Articles | Volume 17, issue 13
https://doi.org/10.5194/gmd-17-5145-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-5145-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Skin sea surface temperature schemes in coupled ocean–atmosphere modelling: the impact of chlorophyll-interactive e-folding depth
CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Calata Porta Di Massa – Porto Di Napoli 80, 80133 Naples, Italy
National Research Center for High Performance Computing, Big Data and Quantum Computing, ICSC, Italy
Daniele Ciani
National Research Center for High Performance Computing, Big Data and Quantum Computing, ICSC, Italy
CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, via Fosso del Cavaliere 100, 00133 Rome, Italy
Yassmin Hesham Essa
CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, via Fosso del Cavaliere 100, 00133 Rome, Italy
GUF-IAU, Goethe University Frankfurt, Institut fuer Atmosphaere und Umwelt, Altenhoeferallee 1, 60438 Frankfurt am Main, Germany
ARC-CLAC, Agricultural Research Center, Central Laboratory for Agricultural Climate, 6 El-Nour street, 12611, Dokki, Giza, Egypt
Chunxue Yang
National Research Center for High Performance Computing, Big Data and Quantum Computing, ICSC, Italy
CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, via Fosso del Cavaliere 100, 00133 Rome, Italy
Vincenzo Artale
CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, via Fosso del Cavaliere 100, 00133 Rome, Italy
Andrea Pisano
National Research Center for High Performance Computing, Big Data and Quantum Computing, ICSC, Italy
CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, via Fosso del Cavaliere 100, 00133 Rome, Italy
Davide Cavaliere
CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, via Fosso del Cavaliere 100, 00133 Rome, Italy
Rosalia Santoleri
CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, via Fosso del Cavaliere 100, 00133 Rome, Italy
Andrea Storto
National Research Center for High Performance Computing, Big Data and Quantum Computing, ICSC, Italy
CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, via Fosso del Cavaliere 100, 00133 Rome, Italy
Related authors
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Haohao Zhang, Andrea Storto, Xuezhi Bai, and Chunxue Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3030, https://doi.org/10.5194/egusphere-2025-3030, 2025
Short summary
Short summary
Using a 1D coupled ice-ocean model, we quantified the effects of meltwater and ice-albedo feedback independently. The meltwater reduces melting by 19 % through thermal isolation, while ice-albedo feedback increases melting by 41 %, with nonlinear coupling between them. In winter, meltwater protects ice in weakly stratified areas by blocking Atlantic heat. Our study provides new insights into the relative importance of different components in the Arctic ice-ocean system.
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025, https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Short summary
Inaccuracies in air–sea heat fluxes severely degrade the accuracy of ocean numerical simulations. Here, we use artificial neural networks to correct air–sea heat fluxes as a function of oceanic and atmospheric state predictors. The correction successfully improves surface and subsurface ocean temperatures beyond the training period and in prediction experiments.
Marie Bouih, Anne Barnoud, Chunxue Yang, Andrea Storto, Alejandro Blazquez, William Llovel, Robin Fraudeau, and Anny Cazenave
Ocean Sci., 21, 1425–1440, https://doi.org/10.5194/os-21-1425-2025, https://doi.org/10.5194/os-21-1425-2025, 2025
Short summary
Short summary
Present-day sea level rise is not uniform regionally. For better understanding of regional sea level variations, a classical approach is to compare the observed sea level trend patterns with those of the sum of the contributions. If the regional sea level trend budget is not closed, this allows the detection of errors in the observing systems. Our study shows that the trend budget is not closed in the North Atlantic Ocean and identifies errors in Argo-based salinity data as the main suspect.
Daniele Ciani, Claudia Fanelli, and Bruno Buongiorno Nardelli
Ocean Sci., 21, 199–216, https://doi.org/10.5194/os-21-199-2025, https://doi.org/10.5194/os-21-199-2025, 2025
Short summary
Short summary
Ocean surface currents are routinely derived from satellite observations of the sea level, allowing regional- to global-scale synoptic monitoring. In order to overcome the theoretical and instrumental limits of this methodology, we exploit the synergy of multi-sensor satellite observations. We rely on deep learning, physics-informed algorithms to predict ocean currents from sea surface height and sea surface temperature observations. Results are validated by means of in situ measurements.
Andrea Storto, Giulia Chierici, Julia Pfeffer, Anne Barnoud, Romain Bourdalle-Badie, Alejandro Blazquez, Davide Cavaliere, Noémie Lalau, Benjamin Coupry, Marie Drevillon, Sebastien Fourest, Gilles Larnicol, and Chunxue Yang
State Planet, 4-osr8, 12, https://doi.org/10.5194/sp-4-osr8-12-2024, https://doi.org/10.5194/sp-4-osr8-12-2024, 2024
Short summary
Short summary
The variability in the manometric sea level (i.e. the sea level mass component) in three ocean basins is investigated in this study using three different methods (reanalyses, gravimetry, and altimetry in combination with in situ observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale climate modes on the regional manometric sea level variations at both seasonal and interannual timescales.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Claudia Fanelli, Daniele Ciani, Andrea Pisano, and Bruno Buongiorno Nardelli
Ocean Sci., 20, 1035–1050, https://doi.org/10.5194/os-20-1035-2024, https://doi.org/10.5194/os-20-1035-2024, 2024
Short summary
Short summary
Sea surface temperature (SST) is an essential variable to understanding the Earth's climate system, and its accurate monitoring from space is essential. Since satellite measurements are hindered by cloudy/rainy conditions, data gaps are present even in merged multi-sensor products. Since optimal interpolation techniques tend to smooth out small-scale features, we developed a deep learning model to enhance the effective resolution of gap-free SST images over the Mediterranean Sea to address this.
Sarah Asdar, Daniele Ciani, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024, https://doi.org/10.5194/essd-16-1029-2024, 2024
Short summary
Short summary
Estimating 3D currents is crucial for the understanding of ocean dynamics, and a precise knowledge of ocean circulation is essential to ensure a sustainable ocean. In this context, a new high-resolution (1 / 10°) data-driven dataset of 3D ocean currents has been developed within the European Space Agency World Ocean Circulation project, providing 10 years (2010–2019) of horizontal and vertical quasi-geostrophic currents at daily resolution over the North Atlantic Ocean, down to 1500 m depth.
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Andrea Pisano, Daniele Ciani, Salvatore Marullo, Rosalia Santoleri, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 14, 4111–4128, https://doi.org/10.5194/essd-14-4111-2022, https://doi.org/10.5194/essd-14-4111-2022, 2022
Short summary
Short summary
A new operational diurnal sea surface temperature (SST) product has been developed within the Copernicus Marine Service, providing gap-free hourly mean SST fields from January 2019 to the present. This product is able to accurately reproduce the diurnal cycle, the typical day–night SST oscillation mainly driven by solar heating, including extreme diurnal warming events. This product can thus represent a valuable dataset to improve the study of those processes that require a subdaily frequency.
Cited articles
Artale, V., Iudicone, D., Santoleri, R., Rupolo, V., Marullo, S., and d'Ortenzio, F.: Role of surface fluxes in ocean general circulation models using satellite Sea Surface Temperature: Validation of and sensitivity to the forcing frequency of the Mediterranean thermohaline circulation, J. Geophys. Res.-Oceans, 107, 29–1, 2002.
Bernie, D., Guilyardi, E., Madec, G., Slingo, J., and Woolnough, S.: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: A diurnally forced OGCM, Clim. Dynam., 29, 575–590, 2007.
Bernie, D., Guilyardi, E., Madec, G., Slingo, J. M., Woolnough, S. J., and Cole, J.: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: A diurnally coupled C-GCM, Clim. Dynam., 31, 909–925, 2008.
Chen, S. S. and Houze Jr., R. A.: Diurnal variation and life-cycle of deep convective systems over the tropical pacific warm pool, Q. J. Roy. Meteor. Soc., 123, 357–388, 1997.
Copernicus Marine Environment Monitoring Service (CMEMS): OCEANCOLOUR_MED_CHL_L4_NRT_OBSERVATIONS_009_041, Euro Data Cube Public Collections [data set], https://collections.eurodatacube.com/oceancolour-med-chl-l4-nrt-observations-009-041/ (last access: 15 January 2024), 2021.
Copernicus Marine Service: Mediterranean Sea – High Resolution Diurnal Subskin Sea Surface Temperature Analysis, Copernicus Marine Service [data set], https://doi.org/10.48670/moi-00170, 2023.
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017.
Criado-Aldeanueva, F., Soto-Navarro, F. J., and García-Lafuente, J.: Seasonal and interannual variability of surface heat and freshwater fluxes in the Mediterranean Sea: Budgets and exchange through the Strait of Gibraltar, Int. J. Climatol., 32, 286–302, 2012.
de Toma, V.: Skin Sea Surface Temperature schemes in coupled ocean-atmosphere modeling: the impact of chlorophyll-interactive e-folding depth. Intermediate results and scripts to produce the figures, Zenodo [code and data set], https://doi.org/10.5281/zenodo.10818183, 2024.
Donlon, C., Robinson, I., Casey, K., Vazquez-Cuervo, J., Armstrong, E., Arino, O., Gentemann, C., May, D., LeBorgne, P., Piollé, J., Barton, I., Beggs, H., Poulter, D. J. S., Merchant, C. J., Bingham, A., Heinz, S., Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D., Mutlow, C., Reynolds, R. W., Kawamura, H., and Rayner, N.: The global ocean data assimilation experiment high-resolution Sea Surface Temperature pilot project, B. Am. Meteorol. Soc., 88, 1197–1214, 2007.
Fairall, C., Bradley, E. F., Godfrey, J., Wick, G., Edson, J. B., and Young, G.: Cool-skin and warm-layer effects on Sea Surface Temperature, J. Geophys. Res.-Oceans, 101, 1295–1308, 1996.
Gentemann, C. L., Minnett, P. J., and Ward, B.: Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming, J. Geophys. Res.-Oceans, 114, C07017, https://doi.org/10.1029/2008JC004825, 2009.
Gonzalez, N. M.: Multi-scale modelling of Gibraltar Straits and its regulating role of the Mediterranean climate, Doctoral dissertation, Université Paul Sabatier-Toulouse III, 2023.
Gouretski, V. and Cheng, L.: Correction for systematic errors in the global dataset of temperature profiles from mechanical bathythermographs, J. Atmos. Ocean. Tech., 37, 841–855, 2020.
Gouretski, V. and Reseghetti, F.: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database, Deep-Sea Res. Pt. I, 57, 812–833, 2010.
Hagemann, S. and Ho-Hagemann, H. T. M.: The Hydrological Discharge Model – a river runoff component for offline and coupled model applications (5.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5707587, 2021.
Hagemann, S., Stacke, T., and Ho-Hagemann, H. T.: High resolution discharge simulations over Europe and the Baltic Sea catchment, Front. Earth Sci., 8, 12, https://doi.org/10.3389/feart.2020.00012, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Houpert, L., Testor, P., De Madron, X. D., Somot, S., D'ortenzio, F., Estournel, C., and Lavigne, H.: Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations, Prog. Oceanogr., 132, 333–352, 2015a.
Houpert, L., Testor, P., and Durrieu de Madron, X.: Gridded climatology of the Mixed Layer (Depth and Temperature), the bottom of the Seasonal Thermocline (Depth and Temperature), and the upper-ocean Heat Storage Rate for the Mediterrean Sea, SEANOE [data set], https://doi.org/10.17882/46532, 2015b.
iQuam: In situ SST Quality Monitor v2.10, NOAA [data set], https://www.star.nesdis.noaa.gov/socd/sst/iquam/data.html (last access: 14 January 2024), 2024.
Jansen, E., Pimentel, S., Tse, W.-H., Denaxa, D., Korres, G., Mirouze, I., and Storto, A.: Using canonical correlation analysis to produce dynamically based and highly efficient statistical observation operators, Ocean Sci., 15, 1023–1032, https://doi.org/10.5194/os-15-1023-2019, 2019.
Jerlov, N. G.: Optical Oceanograph, Elsevier Publishing Co, Amsterdam, London and New York, https://scholar.google.com/scholar_lookup?&title=Optical Oceanography&publication_year=1968&author=Jerlov%2CNG (last access: 14 January 2024), 1968.
Jordà, G., Von Schuckmann, K., Josey, S. A., Caniaux, G., García-Lafuente, J., Sammartino, S., Özsoy, E., Polcher, J., Notarstefano, G., Poulain, P.-M., Adloff, F., Salat, J., Naranjo, C., Schroeder, K., Chiggiato, J., Sannino, G., and Macías, D.: The Mediterranean Sea heat and mass budgets: Estimates, uncertainties and perspectives, Prog. Oceanogr., 156, 174–208, 2017.
Karagali, I. and Høyer, J.: Observations and modeling of the diurnal SST cycle in the North and Baltic seas, J. Geophys. Res.-Oceans, 118, 4488–4503, 2013.
Kawai, Y. and Wada, A.: Diurnal Sea Surface Temperature variation and its impact on the atmosphere and ocean: A review, J. Oceanogr., 63, 721–744, 2007.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, 1994.
Lee, Z., Du, K., Arnone, R., Liew, S., and Penta, B.: Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters, J. Geophys. Res.-Oceans, 110, C09019, https://doi.org/10.1029/2004JC002780, 2005.
Lengaigne, M., Menkes, C., Aumont, O., Gorgues, T., Bopp, L., André, J. M., and Madec, G.: Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model, Clim. Dynam., 28, 503–516, 2007.
Leonelli, F. E., Bellacicco, M., Pitarch, J., Organelli, E., Buongiorno Nardelli, B., De Toma, V., Cammarota, C., Marullo, S., and Santoleri, R.: Ultra-oligotrophic waters expansion in the North Atlantic Subtropical Gyre revealed by 21 years of satellite observations, Geophys. Res. Lett., 49, e2021GL096965, https://doi.org/10.1029/2021GL096965, 2022.
Macdonald, A. M., Candela, J., and Bryden, H. L.: An estimate of the net heat transport through the Strait of Gibraltar, Seasonal and Interannual Variability of the Western Mediterranean Sea, 46, 13–32, 1994.
Marullo, S., Santoleri, R., Banzon, V., Evans, R. H., and Guarracino, M.: A diurnal-cycle resolving sea surface temperature product for the tropical Atlantic, J. Geophys. Res.-Oceans, 115, C05011, https://doi.org/10.1029/2009JC005466, 2010.
Marullo, S., Minnett, P. J., Santoleri, R., and Tonani, M.: The diurnal cycle of sea-surface temperature and estimation of the heat budget of the Mediterranean Sea, J. Geophys. Res.-Oceans, 121, 8351–8367, 2016.
Marullo, S., Pitarch, J., Bellacicco, M., Sarra, A. G. d., Meloni, D., Monteleone, F., Sferlazzo, D., Artale, V., and Santoleri, R.: Air–sea interaction in the central Mediterranean Sea: Assessment of reanalysis and satellite observations, Remote Sens.-Basel, 13, 2188, https://doi.org/10.3390/rs13112188, 2021.
MetOffice Hadley Centre Observations: EN4: quality controlled subsurface ocean temperature and salinity profiles and objective analyses, version 4.2.1, MetOffice Hadley Centre Observations [data set], https://www.metoffice.gov.uk/hadobs/en4/ (last access: 14 January 2024), 2024.
Minnett, P., Alvera-Azcárate, A., Chin, T., Corlett, G., Gentemann, C., Karagali, I., Li, X., Marsouin, A., Marullo, S., Maturi, E., Santoleri, R., Saux Picart, S., Steele, M., and Vazquez-Cuervo, J.: Half a century of satellite remote sensing of Sea Surface Temperature, Remote Sens. Environ., 233, 111366, https://doi.org/10.1016/j.rse.2019.111366, 2019.
Morel, A. and Antoine, D.: Heating rate within the upper ocean in relation to its bio–optical state, J. Phys. Oceanogr., 24, 1652–1665, 1994.
Morel, A. and Berthon, J. F.: Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications, Limnol. Oceanogr., 34, 1545–1562, 1989.
NEMO: https://forge.ipsl.jussieu.fr/nemo/wiki, last access: 14 August 2023.
NEMO System Team: NEMO System Team, Scientific Notes of Climate Modelling Center, 27, ISSN 1288-1619, Institut Pierre-Simon Laplace (IPSL), https://doi.org/10.5281/zenodo.1464816, 2019.
Ohlmann, J. C. and Siegel, D. A.: Ocean radiant heating. Part II: Parameterizing solar radiation transmission through the upper ocean, J. Phys. Oceanogr., 30, 1849–1865, 2000.
Ohlmann, J. C., Siegel, D. A., and Mobley, C. D.: Ocean radiant heating. Part I: Optical influences, J. Phys. Oceanogr., 30, 1833–1848, 2000.
Penny, S. G., Akella, S., Balmaseda, M. A., Browne, P., Carton, J. A., Chevallier, M., Counillon, F., Domingues, C., Frolov, S., Heimbach, P., Hogan P., Hoteit, I., Iovino, D., Laloyaux, P., Martin, M. J., Masina, S., Moore, A. M., de Rosnay, P., Schepers, D., Sloyan, B. M., Storto, A., Subramanian, A., Nam, S., Vitart, F., Yang, C., Fujii, Y., Zuo, H., O'Kane, T., Sandery, P., Moore, T., and Chapman, C. C.: Observational needs for improving ocean and coupled reanalysis, S2S prediction, and decadal prediction, Front. Marine Sci., 6, 391, https://doi.org/10.3389/fmars.2019.00391, 2019.
Pettenuzzo, D., Large, W. G., and Pinardi, N.: On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO, J. Geophys. Res.-Oceans, 115, C06022, https://doi.org/10.1029/2009JC005631, 2010.
Pisano, A., Ciani, D., Marullo, S., Santoleri, R., and Buongiorno Nardelli, B.: A new operational Mediterranean diurnal optimally interpolated sea surface temperature product within the Copernicus Marine Service, Earth Syst. Sci. Data, 14, 4111–4128, https://doi.org/10.5194/essd-14-4111-2022, 2022.
Ruiz, S., Gomis, D., Sotillo, M. G., and Josey, S. A.: Characterization of surface heat fluxes in the Mediterranean Sea from a 44-year high-resolution atmospheric data set, Global Planet. Change, 63, 258–274, 2008.
Saunders, P. M.: The temperature at the ocean-air interface, J. Atmos. Sci., 24, 269–273, 1967.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A description of the advanced research WRF model version 4, National Center for Atmospheric Research, Boulder, CO, USA, 145, 550, https://doi.org/10.5065/1dfh-6p97, 2021.
Soloviev, A.: On the vertical structure of the ocean thin surface layer at light wind, Dokl. Acad. Sci. USSR, Earth Sci. Serr, 751–760, 1982.
Soloviev, A. and Lukas, R.: Observation of large diurnal warming events in the near-surface layer of the western equatorial pacific warm pool, Deep-Sea Res. Pt. I, 44, 1055–1076, 1997.
Soloviev, A. and Lukas, R.: The near-surface layer of the ocean: structure, dynamics and applications, volume 48, Springer Science & Business Media, Springer, https://doi.org/10.1007/978-94-007-7621-0, 2013.
Soloviev, A. V. and Schlussel, P.: Evolution of cool skin and direct air-sea gas transfer coefficient during daytime, Bound.-Lay. Meteorol., 77, 45–68, 1996.
Song, X. and Yu, L.: Air-sea heat flux climatologies in the Mediterranean Sea: Surface energy balance and its consistency with ocean heat storage, J. Geophys. Res.-Oceans, 122, 4068–4087, 2017.
Storto, A. and Oddo, P.: Optimal assimilation of daytime SST retrievals from SEVIRI in a regional ocean prediction system, Remote Sens.-Basel, 11, 2776, https://doi.org/10.3390/rs11232776, 2019.
Storto, A., Alvera-Azcárate, A., Balmaseda, M. A., Barth, A., Chevallier, M., Counillon, F., Domingues, C. M., Drevillon, M., Drillet, Y., Forget, G., Garric, G., Haines, K., Hernandez, F., Iovino, D., Jackson, L. C., Lellouche, J.-M., Masina, S., Mayer, M., Oke, P. R., Penny, S. G., Peterson, K. A., Yang, C., and Zuo, H.: Ocean reanalyses: recent advances and unsolved challenges, Front. Marine Sci., 6, 418, https://doi.org/10.3389/fmars.2019.00418, 2019.
Storto, A., Hesham Essa, Y., de Toma, V., Anav, A., Sannino, G., Santoleri, R., and Yang, C.: MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region, Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, 2023a.
Storto, A., Hesham Essa, Y., de Toma, V., Anav, A., Sannino, G.,Santoleri, R., and Yang, C.: MESMAR v1: A new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region. Coupled model code (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7898938, 2023b.
Takaya, Y., Bidlot, J.-R., Beljaars, A. C., and Janssen, P. A.: Refinements to a prognostic scheme of skin Sea Surface Temperature, J. Geophys. Res.-Oceans, 115, C06009, https://doi.org/10.1029/2009JC005985, 2010.
Tu, C.-Y. and Tsuang, B.-J.: Cool-skin simulation by a one-column ocean model, Geophys. Res. Lett., 32, L22602, https://doi.org/10.1029/2005GL024252, 2005.
Valdivieso, M., Haines, K., Balmaseda, M., Chang, Y. S., Drevillon, M., Ferry, N., Ferry, N., Fujii, Y., Köhl, A., Storto, A., Toyoda, T., Wang, X., Waters, J., Xue, Y., Yin, Y., Barnier, B., Hernandez, F., Kumar, A., Lee, T., Masina, S., and Peterson, K. A.: An assessment of air–sea heat fluxes from ocean and coupled reanalyses, Clim. Dynam., 49, 983–1008, 2017.
Volpe, G., Colella, S., Brando, V. E., Forneris, V., La Padula, F., Di Cicco, A., Sammartino, M., Bracaglia, M., Artuso, F., and Santoleri, R.: Mediterranean ocean colour Level 3 operational multi-sensor processing, Ocean Sci., 15, 127–146, https://doi.org/10.5194/os-15-127-2019, 2019.
Ward, B.: Near-surface ocean temperature, J. Geophys. Res.-Oceans, 111, C02005, https://doi.org/10.1029/2004JC002689, 2006.
While, J., Mao, C., Martin, M., Roberts-Jones, J., Sykes, P., Good, S., and McLaren, A.: An operational analysis system for the global diurnal cycle of Sea Surface Temperature: implementation and validation, Q. J. Roy. Meteor. Soc., 143, 1787–1803, 2017.
wrf-model: WRF, GitHub [code], https://github.com/wrf-model/WRF, last access: 14 August 2023.
Xu, F. and Ignatov, A.: In situ SST quality monitor (i-quam), J. Atmos. Ocean. Tech., 31, 164–180, 2014.
Zeng, X. and Beljaars, A.: A prognostic scheme of sea surface skin temperature for modeling and data assimilation, Geophys. Res. Lett., 32, L14605, https://doi.org/10.1029/2005GL023030, 2005.
Zhang, R., Zhou, F., Wang, X., Wang, D., and Gulev, S. K.: Cool skin effect and its impact on the computation of the latent heat flux in the South China Sea, J. Geophys. Res.-Oceans, 126, 2020JC016498, https://doi.org/10.1029/2020JC016498, 2021.
Zuo, H., Balmaseda, M. A., Mogensen, K., and Tietsche, S.: OCEAN5: the ECMWF ocean reanalysis system and its real-time analysis component, 44, European Centre for Medium-Range Weather Forecasts, Reading, UK, ECMWF Technical Memoranda, https://doi.org/10.21957/la2v0442, 2018.
Short summary
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in a model of the Mediterranean Sea. Our new approach, considering chlorophyll concentration, enhances spatial and temporal variations in the warm layer. Comparative analysis shows context-dependent improvements. The proposed "chlorophyll-interactive" method brings the surface net total heat flux closer to zero annually, despite a net heat loss from the ocean to the atmosphere.
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in...