangrà, P.: Procedures for offline grid nesting in regional ocean models, Ocean Model., 35, 1–15, https://doi.org/10.1016/j.ocemod.2010.05.007, 2010.
McDougall, T. M. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 2011.
Melsheimer, C. and Spreen, G.: AMSR2 ASI sea ice concentration data, Arctic, version 5.4 (NetCDF) (June 2012–December 2018), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898399, 2019.
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 20, 851–875, https://doi.org/10.1029/RG020i004p00851, 1982.
Mysak, L. A., Peng, S., and Wood, R. G.: Application of a coupled ice-ocean model to the Labrador Sea, Atmos.-Ocean, 29, 232–255, https://doi.org/10.1080/07055900.1991.9649404, 1991.
Naughten, K. A., Galton-Fenzi, B. K., Meissner, K. J., England, M. H., Brassington, G. B., Colberg, F., Hatterman, T., and Debernard, J. B.: Spurious sea ice formation caused by oscillatory ocean tracer advection schemes, Ocean Model., 116, 108–117, https://doi.org/10.1016/j.ocemod.2017.06.010, 2017.
Ohashi, K., Laurent, A., Renkl, C., Sheng, J., Fennel, K., and Oliver, E.: DALROMS-NWA12 v1.0, a coupled circulation-sea ice-biogeochemistry model for the northwest North Atlantic: codes and namelists (Version v3), Zenodo [software], https://doi.org/10.5281/zenodo.12752091, 2024a.
Ohashi, K., Laurent, A., Renkl, C., Sheng, J., Fennel, K., and Oliver, E.: DALROMS-NWA12 v1.0, a coupled circulation-sea ice-biogeochemistry model for the northwest North Atlantic: input files (1 of 3) (Version v2), Zenodo [data set], https://doi.org/10.5281/zenodo.12752190, 2024b.
Ohashi, K., Laurent, A., Renkl, C., Sheng, J., Fennel, K., and Oliver, E.: DALROMS-NWA12 v1.0, a coupled circulation-sea ice-biogeochemistry model for the northwest North Atlantic: input files (2 of 3) (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.12734049, 2024c.
Ohashi, K., Laurent, A., Renkl, C., Sheng, J., Fennel, K., and Oliver, E.: DALROMS-NWA12 v1.0, a coupled circulation-sea ice-biogeochemistry model for the northwest North Atlantic: input files (3 of 3) (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.12735153, 2024d.
Ohashi, K., Laurent, A., Renkl, C., Sheng, J., Fennel, K., and Oliver, E.: DALROMS-NWA12 v1.0, a coupled circulation-sea ice-biogeochemistry model for the northwest North Atlantic: output files (1 of 2) (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.12744506, 2024e.
Ohashi, K., Laurent, A., Renkl, C., Sheng, J., Fennel, K., and Oliver, E.: DALROMS-NWA12 v1.0, a coupled circulation-sea ice-biogeochemistry model for the northwest North Atlantic: output files (2 of 2) (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.12746262, 2024f.
Pawlowicz, R.: M_Map: A mapping package for MATLAB, version 1.4m, Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia [software], https://www.eoas.ubc.ca/~rich/map.html (last access: 26 November 2024), 2020.
Pei, Q.: Study of circulation, hydrography and dissolved oxygen concentration over coastal waters of the Scotian Shelf, M.Sc. thesis, Dalhousie University, http://hdl.handle.net/10222/81682 (last access: 26 November 2024), 2022.
Pennelly, C. and Myers, P. G.: Introducing LAB60: A ° NEMO 3.6 numerical simulation of the Labrador Sea, Geosci. Model Dev., 13, 4959–4975, https://doi.org/10.5194/gmd-13-4959-2020, 2020.
Pepin, P., Petrie, B., Therriault, J.-C., Narayanan, S., Harrison, W. G., Frank, K. T., Chassé, J., Colbourne, E. B., Gilbert, D., Gregory, D., Harvey, M., Maillet, G. L., Mitchell, M., and Starr, M.: The Atlantic Zone Monitoring Program (AZMP): Review of 1998–2003 (Can. Tech. Rep. Hydrogr. Ocean Sci.), Fisheries and Oceans Canada, 242, v + 87, 2005.
Prinsenberg, S. J. and Peterson, I. K.: Sea-ice properties off Labrador and Newfoundland during LIMEX '89, Atmos.-Ocean, 30, 207–222, https://doi.org/10.1080/07055900.1992.9649438, 1992.
Rainville, L., Lee, C. M., and Woodgate, R. A.: Impact of wind-driven mixing in the Arctic Ocean, Oceanography, 24, 136–145, https://doi.org/10.5670/oceanog.2011.65, 2011.
Rhein, M., Steinfeldt, R., Kieke, D., Stendardo, I., and Yashayaev, I.: Ventilation variability of Labrador Sea Water and its impact on oxygen and anthropogenic carbon: a review, Philos. T. Roy. Soc. A, 375, 20160321, https://doi.org/10.1098/rsta.2016.0321, 2017.
Richaud, B., Kwon, Y.-O., Joyce, T. M., Fratantoni, P. S., and Lentz, S. J.: Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. east coasts, Cont. Shelf Res., 124, 165–181, https://doi.org/10.1016/j.csr.2016.06.005, 2016.
Richaud, B., Fennel, K., Oliver, E. C. J., DeGrandpre, M. D., Bourgeois, T., Hu, X., and Lu, Y.: Underestimation of oceanic carbon uptake in the Arctic Ocean: ice melt as predictor of the sea ice carbon pump, The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023, 2023.
Ridenour, N. A., Hu, X., Sydor, K., Myers, P. G., and Barber, D. G.: Revisiting the circulation of Hudson Bay: Evidence for a seasonal pattern, Geophys. Res. Lett., 46, 3891–3899, https://doi.org/10.1029/2019GL082344, 2019.
Ross, A. C., Stock, C. A., Adcroft, A., Curchitser, E., Hallberg, R., Harrison, M. J., Hedstrom, K., Zadeh, N., Alexander, M., Chen, W., Drenkard, E. J., du Pontavice, H., Dussin, R., Gomez, F., John, J. G., Kang, D., Lavoie, D., Resplandy, L., Roobaert, A., Saba, V., Shin, S.-I., Siedlecki, S., and Simkins, J.: A high-resolution physical–biogeochemical model for marine resource applications in the northwest Atlantic (MOM6-COBALT-NWA12 v1.0), Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023, 2023.
Rutherford, K. and Fennel, K.: Elucidating coastal ocean carbon transport processes: A novel approach applied to the northwest North Atlantic shelf, Geophys. Res. Lett., 49, e2021GL097614, https://doi.org/10.1029/2021GL097614, 2022.
Saucier, F. J., Senneville, S., Prinsenberg, S., Roy, F., Smith, G., Gachon, P., Caya, D., and Laprise, R.: Modelling the sea ice-ocean seasonal cycle in Hudson Bay, Foxe Basin and Hudson Strait, Canada, Clim. Dynam., 23, 303–326, https://doi.org/10.1007/s00382-004-0445-6, 2004.
Schwab, D. J., Clites, A. H., Murthy, C. R., Sandall, J. E., Meadows, L. R., and Meadows, G. A.: The effect of wind on transport and circulation in Lake St. Clair, J. Geophys. Res., 94, 4947–4958, https://doi.org/10.1029/JC094iC04p04947, 1989.
Shapiro, R.: Linear filtering, Math. Comput., 19, 1094–1097, https://doi.org/10.1090/S0025-5718-1975-0389356-X, 1975.
Sheng, J.: Circulation and drift pathways in the northwest Atlantic Ocean, in: Estuarine and Coastal Modeling: Proceedings of the Seventh International Conference, St. Petersburg, FL, 5–7 November 2001, 364–383, https://doi.org/10.1061/40628(268)23, 2002.
Smith, G. C., Roy, F., and Brasnett, B.: Evaluation of an operational ice-ocean analysis and forecasting system for the Gulf of St. Lawrence, Q. J. Roy. Meteor. Soc., 139, 419–433, https://doi.org/10.1002/qj.1982, 2013.
Song, Y. and Haidvogel, D.: A semi-implicit ocean circulation model using a generalized topography-following coordinate system, J. Comput. Phys., 115, 228–244, https://doi.org/10.1006/jcph.1994.1189, 1994.
St. Lawrence Global Observatory: Freshwater runoffs of the St. Lawrence at the height of Québec City, OGSL [data set], https://catalogue.ogsl.ca/dataset/ca-cioos_84a17ffc-4898-4261-94de-4a5ea2a9258d?local=en (last access: 26 November 2024), 2023.
Strutton, P. G., Martz, T. R., DeGrandpre, M. D., McGillis, W. R., Drennan, W. M., and Boss, E.: Bio-optical observations of the 2004 Labrador Sea phytoplankton bloom, J. Geophys. Res., 116, C11037, https://doi.org/10.1029/2010JC006872, 2011.
Szekely, T.: Product user manual: In situ TAC objective analysis products, v1.11, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-INS-PUM-013-002-052.pdf (last access: 26 November 2024), 2023.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Barr, H. J. W.: Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Tang, C. L., Gui, Q., and DeTracey, B. M.: A modeling study of upper ocean winter processes in the Labrador Sea, J. Geophys. Res., 104, 23411–23425, https://doi.org/10.1029/1999JC900214, 1999.
The Lab Sea Group: The Labrador Sea Deep Convection Experiment, B. Am. Meteorol. Soc., 79, 2033–2058, https://doi.org/10.1175/1520-0477(1998)079<2033:TLSDCE>2.0.CO;2, 1998.
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M., and DiMarco, S. F.: True colors of oceanography: Guidelines for effective and accurate colormap selection, Oceanography, 29, 9–13, https://doi.org/10.5670/oceanog.2016.66, 2016.
Tian, R. C., Deibel, D., Rivkin, R. B., and Vézina, A. F.: Biogenic carbon and nitrogen export in a deep-convection region: simulations in the Labrador Sea, Deep-Sea Res. Pt. I, 51, 413–437, https://doi.org/10.1016/j.dsr.2003.10.015, 2004.
Urrego-Blanco, U., and Sheng, J.: Study on subtidal circulation and variability in the Gulf of St. Lawrence, Scotian Shelf, and Gulf of Maine using a nested-grid shelf circulation model, Ocean Dynam., 64, 385–412, https://doi.org/10.1007/s10236-013-0688-z, 2014.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, in: The carbon cycle and atmospheric CO2: Natural variations Archean to present, Geoph. Monog. Series vol. 32, edited by: Sundquist, E. T. and Broecker, W. S., 99–110, https://doi.org/10.1029/GM032p0099, 1985.
Wang, B. and Fennel, K.: An assessment of vertical carbon flux parameterizations using backscatter data from BGC Argo, Geophys. Res. Lett., 50, e2022GL101220, https://doi.org/10.1029/2022GL101220, 2023.
Wang, B. and Fennel, K.: Biogeochemical Argo data suggest only a minor contribution of small particles to long-term carbon sequestration in the subpolar North Atlantic, Limnol. Oceanogr., 67, 2405–2417, https://doi.org/10.1002/lno.12209, 2022.
Wang, Y., Sheng, J., and Lu, Y.: Examining tidal impacts on seasonal circulation and hydrography variability over the eastern Canadian shelf using a coupled circulation-ice regional model, Prog. Oceanogr., 189, 102448, https://doi.org/10.1016/j.pocean.2020.102448, 2020.
Wang, Z., Lu, Y., Greenan, B., Brickman, D., and DeTracey, B.: BNAM: An eddy-resolving North Atlantic Ocean model to support ocean monitoring (Can. Tech. Rep. Hydrogr. Ocean Sci.), Fisheries and Oceans Canada, 327, vii + 18, 2018.
Wu, H. and Zhu, J.: Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary, Ocean Model., 33, 33–51, https://doi.org/10.1016/j.ocemod.2009.12.001, 2010.
Wu, Y., Peterson, I. K., Tang, C. C. L., Platt, T., Sathyendranath, S., and Fuentes-Yaco, C.: The impact of sea ice on the initiation of the spring bloom on the Newfoundland and Labrador Shelves, J. Plankton. Res., 29, 509–514, https://doi.org/10.1093/plankt/fbm035, 2007.
Wu, Y., Platt, T., Tang, C. C. L., and Sathyendranath, S.: Regional differences in the timing of the spring bloom in the Labrador Sea, Mar. Ecol. Prog. Ser., 355, 9–20, https://doi.org/10.3354/meps07233, 2008.
Wu, Y., Tang, C., and Hannah, C.: The circulation of eastern Canadian seas, Prog. Oceanogr., 106, 28–48, https://doi.org/10.1016/j.pocean.2012.06.005, 2012.
Yang, B., Fox, J., Behrenfeld, M. J., Boss, E. S., Haëntjens, N., Halsey, K. H., Emerson, S. R., and Doney, S. C.: In situ estimates of net primary production in the western North Atlantic with Argo profiling floats, J. Geophys. Res.-Biogeo., 126, e2020JG06116, https://doi.org/10.1029/2020JG006116, 2020.
Yang, S., Sheng, J., Ohashi, K., Yang, B., Chen, S., Xing, J.: Non-linear interactions between tides and storm surges during extreme weather events over the eastern Canadian shelf, Ocean Dynam., 73, 279–301, https://doi.org/10.1007/s10236-023-01556-w, 2023.
Yao, T., Tang, C. L., and Peterson, I. K.: Modeling the seasonal variation of sea ice in the Labrador Sea with a coupled multicategory ice model and the Princeton Ocean Model, J. Geophys. Res., 105, 1153–1165, https://doi.org/10.1029/1999JC900264, 2000.
Yashayaev, I.: Intensification and shutdown of deep convection in the Labrador Sea were caused by changes in atmospheric and freshwater dynamics, Commun. Earth Environ., 5, 1–23, https://doi.org/10.1038/s43247-024-01296-9, 2024.
Yashayaev, I. and Loder, J. W.: Further intensification of deep convection in the Labrador Sea in 2016, Geophys. Res. Lett., 44, 1429–1438, https://doi.org/10.1002/2016GL071668, 2017.
Zhang, S., Sheng, J., and Greatbatch, R. J.: A coupled ice-ocean modeling study of the northwest Atlantic Ocean, J. Geophys. Res., 109, C04009, https://doi.org/10.1029/2003JC001924, 2004.
Short summary
We developed a modelling system of the northwest Atlantic Ocean that simulates the currents, temperature, salinity, and parts of the biochemical cycle of the ocean, as well as sea ice. The system combines advanced, open-source models and can be used to study, for example, the ocean capture of atmospheric carbon dioxide, which is a key process in the global climate. The system produces realistic results, and we use it to investigate the roles of tides and sea ice in the northwest Atlantic Ocean.
We developed a modelling system of the northwest Atlantic Ocean that simulates the currents,...