Articles | Volume 17, issue 6
https://doi.org/10.5194/gmd-17-2221-2024
https://doi.org/10.5194/gmd-17-2221-2024
Model description paper
 | 
19 Mar 2024
Model description paper |  | 19 Mar 2024

LOCATE v1.0: numerical modelling of floating marine debris dispersion in coastal regions using Parcels v2.4.2

Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent

Related authors

Biological response to hydrodynamic factors in estuarine-coastal systems: a numerical analysis in a micro-tidal bay
Marta F.-Pedrera Balsells, Manel Grifoll, Margarita Fernández-Tejedor, Manuel Espino, Marc Mestres, and Agustín Sánchez-Arcilla
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-322,https://doi.org/10.5194/bg-2021-322, 2021
Revised manuscript not accepted
Short summary
Characterization of bottom sediment resuspension events observed in a micro-tidal bay
Manel Grifoll, Pablo Cerralbo, Jorge Guillén, Manuel Espino, Lars Boye Hansen, and Agustín Sánchez-Arcilla
Ocean Sci., 15, 307–319, https://doi.org/10.5194/os-15-307-2019,https://doi.org/10.5194/os-15-307-2019, 2019
Short summary
Use of a hydrodynamic model for the management of water renovation in a coastal system
Pablo Cerralbo, Marta F.-Pedrera Balsells, Marc Mestres, Margarita Fernandez, Manuel Espino, Manel Grifoll, and Agustin Sanchez-Arcilla
Ocean Sci., 15, 215–226, https://doi.org/10.5194/os-15-215-2019,https://doi.org/10.5194/os-15-215-2019, 2019
Short summary
Wave–current interactions in a wind-jet region
Laura Ràfols, Manel Grifoll, and Manuel Espino
Ocean Sci., 15, 1–20, https://doi.org/10.5194/os-15-1-2019,https://doi.org/10.5194/os-15-1-2019, 2019
Short summary
Ocean–atmosphere–wave characterisation of a wind jet (Ebro shelf, NW Mediterranean Sea)
Manel Grifoll, Jorge Navarro, Elena Pallares, Laura Ràfols, Manuel Espino, and Ana Palomares
Nonlin. Processes Geophys., 23, 143–158, https://doi.org/10.5194/npg-23-143-2016,https://doi.org/10.5194/npg-23-143-2016, 2016
Short summary

Related subject area

Oceanography
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024,https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries
Louis Thiry, Long Li, Guillaume Roullet, and Etienne Mémin
Geosci. Model Dev., 17, 1749–1764, https://doi.org/10.5194/gmd-17-1749-2024,https://doi.org/10.5194/gmd-17-1749-2024, 2024
Short summary
Parameter estimation for ocean background vertical diffusivity coefficients in the Community Earth System Model (v1.2.1) and its impact on El Niño–Southern Oscillation forecasts
Zheqi Shen, Yihao Chen, Xiaojing Li, and Xunshu Song
Geosci. Model Dev., 17, 1651–1665, https://doi.org/10.5194/gmd-17-1651-2024,https://doi.org/10.5194/gmd-17-1651-2024, 2024
Short summary
Great Lakes wave forecast system on high-resolution unstructured meshes
Ali Abdolali, Saeideh Banihashemi, Jose Henrique Alves, Aron Roland, Tyler J. Hesser, Mary Anderson Bryant, and Jane McKee Smith
Geosci. Model Dev., 17, 1023–1039, https://doi.org/10.5194/gmd-17-1023-2024,https://doi.org/10.5194/gmd-17-1023-2024, 2024
Short summary
Impact of increased resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2)
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024,https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary

Cited articles

Allard, R., Rogers, E., and Carroll, S. N.: User's Manual for the Simulating WAves Nearshore Model (SWAN), https://doi.org/10.21236/ADA409177, 2002. a
Alsina, J. M., Jongedijk, C. E., and van Sebille, E.: Laboratory Measurements of the Wave-Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density, J. Geophys. Res.-Oceans, 125, e2020JC016294, https://doi.org/10.1029/2020JC016294, 2020. a
Alvarez Fanjul, E., García Sotillo, M., Pérez Gómez, B., García Valdecasas, J., Pérez Rubio, S., Lorente, P., Rodríguez Dapena, Á., Martínez Marco, I., Luna, Y., Padorno, E., Santos Atienza, I., Díaz Hernandez, G., López Lara, J., Medina, R., Grifoll, M., Espino, M., Mestres, M., Cerralbo, P., and Sánchez Arcilla, A.: Operational Oceanography at the Service of the Ports, in: New Frontiers in Operational Oceanography, GODAE OceanView, https://doi.org/10.17125/gov2018.ch27, 2018. a
Bezerra, M. O., Diez, M., Medeiros, C., Rodriguez, A., Bahia, E., Sanchez-Arcilla, A., and Redondo, J. M.: Study on the influence of waves on coastal diffusion using image analysis, Appl. Sci. Res., 59, 191–204, https://doi.org/10.1023/a:1001131304881, 1997. a
Bosi, S., Broström, G., and Roquet, F.: The Role of Stokes Drift in the Dispersal of North Atlantic Surface Marine Debris, Front. Mar. Sci., 8, 697430, https://doi.org/10.3389/fmars.2021.697430, 2021. a
Download
Short summary
The LOCATE numerical model was developed to conduct Lagrangian simulations of the transport and dispersion of marine debris at coastal scales. High-resolution hydrodynamic data and a beaching module that used particle distance to the shore for land–water boundary detection were used on a realistic debris discharge scenario comparing hydrodynamic data at various resolutions. Coastal processes and complex geometric structures were resolved when using nested grids and distance-to-shore beaching.