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Abstract. Land-use change (LUC) impacts biospheric car-
bon, encompassing biomass carbon and soil organic car-
bon (SOC). Despite the use of dynamic global vegetation
models (DGVMs) in estimating the anthropogenic pertur-
bation of biospheric carbon stocks, critical evaluations of
model performance concerning LUC impacts are scarce.
Here, we present a systematic evaluation of the performance
of the DGVM Organising Carbon and Hydrology in Dy-
namic Ecosystems (ORCHIDEE) in reproducing observed
LUC impacts on biospheric carbon stocks over Europe. First,
we compare model predictions with observation-based grid-
ded estimates of net and gross primary productivity (NPP
and GPP), biomass growth patterns, and SOC stocks. Sec-
ond, we evaluate the predicted response of soil carbon stocks
to LUC based on data from forest inventories, paired plots,
chronosequences, and repeated sampling designs. Third, we
use interpretable machine learning to identify factors con-
tributing to discrepancies between simulations and observa-
tions, including drivers and processes not resolved in OR-
CHIDEE (e.g. erosion, soil fertility). Results indicate agree-
ment between the model and observed spatial patterns and
temporal trends, such as the increase in biomass with age,
when simulating biosphere carbon stocks. The direction of
the SOC responses to LUC generally aligns between simu-
lated and observed data. However, the model underestimates
carbon gains for cropland-to-grassland conversions and car-
bon losses for grassland-to-cropland and forest-to-cropland
conversions. These discrepancies are attributed to bias aris-
ing from soil erosion rate, which is not fully captured in OR-
CHIDEE. Our study provides an oriented benchmark for as-

sessing the DGVMs against observations and explores their
potential in studying the impact of LUCs on SOC stocks.

1 Introduction

The terrestrial biosphere, with its organic carbon stocks in
biomass and soils, currently acts as a sink for anthropogenic
CO2 emissions (Lal, 2008; Canadell and Schulze, 2014;
IPCC, 2023; Friedlingstein et al., 2023). It has long been
known that land use and land-use changes (LUCs) signifi-
cantly alter the quantity of carbon stored in both biomass and
soil (Guo and Gifford, 2002; Laganière et al., 2010; Deng
et al., 2014; Le Quéré et al., 2015; Sanderman et al., 2017).
For example, afforestation and reforestation activities can in-
crease biomass carbon stocks and, consequently, expand soil
and litter carbon reserves. LUC-induced changes in soil or-
ganic carbon (SOC) stocks result from changes in the qual-
ity and quantity of litter inputs or decomposition processes
driven by shifts in soil moisture and temperature regimes. As
such, investigating the implications of LUC for biospheric
carbon pools and fluxes becomes indispensable in shaping
effective climate change mitigation strategies and fostering
sustainable land management practices (Watson et al., 2007;
Arora and Boer, 2010; IPCC, 2022). A comprehensive under-
standing of these dynamics is essential for harnessing the po-
tential of carbon sequestration in climate change mitigation
efforts and achieving global sustainability goals (Lal, 2004;
Canadell and Schulze, 2014).

Dynamic global vegetation models (DGVMs) serve as in-
dispensable tools for estimating regional and global changes
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in biospheric carbon stocks in response to climate change
and LUC (Nyawira et al., 2016). However, accurate evalua-
tion of DGVMs against observational data is crucial to assess
their reliability in representing biomass and soil carbon dy-
namics. In addition, to the best of our knowledge, very few
studies have comprehensively compared observed data and
model simulations concerning tree biomass versus age across
large spatial scales. Here, we present a benchmark procedure
to comprehensively evaluate a DGVM’s performance in re-
producing LUC impacts on biomass carbon and SOC stocks
using diverse observational data sources. The approach is
applied to assess the performance of the Organising Car-
bon and Hydrology in Dynamic Ecosystems (ORCHIDEE)
model (Krinner et al., 2005).

In the recent past, a wide range of meta-analyses has been
published, focusing on SOC changes following LUC (Guo
and Gifford, 2002; Laganière et al., 2010; Poeplau et al.,
2011; Poeplau and Don, 2015; Li et al., 2018; Fohrafell-
ner et al., 2023). One of the key advantages of these meta-
analyses is their utilisation of various quality checks to com-
bine and aggregate local-scale measurements. Through this
approach, the meta-analyses offer valuable insights into the
representative ranges and averages of magnitudes and speed
of changes in SOC stocks following LUC (Poeplau et al.,
2011; Li et al., 2018). As a result, meta-analyses can be used
to validate DGVMs’ ability to reproduce SOC stock dynam-
ics following LUC. Nevertheless, very few DGVMs have
been evaluated against such meta-analyses (Nyawira et al.,
2016), while for most DGVMs, such an evaluation is yet to
be performed.

Our goal is to create a universal benchmark that can be
used by DGVMs in general, making it easier to evaluate
how well these models simulate changes in biomass car-
bon and SOC stocks after LUC. We build this LUC–carbon
benchmarking framework at a continental scale in Europe.
To achieve this, we use a combination of diverse observa-
tional data sources and employ the ORCHIDEE model. This
approach provides insights into and a more profound com-
prehension of the model processes as we compare them with
the observations. The first step involves verifying whether
the model reproduces carbon fluxes and stocks accurately.
Next, we assess the simulated impact of LUC on SOC stock
changes by comparing it with observational data from meta-
analyses. Five LUC transitions will be considered: cropland
to grassland (C to G), grassland to cropland (G to C), crop-
land to forest (C to F), grassland to forest (G to F), and for-
est to cropland (F to C). Then, we explore potential factors
that may cause model bias when simulating changes in SOC
stock for each LUC scenario. In the following, we (1) in-
troduce materials, including a brief description of the OR-
CHIDEE model and observational databases used; (2) de-
scribe the model set-ups and comparison process used in
this study; (3) assess the model’s performance in reproduc-
ing carbon stocks, stock changes, and the major related car-
bon fluxes; (4) compare simulations against meta-analyses of

observations of soil carbon dynamics following LUC and in-
vestigate potential factors that contribute to model bias; and
(5) discuss the comparisons, sources of discrepancies, and
challenges in model–data comparison.

2 Materials and methods

2.1 Organising Carbon and Hydrology in Dynamic
Ecosystems model

ORCHIDEE version 2.2 is a state-of-the-art DGVM de-
signed to simulate carbon, water, and energy fluxes from lo-
cal sites to the global level (Krinner et al., 2005). It calcu-
lates the energy and hydrology budget of the terrestrial bio-
sphere at half-hourly intervals, distinguishing 15 plant func-
tional types (PFTs; shown in Table 1) (Ducoudré et al., 1993;
de Rosnay and Polcher, 1998). In addition, it simulates vege-
tation phenology and carbon dynamics, including photosyn-
thesis, maintenance and growth respiration, carbon allocation
in vegetation biomass, production and decomposition of lit-
ter, and soil carbon dynamics, at daily time steps (Krinner
et al., 2005). The basic scheme of biospheric carbon cycling
representation in ORCHIDEE is described in Appendix A.

ORCHIDEE is forced with meteorological data, wood har-
vest maps, soil texture, and land cover maps to prescribe the
areal proportion of each PFT in each model grid cell for a
given point in time. When land cover changes happen, PFT-
level carbon stocks are redistributed from the shrinking PFT
to the expanding one.

All simulations described in this study share the same
forcing data. In detail, we employed the Climatic Research
Unit and Japanese Reanalysis (CRU JRA) v2.3 dataset for
meteorological forcings with a spatial resolution of 0.5°.
This dataset is accessible for the period spanning 1901 to
2021 and is available at https://catalogue.ceda.ac.uk/uuid/
38715b12b22043118a208acd61771917 (last access: 15 May
2023). The CRU JRA v2.3 data comprise 6-hourly records
of various variables, including temperature at 2 m above
ground, air pressure, specific humidity, wind speed, precip-
itation (rain and snow), and downward longwave and short-
wave radiation. The land cover map is from the European
Space Agency (ESA) LUH2v2 data (Lurton et al., 2020),
i.e. a combination of the ESA Climate Change Initiative
land cover map (https://www.esa-landcover-cci.org/, last ac-
cess: 15 May 2023) and the historical land-use harmonisa-
tion database (LUH2v2; Hurtt et al., 2020). These data pro-
vide areal fractions for each of the 15 PFTs within individual
cells of the modelling grid. The land cover map is updated
annually, and LUC is represented as an abrupt transition of
land cover at the beginning of each year. More subtle LUC
changes, like changes in management intensity, are not con-
sidered due to a lack of historical data. Over standard his-
torical gridded simulations, LUC change is treated as a con-
tinuous process, slightly increasing or decreasing the areal
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proportion of one or more PFTs at the detriment of others.
The litter and SOC pools inherited from a disappearing PFT
to a target PFT are merged with the existing litter and SOC
pools of the target PFT, which already occupy a fraction of
the grid cell. This dilution of a small amount of newly deliv-
ered litter and SOC brought from LUC into a large amount
of SOC already existing in the target PFT area conserves
mass but makes it impractical to compare SOC and litter
change with observations because observations come from
sites where 100 % of a PFT is converted to another.

Therefore, we built idealised LUC scenarios in which we
assume an abrupt transition referring to a 100 % conversion
from one PFT to another in a grid, meaning there is no di-
lution of old soil carbon signals into the new PFT area. This
transition is based on homogeneously prescribed land cover
consisting of one single PFT, not on changing land cover
maps. This abrupt change run is necessary to make simu-
lations comparable to observations at the site level, which
consider local change from one PFT to another rather than
a change in PFT mix from the landscape perspective usually
taken by a DGVM such as ORCHIDEE. The wood harvest
map is sourced from the LUH2v2 database. It provides the
wood harvest data as annual areal flux rates of carbon in the
extracted biomass (gC m−2 yr−1). This means that these data
can be applied to different PFT maps without causing ex-
treme flux rates due to inconsistent representation of forest
area. The soil texture classification relies on the study of Post
and Zobler (2000). This scheme distinguishes seven texture
classes, which for ORCHIDEE are further aggregated into
three texture classes (i.e. coarse, medium, fine), each associ-
ated with specific soil physical properties. This classification
is essential for simulating the soil water budget, and through
that, it also significantly affects vegetation dynamics. In ad-
dition, it impacts soil carbon dynamics by directly influenc-
ing the turnover rates of SOC through clay content and its
presumed effect of enhancing the physical protection of the
active SOC pool. In ORCHIDEE, the module of soil has an
assumed globally uniform depth of 2 m. Note however that
soil carbon is not depth discretised, and average values of
soil temperature, moisture, and clay content are used.

2.2 Observation-based data

To evaluate the model’s performance concerning the dynam-
ics of carbon stocks, we compare simulation results against
observations of net primary production (NPP) and gross pri-
mary production (GPP), which are the primary factors con-
trolling land carbon stocks; paired observations of above-
ground biomass and plant age (Somogyi et al., 2008; Schep-
aschenko et al., 2017); observation-based maps of SOC; and
SOC stock changes due to LUC. For the investigation of po-
tential factors (detailed in Sect. 2.2.4) causing model bias in
estimating changes in SOC stocks due to LUC, we used me-
teorological data from the CRU JRA dataset and soil-related

data from Land Use and Cover Area frame Survey (LUCAS)
soil surveys.

2.2.1 Primary production

Annual NPP data were derived from a comprehensive for-
est ecosystem database from Luyssaert et al. (2007), includ-
ing a rigorous selection of single or multiple direct mea-
surements and modelled fluxes. The model-generated fluxes
in this database closely match the observed data because
they were generated using a mechanistic process model with
daily or more detailed climatological data, calibrated with
site-specific parameters, and validated against site-specific
measurements. NPP is reported at different levels, ranging
from a single plant component (e.g. foliage or stem NPPs)
to the complete plant. Here, we selected the most superficial
aggregation level of the total NPP (i.e. the sum of above-
ground (foliage+wood) and below-ground (coarse+fine
roots) NPP components).

The observed annual GPP data were obtained from four
datasets. The first dataset was, similar to the above NPP
dataset, extracted from the global forest database from Luys-
saert et al. (2007). Second, GPP data were also gathered
from the FLUXNET 2015 dataset, including data from mul-
tiple regional flux networks (Pastorello et al., 2020). This
dataset collects eddy covariance measurements of carbon,
water, and energy fluxes between the biosphere and atmo-
sphere. It can be downloaded from https://fluxnet.org/data/
fluxnet2015-dataset/ (Pastorello et al., 2020). Over our study
area, these GPP data are available mainly from 1996 to 2015.
Thirdly, additional GPP data from European sites in 2020
were collected from the Integrated Carbon Observation Sys-
tem (ICOS), a European-wide greenhouse gas research in-
frastructure. Finally, GPP data were also gathered from Cam-
pioli et al. (2015). Like the comprehensive database of Luys-
saert et al. (2007), Campioli et al. (2015) compiled the data
from individual studies using harvest, biometric, eddy co-
variance, or process-based model estimates of primary pro-
duction. In addition, this dataset includes data not only from
forest sites but also from grassland and cropland sites.

More detailed information on the selected NPP and GPP
sites from different sources can be found in the Supplement
(Tables S1 to S4).

2.2.2 Biomass

The biomass dataset considered here includes in situ es-
timates for the different plant compartments (i.e. foliage,
stem, and branch) and spans all of the European biomes
(Fig. S1 in the Supplement). The dataset consists of a col-
lection and harmonisation of available open forest inventory
databases (e.g. Somogyi et al., 2008; Schepaschenko et al.,
2017; Anderson-Teixeira et al., 2018) already used to quan-
tify ecological and environmental controls on the spatial vari-
ability of stand age (Besnard et al., 2021). Despite the global
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Table 1. ORCHIDEE plant functional types (PFTs) and PFT-specific parameters. Values in parentheses indicate the modifications in the
simulation set-ups (detailed in Sect. 2.3). (Vcmax represents the maximal rate of carboxylation (≈ the potential photosynthetic capacity)
(µmol m−2 s−1); Fgrowthresp is the fraction of gross primary production (GPP) which is lost as growth respiration.)

No. PFT Name Vcmax Fgrowthresp

1 BS Bare soil – –
2 TrBE Tropical broadleaf evergreen forest 45 0.35
3 TrBR Tropical broadleaf raingreen forest 45 0.35
4 TeNE Temperate needleleaf evergreen forest 35 (44.45) 0.28 (0.1)
5 TeBE Temperate broadleaf evergreen forest 40 0.28
6 TeBS Temperate broadleaf summergreen forest 50 0.28
7 BoNE Boreal needleleaf evergreen forest 45 0.35
8 BoBS Boreal broadleaf summergreen forest 35 0.35
9 BoNS Boreal needleleaf summergreen forest 35 0.35
10 TeGC3 Temperate natural C3 grass 50 0.28
11 GC4 Natural C4 grass 50 0.28
12 C3C C3 crop 60 0.28
13 C4C C4 crop 60 0.28
14 TrGC3 Tropical natural C3 grass 50 0.25
15 BoGC3 Boreal natural C3 grass 40 0.35

nature of the dataset, given the current European scope of
this analysis, here we focused on locations in Europe where
the total above-ground biomass (AGB) could be estimated
based on in situ measurements. The final dataset comprises
603 sites, including six PFTs (TeNE, TeBS, BoNE, BoBS,
and a few sites of TeBE and BoNS). The average stand age
is 58 years (with a standard deviation of 43), and the mean
AGB is 6.4 kgC m−2 (with a standard deviation of 4.5).

2.2.3 Soil organic carbon

Data on SOC stocks were obtained from the Land Use and
Cover Area frame Survey (LUCAS) collected during 2018
(Orgiazzi et al., 2018). This dataset offers comprehensive in-
formation on various chemical and physical soil properties
throughout the European region. The LUCAS sampling was
conducted at different depths, primarily focusing on the fine-
soil component of the top 20 cm of the soil column while
excluding above-ground vegetation residues, grass, and lit-
ter. Site selection for our study was based on the availabil-
ity of observed organic carbon content, bulk density, and the
fraction of coarse fragments within the top 20 cm layer. In
addition, the land-use information was consistently available
for all samples.

We considered the latest surveys from LUCAS 2018
topsoil data (Fernandez-Ugalde et al., 2022), which
can be downloaded from the European Soil Data
Centre’s website https://esdac.jrc.ec.europa.eu/content/
lucas-2018-topsoil-data. However, it is important to note
that, at the time of writing this paper, the fraction of
coarse fragments was not included in the LUCAS 2018
topsoil data and had to be obtained from a previous
survey, LUCAS 2015 (Jones et al., 2020). We down-

loaded and extracted the coarse-fragment data from https:
//esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data (last
access: 3 August 2023) and then combined them with
the LUCAS 2018 topsoil data. Furthermore, our analysis
focused only on samples associated with forest, grassland,
and cropland land uses, excluding other land-use types not
represented by the PFTs of ORCHIDEE, such as shrubland
or wetlands. In total, we identified and included 5150
sampling sites in our study.

The total SOC (in kg m−2) stocks were then calculated
based on the following equation (Batjes, 1996):

SOC=
OC×BD×D× (1−CF)

100
, (1)

in which OC is organic carbon content (gC kg−1), BD is bulk
density (gC cm−3), D is soil depth (cm), and CF is the volu-
metric fraction of coarse fragments (> 2 mm).

We compiled data from 102 study sites sourced from 34
peer-reviewed publications (detailed in Table S5 in the Sup-
plement) investigating the impact of LUC on soil carbon
stocks in the European region. Our selection process in-
cluded several criteria to identify relevant SOC data from
these studies. Firstly, we focused on five specific LUC tran-
sitions: cropland to grassland (C to G), grassland to cropland
(G to C), cropland to forest (C to F), grassland to forest (G
to F), and forest to cropland (F to C). Secondly, we included
only studies with paired plots, chronosequences, or repeated
sampling designs. Paired plots involve assessing two adja-
cent sites – one that has not experienced LUC and has the
original land cover and the other with a new land cover after
LUC. Similarly, chronosequences utilise adjacent plots with
different ages of new vegetation since conversion to another
land-use type. Repeated or mono-site sampling involves the
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periodic collection of soil samples at the same location/site.
A “space-for-time” approach, assuming that the SOC stocks
of prior land use are in a steady state, is used in paired
plots and chronosequences. Thirdly, we required information
about whether the forest floor (i.e. the above-ground litter or-
ganic layer) was included in the sampling process for forest
sites. Finally, additional relevant properties such as sampling
depth, land-use history, age of current land use, and the unit
of soil carbon stocks must be provided. The collected data
were finally categorised into seven conversion types, as de-
tailed in Table 2.

2.2.4 Additional data for model bias attribution

We considered two important meteorological variables, the
air temperature at 2 m a.g.l. and precipitation, which are de-
rived from the Climatic Research Unit and Japanese Reanal-
ysis (CRU JRA) v2.3 dataset. This dataset is also used for the
meteorological forcings in ORCHIDEE and is detailed in the
next section (Sect. 2.3).

Soil-related data are obtained from Ballabio et al. (2019),
who provided maps of soil chemical properties at 500 m
spatial resolution across Europe using soil point data
from LUCAS 2009/2012 soil surveys (Toth et al., 2013).
These datasets align with the observed SOC stocks (see
Sect. 2.2.3) and are considered among the most reliable data
sources for Europe (d’Andrimont et al., 2020). Our focus
was on three key properties: the soil carbon-to-nitrogen
(CN) ratio, nitrogen (N), and phosphorus (P). The data
were retrieved from https://esdac.jrc.ec.europa.eu/content/
chemical-properties-european-scale-based-lucas-topsoil-data
(last access: 3 August 2023). Additionally, our study con-
sidered the annual soil erosion rate in 2009 (Fendrich et al.,
2022; available at https://esdac.jrc.ec.europa.eu/themes/
historical-reconstruction-erosion, last access: 3 August
2023), which we considered to be representative of the last
few decades. The maps of all soil-related data are aggregated
to 0.5° grids to match ORCHIDEE’s resolution.

2.3 ORCHIDEE simulations

We conducted simulations with the ORCHIDEE model
across Europe (33 to 70° N and 10° W to 40° E) for a straight-
forward comparison to observational data (Table 3). These
simulations can be categorised into two groups: (a) realis-
tic simulations for the historic period aimed at evaluating the
ORCHIDEE model’s ability to reproduce observed primary
production (NPP, GPP), biomass carbon stocks, and SOC
stocks and (b) idealised LUC simulations aimed at evaluating
the biomass carbon stock changes and the effects of LUC on
SOC stocks in terms of total magnitude and timing.

2.3.1 Historical simulations

Firstly, the realistic simulation, referred to as RLS, is based
on the default configuration and parameters inspired by the

TRENDY protocol (Sitch et al., 2015), including two steps.
In the first step of our simulations (FG1), we spun up the
model to reach a steady state representative of the year 1950.
This involved conducting a simulation over 340 years, with a
30-year loop of meteorological forcing data (1921–1950), as
well as fixed values for atmospheric CO2 levels, PFT maps,
and wood harvest, all corresponding to the year 1950. The
PFT map employed here consists of 15 PFTs (Boucher et al.,
2020), as specified in Table 1. In the second step, we ran
a transient simulation (FG2) from 1950 to 2020 using his-
torical meteorology, CO2 concentrations, and wood harvest
data. The FG2 was restarted from the last year of output of
FG1. These RLS simulation outputs are evaluated against the
observation-driven NPP, GPP, and SOC data, as detailed in
Sect. 2.4.

Secondly, we performed a BM simulation (where BM
refers to biomass assessment), which uses the same configu-
ration as RLS but pre-describing the land cover with constant
fractions of dominant PFTs in the EU (see Table 1) and no
wood harvest, which ensures PFT carbon stocks for the ob-
servation period are not affected by LUC for the comparison
with the observation of natural forest. In addition, a forest
clear-cut simulation is performed before running the tran-
sient simulation, and during FG2 the biomass regrows from
approximately zero. Thus, the simulated forest age was de-
fined as the time since the beginning of the FG2 simulation.

Furthermore, in all simulations, we calibrated, by trial and
error, two parameters, namely Vcmax and Fgrowthresp, specifi-
cally for the temperate needleleaf evergreen forest (TeNE) to
reduce biases in NPP, GPP, and AGB (see more in Sect. 3.1
and 3.2). Our initial objective was to approximate the correct
values of NPP and GPP, ultimately leading to an improved
representation of AGB. In detail, Vcmax is adjusted based on
the observed-to-simulated GPP ratio, and Fgrowthresp is grad-
ually reduced to increase NPP and GPP values to be closer to
the observations. The final adjusted values for these parame-
ters are indicated in parentheses in Table 1.

2.3.2 Idealised LUC simulations

We conducted idealised LUC simulations, assuming the en-
tire study area was covered by a single PFT. To ensure
accurate comparisons between simulated results and meta-
analyses from site-level carbon pool changes caused by LUC,
regions where this PFT does not occur according to the PFT
maps were excluded from the analysis. Then, we transformed
this initial PFT into other PFTs, such as temperate broadleaf
summergreen forest to temperate natural C3 grassland and C3
cropland (TeBS to TeGC3 or C3C, aberrations as presented
in Table 1). These transformations exemplify the conversion
of forest areas into grasslands or croplands (referred to as
F-to-GC conversion). Note that ORCHIDEE simulates SOC
stocks separately for each PFT, allowing us to simultaneously
represent LUC from one PFT to two different PFTs. This is
an improvement compared to other DGVMs that typically as-
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Table 2. Number of study sites and samples, mean sampling depths with standard deviation, and mean current land-use age for the local-scale
observations in the meta-analyses.

LUC ID Nsites Nsamples Depth (cm) Age (years)

Cropland to grassland C to G 33 49 33.71± 22.25 28.55
Grassland to cropland G to C 17 49 42.12± 14.58 49.86
Grassland to forest (mineral soil or without forest floor) G to FwoFF 34 49 34.9± 14.59 40.24
Grassland to forest (with forest floor) G to FwFF 25 38 30.53± 2.26 38.71
Cropland to forest (mineral soil) C to FwoFF 15 65 34.25± 17.17 37.43
Cropland to forest (with forest floor) C to FwFF 8 63 27.86± 3.33 30.25
Forest to cropland (mineral soil) F to CwoFF 7 33 33.33± 14.77 17.45

sign one value of SOC to all PFTs (e.g. the LPJ model, Sitch
et al., 2003).

The LUC simulations are somewhat similar to the RLS
simulation, including two main processes, i.e. the spin-up
simulation FG1 and the transient historical simulation FG2.
In detail, we first ran the 340-year spin-up FG1F looping
over 10 years of meteorological forcing (1901–1910) and
fixed atmospheric CO2 concentrations and wood harvest as
in 1900 in the F-to-GC simulation. Here, we fixed land cover
to 100 % TeBS. At this stage, the biomass and SOC stocks
are in equilibrium. In the second step, we ran a historical
simulation FG2F from 1901 to 1950 for this same PFT (with
historical meteorology, CO2 concentrations, and wood har-
vest data), restarting from the last year of the spin-up simu-
lation FG1F. To perform the LUCs (in this case, from F to
G and F to C), we changed the prescribed PFTs to C3 grass-
land and cropland (i.e. TeGC3 and C3C) and continued run-
ning the historical simulation FG2GCa from 1951 to 2020,
restarting from FG2F. In addition, to study the LUC impact
for a longer period, we extended the model run until 2100,
looping over the last 20 years of meteorological forcing data
(2001–2020). For this extended simulation, we kept the at-
mospheric CO2 fixed to the value in 2020. Although the pro-
jected climate is available (e.g. data from the Coupled Model
Intercomparison Project Phase 6, Eyring et al., 2016), his-
torical data were used here to be compatible with the meta-
analyses. Other LUC simulations, i.e. G to CF and C to FG,
were set up similarly.

We acknowledge that defining 1950 as the same year of
LUC in our simulations increases the uncertainties when
comparing simulations to observations which relate to dif-
ferent years of LUC. Note that only a fraction of the studies
from which we source the observed LUC impacts on SOC
stocks specifies the year of LUC. To explore this source of
uncertainty, we thus conducted tailored simulations match-
ing the individual years of LUC reported in these studies and
compared the results to simulations using 1950 as the year
of LUC. Detailed information about these additional simu-
lations is provided and discussed in Sect. S1 of the Supple-
ment.

2.4 Model–data comparisons

Our ORCHIDEE simulations generate outputs encompass-
ing all grid cells at a resolution of 0.5° (≈ 50 km) over Eu-
rope. Conversely, observational data are typically collected
at specific locations. To facilitate the comparison between
the observed and simulated values, each observational site
was matched with the closest corresponding ORCHIDEE
cell. This approach ensures a comprehensive evaluation of
the model’s performance in relation to the observed data.

2.4.1 Historical simulations

To compare simulated NPP and GPP against observations,
we used NPP and GPP outputs from the FG2 RLS simu-
lation for the respective observed years and corresponding
PFTs. In cases where the PFT was absent or unclear in the
observations (e.g. mixed forest), we assigned the dominant
PFT in that particular site based on the ESA LUH2v2 land
cover map. We then grouped the observed and simulated val-
ues by PFT and employed boxplots for comparison. The box-
plot representation offers valuable insights into the statisti-
cal distribution of values, including the median, the 25th and
75th percentiles, the range of extreme data points, and any
outliers.

Similarly, we used boxplot representation to evaluate AGB
simulations categorised by PFT and age groups. The age
groups are divided as follows: group 1 – 0 to 19 years, group
2 – 20 to 39 years, group 3 – 40 to 59 years, group 4 – 60 to
79 years, group 5 – 80 to 99 years, and group 6 –> 99 years.
ORCHIDEE simulates biomass for different plant compart-
ments (e.g. leaves, wood, roots). To maintain consistency
with the observations, simulated AGB was derived from the
BM simulation by summing the biomass of leaves, above-
ground sapwood and heartwood, and fruits.

We used three diagnostic measures to assess OR-
CHIDEE’s performance in simulating soil carbon stocks (i.e.
the FG2 RLS simulation’s outputs). These measures include
Pearson’s correlation (COR; unitless), root mean square er-
ror (RMSE; in kg m−2), and relative RMSE (rRMSE; in %)
between the observed and simulated SOC. The above-ground
litter was excluded from the simulated SOC for comparison
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Table 3. Main simulations.

Main purposes Name ID Period Description

Historical
simulations

To assess carbon-related and
carbon stock variables (i.e.
NPP, GPP, and SOC)

RLS FG1 Steady state 1950 340-year spin-up with meteorology forcing
looping over 1901–1950; fixed land cover map
with 15 PFTs, CO2 concentrations, and wood
harvest as in 1950

Without restart

FG2 1950–2020 Historical simulation with transient climate,
CO2, and land cover map

Restart from FG1

To evaluate biomass versus age BM FG1b, clear-cut, FG2b Same as RLS but with a pre-described land cover map
data with a fixed equal fraction of dominant

PFTs in Europe (i.e. needleleaf (evergreen) and broadleaf
(summergreen) forests, C3 crop, and C3 grasses), no harvest

Idealised
LUC
simulations

To investigate impacts of LUC
on changes in SOC stocks

F to GC TeBS to TeGC3 or C3C

FG1F Steady state 1900 340-year spin-up with forcing looping over
1901–1910, pre-described land cover map of
100 % TeBS, and fixed CO2 concentrations and
wood harvest as in 1900

Without restart

FG2F 1901–1950 Historical simulation with transient climate,
CO2, and wood harvest, pre-described land
cover map with 100 % TeBS

Restart from FG1F

FG2GCa 1951–2020 Historical simulation using annual parameters,
pre-described land cover map with an equal
fraction of grassland (TeGC3) and cropland
(C3C)

Restart from FG2F

FG2GCb 2021–2100 Same as FG2GCa but climate forcing looping
over 2001–2020, CO2 concentrations and wood
harvest as in 2020

Restart from FG2GCa

TeNE to TeGC3 and C3C

Same as TeBS to TeGC3 or C3C but changing TeBS to TeNE

G to CF Same as F to GC but changing from TeGC3 to C3C, TeBS, and TeNE

C to FG Same as F to GC but changing from C3C to TeBS, TeNE, and TeGC3

to the LUCAS data. The calculation of ORCHIDEE’s outputs
is detailed in Table 4.

2.4.2 Idealised LUC simulations

Soil profile data in meta-analyses are reported at various
depths (as detailed in Table 2). To ensure uniform compar-
isons, we first standardised all soil carbon data, both ob-
served and simulated, to represent SOC stocks in the top
30 cm, utilising the following depth function (Jobbágy and
Jackson, 2000; Deng et al., 2016):

X30 =
1−β30

1−βd0 ×Xd0, (2)

where X30 represents the soil carbon stocks in the top 30 cm,
d0 is the original soil depth available in observations or sim-
ulations (in cm), Xd0 is the original soil carbon stocks, and
β characterises relative rates of decrease with depth (β =
0.9786, unitless). For instance, a simulated sample XORC at
2 m depth (d0= 200) is converted into the topsoil sample us-
ing the equation X30 =

1−0.978630

1−0.9786200 ×XORC = 0.48×XORC.
We then used the absolute SOC stock change (1SOC;

in kg m−2) as a variable for the comparison of soil carbon

changes:

1SOC= SOCLU2−SOCLU1, (3)

where LU1 corresponds to the land use before conversion,
and LU2 is the land use after conversion. Similar to the ob-
servations, the simulated SOC for the prior land use is as-
sumed to be in a steady state. For example, in the conversion
from F to GC, the simulated SOCLU1 is set to be equal to
the SOC value in 1950 from the FG2F simulation (Table 3).
In contrast, the observed SOC measurements after land cover
conversion are taken at various ages. A fitted carbon response
function (CRF), detailed below, is derived for each conver-
sion, describing the1SOC as a function of time. For the sim-
ulations, a distinct response function was derived from the
simulation, corresponding to each meta-analyses site. Sub-
sequently, the average simulated soil carbon response was
computed across all these response functions. This aggregate
response, referred to as “simulated CRF”, was then compared
with the fitted or observed CRF obtained from the meta-
analyses.

The observed CRF was constructed using diverse regres-
sion models, including linear regression, second- and third-
order polynomial regressions, and single-term and two-term
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Table 4. Model outputs corresponding to the simulations in Table 3.

Name ORCHIDEE outputs

Historical simulations RLS NPP, GPP, SOC=SCtotal−Lstr_ab−
Lmet_ab (or SOC=Cactive+Cslow+
Cpassive+Lstr_be+Lmet_be)

BM AGB = Mleaf+Msap_ab+Mheart_ab+
Mfruit

Idealised LUC simulations F to GC SOCwoFF=SOC

G to CF SOCwFF=SCtotal

C to FG

SCtotal: total soil and litter carbon
Cactive (Cslow or Cpassive): active (slow or passive) soil carbon in ground
Lstr_ab (Lstr_be): above (below)-ground structural litter
Lmet_ab (Lmet_be): above (below)-ground metabolic litter
Mleaf: leaf mass
Msap_ab: above-ground sapwood mass
Mheart_ab: above-ground heartwood mass
Mfruit: fruit mass
SOCwFF: SOC with forest floor
SOCwoFF: SOC without forest floor

exponential models. Due to the limited size of the observed
samples (as detailed in Table 2), a leave-one-out cross-
validation (LOOCV) method (Stone, 1974; Dinh and Aires,
2022) was employed for the model selection process. This
iterative approach facilitates the validation of each model’s
performance by training it on all data points but one and
evaluating its prediction accuracy on the excluded data point.
By repeating this process for all data points and assessing
the overall performance, we can identify the best-performing
model that generalises well to the entire dataset and the new
samples. Finally, the models providing the most adequate
description of the temporal dynamic of relative SOC stock
changes were the linear function (Eq. 4) and the single-term
exponential function (Eq. 5):

1SOC= at + b, (4)

1SOC= a× eb∗t , (5)

where t is the time after LUC (years), and a and b are re-
gression coefficients. A detailed fitted CRF for each LUC in
meta-analyses is presented in Table S6 in the Supplement.
Furthermore, to better understand the accuracy and uncer-
tainty of the fitted CRFs, we established approximate 95 %
confidence intervals using simultaneous prediction bounds
for the fitted functions. These confidence intervals visually
represent the range of potential outcomes, providing valu-
able insights into the variability of the observed carbon stock
change rate.

2.4.3 Factors explaining model bias

We used random forest (RF) (Breiman, 2001; Liaw and
Wiener, 2002) to explore the factors contributing to bias in
estimating SOC stock changes following LUC. The bias is
calculated for each site observation taken from the meta-
analyses (Table 2). For this, we compared the observed SOC
stock changes per site with corresponding simulated val-
ues from the corresponding ORCHIDEE grid cells. Then we
analysed which predictor variables best explain the site-to-
site variations in model bias for each LUC scenario. Our
chosen explanatory variables encompassed both meteorolog-
ical variables (i.e. temperature at 2 m a.g.l. (T2m) and rain-
fall (Rain)) and key soil-related metrics (i.e. soil carbon-to-
nitrogen ratio (CN), nitrogen (N), phosphorus (P), and soil
erosion rate (ER)). Given the constraints of the available ob-
servations (Table 2), we also employed LOOCV here to as-
sess the performance of the RF regression model for each
LUC scenario. The model consists of 100 decision trees.
Each tree is constructed independently and operates on a
random subset of the data. During the LOOCV process, the
model iterates through each sample in the dataset, system-
atically excluding one for validation in each iteration. Sub-
sequently, the model is trained on the remaining samples,
and feature importance is cumulatively assessed throughout
each iteration. The performance of this LOOCV process is
shown in Table S7 in the Supplement. The LUC scenarios
with poor RF regression results are excluded. For the re-
maining cases, we then derived importance scores (Liaw and
Wiener, 2002) associated with individual explanatory vari-
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ables. These scores are then normalised or scaled from 0 to
1, with a value of 1 denoting the utmost relevance and 0 sig-
nifying the lowest relevance concerning the model bias.

3 The performance of the ORCHIDEE model

3.1 Net and gross primary productivity (NPP and
GPP)

Figure 1 compares the simulated NPP and GPP values with
site observations (Sect. 2.2.1). Both simulations and observa-
tions exhibit comparable ranges across various PFTs, notably
showcasing good performance in temperate forests and tem-
perate C3 grasslands, where the relative differences in the
medians are around 10 %. However, the ORCHIDEE sim-
ulation results often present a narrower range than the ob-
served site data. This difference can be attributed to the fact
that the ORCHIDEE PFTs are a rigid classification of vegeta-
tion, with each PFT representing the average characteristics
of various tree species. In contrast, differences between indi-
vidual species within the same PFT class can be substantial
(Poulter et al., 2011). On the contrary, observations refer to
individual species.

The calibration of Vcmax and Fgrowthresp parameters for
TeNE (see Table 1) resulted in considerable improvement, in
particular for NPP. The default parameterisation (Vcmax = 35
and Fgrowthresp = 0.28) resulted in the simulated NPP median
deviating by approximately 32 % from the observed value.
The adjusted parameters (Vcmax = 44.45 and Fgrowthresp =

0.1) reduced deviation to 5 %.

3.2 Above-ground biomass (AGB)

The boxplots in Fig. 2 present AGB versus age comparisons
between observations (in black) and simulations (in red) for
four PFTs (TeNE, TeBS, BoNE, and BoBS) and each age
group. Other types of forest PFTs were excluded due to the
limited number of observed samples. Simulations capture
the same trend as the observations: AGB increases quickly
in young stands (i.e. < 60 years old) and moderately satu-
rates at later ages (> 60 years old). Like the NPP and GPP
comparisons, the observed AGBs appear in more extensive
ranges and have more extremes than the simulated values for
all considered PFTs.

Again, the adjustment of Vcmax and Fgrowthresp parameters
for TeNE (see Table 1) improved the simulated AGB age
curves significantly, while in the original set-up, the simu-
lated values are much lower compared to the observed ones.
This improvement is visually represented in the boxplot of
the TeNE forest, in Fig. 2a: the grey boxes, representing
AGB values obtained from the default settings, indicate a me-
dian deviation of about 60 % from the observed values (black
boxes) across five age groups. Conversely, with our calibra-
tion, this deviation is reduced to less than 10 %, as indicated

by the red boxes, which now closely align with the observed
data represented by the black boxes.

Furthermore, Fig. 2 highlights a contrast in ORCHIDEE
performance; notably, boreal forests exhibit lower biomass
per age class than temperate ones, illustrated by BoNE versus
TeNE and BoBS versus TeBS forests. Interestingly, observed
biomass ranges for BoNE and BoBS forests closely resem-
ble those of TeNE and TeBS forests. Further comparisons are
detailed in Fig. 3, despite variations in site numbers between
observations and simulations for each age group. This com-
parative approach provides insights into and offers a broader
understanding of how the model’s parameterisation performs
in Europe. We found that the parameterisation of BoNE and
BoBS may need improvement, as they appear less well fitted
than TeNE and TeBS. This might raise questions about the
relevance and necessity of using BoNE and BoBS as distinct
PFTs when TeNE and TeBS demonstrate better alignment
with the observed data in the study region.

3.3 Soil organic carbon (SOC)

The SOC map showing 5150 LUCAS samples is presented
in Fig. 4a. We also generated a corresponding SOC map us-
ing the ORCHIDEE simulation weighted by the areal pro-
portions of each PFT. The difference between our simulated
SOC stocks from LUCAS data is presented in Fig. 4b. The
correlation between the observed and simulated SOCs is 0.4
(and RMSE= 2.03 kg m−2, rRMSE= 50.31 %), indicating
moderate agreement. However, it is essential to note that this
general ORCHIDEE simulation does not represent peatlands
or important factors such as land management, effects of soil
erosion and translocation of SOC from eroded sides to collu-
vial sediments, topographic wetness, land-use history before
1900, soil class, and geochemistry of soil-forming substrates,
etc. Therefore, achieving a correlation coefficient of 0.4 is al-
ready significant. Notably, ORCHIDEE underestimates SOC
in certain regions, particularly in northern Europe. This dis-
crepancy can be explained by the absence of peatlands in this
particular version of ORCHIDEE.

In the following, we classified 5150 SOC samples into
three vegetation groups (forest, grass, and crop) based on
the land-use information provided in the LUCAS dataset.
The assessment of observed and simulated SOC stocks is
illustrated through comparison scores (COR, RMSE, and
rRMSE) in Table S8 within the Supplement, along with
scatterplots and histograms in Fig. 5, showcasing variations
across different grid scales: 0.5°× 0.5°, 1°× 1°, 2°× 2°, and
3°× 3° cells. This stepwise aggregation aims to enhance our
understanding of how far spatial correlations between ob-
served and modelled SOC stocks are scale dependent. At
the 0.5°× 0.5° scale, the correlation between observed and
simulated SOC for forest sites (Fig. 5a1) is relatively low
(COR= 0.17, rRMSE= 59.15 %). However, the correlation
values are significantly better for grassland and cropland sites
(Fig. 5b1 and c1), reaching 0.53 and 0.42, respectively (with
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Figure 1. Maps of net and gross primary productivity (NPP and GPP) sites, along with boxplots comparing observations (Obs in black)
and ORCHIDEE (ORC in red) simulations. The grey boxes show outputs from ORCHIDEE’s default configuration (i.e. without calibrating
Vcmax and Fgrowthresp parameters) for comparison purposes. In each boxplot, the number in parentheses indicates the number of sites in each
plant functional type (PFT) group.

corresponding rRMSE values of 39.38 % and 35.98 %). In-
terestingly, the correlation scores improve for all vegetation
types as we increase the grid-scale size and, thus, the level
of spatial aggregation. For example, when examining the
3°× 3° scale, as illustrated in Fig. 5a2, b2, and c2, the corre-
lation coefficients increase to 0.45, 0.68, and 0.59 for forest,
grassland, and cropland sites, respectively. These improve-
ments in correlation are accompanied by decreasing rRMSE
values (by 10 % to 15 %), indicating a reduction in the dif-
ferences between observed and simulated SOC values. This
effect can be attributed to various factors, such as small-scale
variations (Garten et al., 2007) related to soil class, topogra-
phy, and management history, which are not accounted for
in ORCHIDEE but lose their importance at a higher level
of spatial aggregation. On the other hand, the coarse large-
scale spatial patterns are primarily influenced by climate dif-
ferences, which are better represented in a DGVM such as
ORCHIDEE.

4 SOC change following land-use change (LUC)

Figure 6 compares observed and simulated SOC changes for
different LUC transitions (see Table 2). During the C-to-G
conversion, there is an increase in SOC stocks. However,
the simulated results give a smaller increase than those ob-
served in meta-analyses. Specifically, after a 100-year con-
version period, the simulated SOC stocks increase on average

by a mere 0.73± 0.09 kg m−2, while the observed data show
a much higher increase of 3.85± 1.33 kg m−2. The G-to-C
conversion leads to a decrease in SOC stocks. The model
agrees with the observed change in direction but has a slower
rate. Notably, the observed data display a wide range of con-
fidence interval levels, and the simulated CRFs closely align
with the upper boundary of the confidence interval. This
highlights the difficulty of accurately capturing real-world
SOC dynamics due to significant variability in the observed
data.

Regarding G-to-F conversion, simulations using both
TeBS and TeNE show different trends compared to the ob-
served CRFs, as shown in the G-to-FwoFF and G-to-FwoFF
subplots in Fig. 6. However, they consistently fall within the
95 % confidence interval, regardless of whether the forest
floor is included in the analysis. In addition, the observed
data for G-to-F conversions display considerable variability
over time, which partly accounts for the difficulty in accu-
rately modelling the true impact of this conversion type.

The conversions of C to F and F to C show opposite trends,
as presented in the C-to-FwoFF, C-to-FwFF, and F-to-CwoFF
subplots in Fig. 6: C-to-F conversion leads to an increase in
SOC and vice versa. Again, the averaged simulated CRF re-
sults align with the observed direction but indicate changes
considerably slower than those reported in meta-analyses. In
these two conversions, simulations with the TeBS forest ap-
pear closer to the observations than those with the TeNE for-
est.
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Figure 2. Maps of above-ground biomass (AGB) sites for four plant functional types (PFTs), including temperate needleleaf and broadleaf,
as well as boreal needleleaf and broadleaf forests (TeNE, TeBS, BoNE, BoBS), along with boxplots comparing observations (Obs in black)
and ORCHIDEE (ORC in red) simulations. In the boxplot of the TeNE forest (a), the grey boxes present outputs from ORCHIDEE’s
default configuration (i.e. without calibrating Vcmax and Fgrowthresp parameters), for comparison purposes. In each boxplot, the number in
parentheses indicates the number of sites in each age group (group 1: 0–19 years, group 2: 20–39 years, group 3: 40–59 years, group 4:
60–79 years, group 5: 80–99 years, group 6: > 99 years). The colour scale in the maps indicates the ORCHIDEE vegetation fraction.

Figure 3. The same as the boxplots in Fig. 2 but for the comparison of the observed values for the BoNE forest with simulated values for the
TeNE forest (a), as well as observed values for the BoBS forest with simulated values for the TeBS forest (b).
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Figure 4. Maps showing the stocks after soil organic carbon (SOC in kg m−2) based on the LUCAS topsoil database (a) and the deviation
of simulated SOC stocks from these observation-based estimates (b).

Figure 6 suggests that the key model biases are the sys-
tematic underestimation of SOC gain during C-to-G transi-
tion and losses during G-to-C and F-to-CwoFF conversions.
Multiple factors could contribute to these observed underes-
timations. As depicted in Fig. 7, soil erosion rate plays a piv-
otal role in the discrepancies observed across all considered
LUC conversions among the six chosen factors. Conversely,
temperature appears relatively less influential overall, except
notably in the C-to-G conversion. Rainfall considerably in-
fluences the differences between observed and simulated ab-
solute SOC changes after the conversions from C to G, C to
FwoFF, and F to CwoFF. Soil phosphorus, on the other hand,
demonstrates significance in the conversions of G to FwoFF,
F to CwoFF (particularly for the TeNE forest), and C to G.
Furthermore, the six chosen factors demonstrate a relatively
consistent behaviour across the two forest types, as shown by
the magenta and green bars for TeBS and TeNE (see Fig. 7).

5 Discussion

5.1 Model performance for biosphere carbon stocks

The ORCHIDEE model shows a reasonable alignment with
observed NPP, GPP (Fig. 1), and AGB trends (Fig. 2). Com-
pared to observed data for all PFTs, the model shows nar-
rower ranges. This dampened spatial variability may be due
to the model’s coarse resolution and constant parameter val-
ues for a given PFT, differing from species-specific observa-
tions affected by finer-scale environmental variations (Chang
et al., 2013). The latter emphasises the need to incorporate a
sufficiently large population of observed sites. Additionally,
model–data disagreement can be linked to not-well-enough
constrained values for PFT-specific parameters. For instance,
our findings indicated that calibrating Vcmax and Fgrowthresp
based on NPP and GPP observations for the TeNE forest
type improved the model’s performance in simulating AGB
for this specific PFT (as shown in Fig. 2). Furthermore, our
comparative analysis implied that employing temperate PFTs

rather than boreal PFTs can enhance model performance in
simulating the biomass of the boreal forests. This result sug-
gests that certain PFTs, particularly those linked to boreal
forest types, may be redundant in ORCHIDEE biomass sim-
ulations in the European context.

For SOC stock simulation, a Pearson’s correlation of
0.4 between observed and simulated SOC values (Fig. 4)
is significant, given the absence of certain controlling fac-
tors and processes in the model version used. This score is
similar to that in other DGVM models (Wu et al., 2019;
Seiler et al., 2022). For example, Wu et al. (2019) demon-
strated a correlation coefficient of approximately 0.45 be-
tween LPJ-GUESS (a global dynamic ecosystem model) and
SoilGrids (an observation-driven global soil dataset) on a
global scale and lower correlation scores among different
land cover classes. In this study, SOC scores varied among
vegetation groups (Fig. 5), with lower correlations for for-
est sites. The inclusion of up to six PFTs in forest groups,
with poorly determined classifications in observations, con-
tributes to the model–data discrepancy. In contrast, grass
and crop groups exhibit improved correlations with fewer
PFTs and better distinction in LUCAS data (Ballot et al.,
2023). Additionally, the smaller population of forest sites
(Fig. 5) may account for the lower score compared with the
other groups. Additionally, when examining different levels
of resolution, we find that larger grid scales demonstrate a
stronger correlation, which may be driven by climate pat-
terns (Wang et al., 2023). At smaller scales, other environ-
mental controls, like soil types, soil chemistry, topography,
and management, become more important (Garten et al.,
2007), which are not or only rudimentarily represented in
ORCHIDEE. Implementing ORCHIDEE at a higher reso-
lution using higher-resolution climate forcing (Anav et al.,
2010; Lafont et al., 2012) can be challenging. This complex-
ity arises from the fundamental reliance of the ORCHIDEE
model on low-resolution environmental factors such as soil
characteristics and erosion. Overcoming these inherent lim-
itations in ORCHIDEE, as well as other DGVMs, can sig-
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Figure 5. Scatterplots show the relationship between LUCAS topsoil data and derived ORCHIDEE soil organic carbon (SOCLUCAS topsoil
versus SOCderived ORC, in kg m−2), along with their corresponding histograms. Plots are presented for two grid scales: 0.5°× 0.5° (a1, b1,
c1) and 3°× 3° (a2, b2, c2). Darker colours indicate denser point concentrations. Complementary summary statistics are provided, including
the mean and standard deviation (SD) values for each dataset, along with the correlation (COR) and relative root mean square error (rRMSE)
between the two datasets. The corresponding maps are also presented in the Supplement (Figs. S2 to S4).

nificantly improve model performance, particularly at more
regional scales and higher spatial resolutions.

5.2 Impacts of LUC on soil carbon stocks

In pursuit of a more comprehensive evaluation, we explored
the applicability of meta-analyses of site-level SOC changes
for “pure” land cover transitions in assessing DGVMs’ abil-

ity to simulate SOC stock responses to LUC. As discussed
earlier, DGVMs, including ORCHIDEE, face challenges in
simulating SOC stocks at a small scale, making it difficult
to capture the SOC stock response at individual sites. Nev-
ertheless, the model should be capable of matching average
responses across broader regions.
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Figure 6. The absolute soil organic carbon changes (in kg m−2) from site observations in meta-analyses (black circles) and the fitted carbon
response function (CRF; black lines) ±95 % confidence interval (dotted black lines) compared to simulated CRFs (magenta and green lines)
for different land-use changes (LUCs; as presented in Table 2): cropland to grassland (C to G), grassland to cropland (G to C), grassland
to forest (without and with forest floor G to FwoFF, G to FwFF), cropland to forest (C to FwoFF and C to FwFF), and forest to cropland (F
to CwoFF). The first number in the parentheses indicates the number of study sites, and the second is the number of samples in the meta-
analyses. Two distinct forest types, namely temperate broadleaf summergreen and temperate needleleaf evergreen, are considered for the
forest sites in ORCHIDEE simulations (ORCTeBS, ORCTeNE).

In our comparison, we averaged the model responses over
all grid cells encompassing the sites where LUC has oc-
curred. This enabled us to compare the model’s response
to the meta-analysis data and its fitted CRF. Generally, the
simulated results agree in terms of direction with observed
data, notably the decrease in soil carbon stocks for G-to-
C and F-to-C conversions and the opposite for C-to-G and
C-to-F conversions (Fig. 6). As for G-to-F conversions, the
simulations exhibit different trends from the observed CRFs
but fall within the 95 % confidence interval (Fig. 6). In ad-
dition, the meta-analysis data exhibit considerable uncertain-
ties, evident in the wide confidence intervals around the fits
in Fig. 6. These uncertainties can be attributed to challenges
related to data compatibility, methodological heterogeneity,
and the diversity of ecosystems and LUC scenarios consid-
ered, as discussed in prior studies (Verburg et al., 2011; Deng
et al., 2016; Fohrafellner et al., 2023). Therefore, while meta-
analyses offer valuable insights, their interpretation requires
careful consideration and integration with site-specific obser-
vations.

Despite this alignment in direction, there are noticeable
discrepancies in the magnitudes of SOC stock changes be-
tween the simulated and observed CRFs, i.e. the underes-
timated SOC gain during C-to-G conversion and underes-
timated SOC losses during G-to-C and F-to-CwoFF conver-

sions. These differences could potentially be attributed to
various factors that the model may not fully capture. For
instance, our findings indicate that soil erosion rate signifi-
cantly influences the model bias among six selected poten-
tial factors. In addition, the influence of varying land man-
agement practices can substantially shape the model bias
(Nyawira et al., 2016). These complexities underscore the
challenges involved in accurately simulating local SOC dy-
namics. Further investigations or adjustments will be essen-
tial to reduce the biases and thereby enhance the accuracy of
the model estimations. Additionally, our idealised assump-
tion regarding the transition year in 1950 may introduce
uncertainties to the model outputs. However, as shown in
Sect. S1 of the Supplement, considering the actual transition
year does not significantly enhance agreement with observa-
tions. This might be due to the limited number of available
samples. It is also possible that the impact of climate change
on LUC effects over the past century is not substantial. If
the latter is true, using an idealised transition year should not
create significant issues.

5.3 Challenges in model–data comparisons

Evaluating DGVM outputs against observational data is chal-
lenging, primarily due to constraints on the quantity and
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Figure 7. Scaled feature importance scores resulting from random forest (RF) analysis showing the relationship between model bias and
potential influencing factors (i.e. temperature 2 m a.g.l. (T2m), rain, soil carbon-to-nitrogen ratio (CN), soil nitrogen (N), soil phosphorus
(P), and soil erosion rate (ER)) for different land-use changes (LUCs): cropland to grassland (C to G), grassland to cropland (G to C),
grassland to forest (without forest floor G to FwoFF), cropland to forest (C to FwoFF), and forest to cropland (F to CwoFF). Results for other
conversions are not shown since RF shows poor performance (Table S7 in the Supplement). Each score is normalised within the range of 0
to 1, where 1 signifies the highest relevance, and 0 indicates the lowest importance. Two distinct forest types, namely temperate broadleaf
summergreen and temperate needleleaf evergreen, are considered for the forest sites (TeBS, TeNE).

quality of existing long-term observational datasets. While
observational data exist, their scarcity is evident, exemplified
in Fig. 1, particularly in the instances of NPP and GPP sites
for several PFTs like BoBS, TeBE, TeGC3, and BoGC3. Fur-
thermore, as previously highlighted, substantial uncertainties
persist in observed changes in SOC stocks when contrasted
with anticipated changes. These limitations introduce intri-
cacy into the process of calibrating and validating our mod-
els.

Another significant challenge arises from the long-lasting
impact (e.g. > 100 years) of historical LUC, particularly in
the case of substantial events like erosion (Bakker et al.,
2005; Borrelli et al., 2017). The absence of site history in-
formation hinders our ability to incorporate these effects into
our simulations (Verburg et al., 2011). Disregarding the in-
fluence of major historical LUC events may lead to accu-
rate simulations but for the wrong reasons. This approach
further complicates our ability to predict changes in SOC
stocks. In addition, failing to simulate LUC impacts accu-
rately can have significant consequences for forecasting fu-
ture land carbon balances and influencing decisions related to
climate change mitigation and land management. To gain a
more comprehensive perspective, we consider assessing the
relative importance of SOC stock changes versus biomass
carbon stock changes over, for instance, a 30-year horizon.
This analysis can be relevant for initiatives like the Euro-

pean Green Deal (European Council, 2019), as it could of-
fer essential guidance for shaping policies related to carbon
sequestration, sustainable land-use practices, and preserving
ecosystem health.

6 Conclusions

Our research investigated the ability of the DGVM OR-
CHIDEE model to reproduce what is known from exper-
imental studies about LUC impacts on biospheric carbon.
We performed various comparisons between simulations and
experimental data, including on-site measurements and data
from meta-analyses.

Discrepancies between the model and data can be at-
tributed to several factors, such as the grouping of vegetation
in DGVMs, which often use a limited number of PFTs, un-
like the species-specific observations. The coarse model res-
olution also contributes to discrepancies. For example, our
spatially explicit simulation of SOC stocks has a spatial res-
olution of 0.5°, whereas, in reality, SOC stocks and their
controlling factors vary at a much smaller scale. Our analy-
sis also identifies potential factors contributing to model bias
when studying the impact of LUCs on SOC. Various factors,
such as soil erosion rate, phosphorus, or rainfall, can influ-
ence each type of LUC. Further studies are needed to explore
these impacts more comprehensively.
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In summary, this study enhances our understanding of us-
ing DGVMs for studying carbon dynamics and provides in-
sights for future model development and applications. While
ORCHIDEE was our chosen model, this methodology can be
readily applied to other DGVMs using the same protocol.

Appendix A: ORCHIDEE carbon module

Figure A1 presents the basic scheme of biospheric carbon
cycling representation in ORCHIDEE. Simulated carbon dy-
namics include the exchange of carbon between the atmo-
sphere and various carbon pools in vegetation biomass and
soils. Carbon dynamics are simulated for each PFT individ-
ually, distinguishing eight vegetation biomass pools (leaves,
roots, above- and below-ground sapwood, above- and below-
ground heartwood, fruits, and a plant carbohydrate reserve),
four litter pools (structural and metabolic litter above and
below the surface), and three SOC pools (active, slow, and
passive soil carbon). The turnover time of SOC and litter
pools is determined by various factors, including tempera-
ture and humidity of the soil. The litter is produced through
senescence and death, and the latter can also be related to
LUC when the original vegetation is destroyed to make space
for the new PFT. Further, carbon fluxes occur from litter to
SOC pools and between the three SOC pools, with a part
of the transferred carbon lost to the atmosphere through het-
erotrophic respiration. The model does not consider nutri-
ent cycling, depth distribution of SOC, or soil carbon losses
through leaching and erosion. Detailed formulations of the
main processes represented in the version of ORCHIDEE
used in this study can be found in Appendix A of Krinner
et al. (2005).

Code and data availability. The comprehensive forest ecosystem
database from Luyssaert et al. (2007) can be found at https://doi.org/
10.3334/ORNLDAAC/949 (Luyssaert et al., 2009). The FLUXNET
and ICOS data can be downloaded from https://fluxnet.org/data/
fluxnet2015-dataset/ (Pastorello et al., 2020) and https://doi.org/10.
18160/2G60-ZHAK (Warm Winter 2020 Team and ICOS Ecosys-
tem Thematic Centre, 2020), respectively. The in situ biomass and
age data are from https://www.bgc-jena.mpg.de/geodb/projects/
FileDetails.php (Besnard et al., 2021). The LUCAS 2018 TOP-
SOIL database is taken from https://esdac.jrc.ec.europa.eu/content/
lucas-2018-topsoil-data (Fernandez-Ugalde et al., 2022). OR-
CHIDEE version 2.2 is available at http://forge.ipsl.jussieu.fr/
orchidee/browser/branches/ORCHIDEE_2_2 (Krinner et al., 2005).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-6725-2024-supplement.
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