Articles | Volume 17, issue 17
https://doi.org/10.5194/gmd-17-6725-2024
https://doi.org/10.5194/gmd-17-6725-2024
Methods for assessment of models
 | 
12 Sep 2024
Methods for assessment of models |  | 12 Sep 2024

Impacts of land-use change on biospheric carbon: an oriented benchmark using the ORCHIDEE land surface model

Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald

Related authors

Nested leave-two-out cross-validation for the optimal crop yield model selection
Thi Lan Anh Dinh and Filipe Aires
Geosci. Model Dev., 15, 3519–3535, https://doi.org/10.5194/gmd-15-3519-2022,https://doi.org/10.5194/gmd-15-3519-2022, 2022
Short summary

Related subject area

Biogeosciences
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary

Cited articles

Anav, A., D'Andrea, F., Viovy, N., and Vuichard, N.: A validation of heat and carbon fluxes from high-resolution land surface and regional models, J. Geophys. Res.-Biogeo., 115, G04016, https://doi.org/10.1029/2009JG001178, 2010. a
Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C., Herrmann, V., Tepley, A. J., Bond-Lamberty, B., and LeBauer, D. S.: ForC: a global database of forest carbon stocks and fluxes, Ecology, 99, 1507, https://doi.org/10.1002/ecy.2229, 2018. a
Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, Glob. Change Biol., 16, 3327–3348, https://doi.org/10.1111/j.1365-2486.2010.02202.x, 2010. a
Bakker, M. M., Govers, G., Kosmas, C., Vanacker, V., van Oost, K., and Rounsevell, M.: Soil erosion as a driver of land-use change, Agr. Ecosyst. Environ., 105, 467–481, https://doi.org/10.1016/j.agee.2004.07.009, 2005. a
Ballabio, C., Lugato, E., Fernández-Ugalde, O., Orgiazzi, A., Jones, A., Borrelli, P., Montanarella, L., and Panagos, P.: Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression, Geoderma, 355, 113912, https://doi.org/10.1016/j.geoderma.2019.113912, 2019. a
Download
Short summary
The study assesses the performance of the dynamic global vegetation model (DGVM) ORCHIDEE in capturing the impact of land-use change on carbon stocks across Europe. Comparisons with observations reveal that the model accurately represents carbon fluxes and stocks. Despite the underestimations in certain land-use conversions, the model describes general trends in soil carbon response to land-use change, aligning with the site observations.
Share