Articles | Volume 17, issue 6
https://doi.org/10.5194/gmd-17-2221-2024
https://doi.org/10.5194/gmd-17-2221-2024
Model description paper
 | 
19 Mar 2024
Model description paper |  | 19 Mar 2024

LOCATE v1.0: numerical modelling of floating marine debris dispersion in coastal regions using Parcels v2.4.2

Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent

Related authors

Operational hydrodynamic service as a tool for coastal flood assessment
Xavier Sánchez-Artús, Vicente Gracia, Manuel Espino, Manel Grifoll, Gonzalo Simarro, Jorge Guillén, Marta González, and Agustín Sanchez-Arcilla
EGUsphere, https://doi.org/10.5194/egusphere-2024-3373,https://doi.org/10.5194/egusphere-2024-3373, 2024
Short summary
Coupling of numerical groundwater-ocean models to improve understanding of the coastal zone
Jiangyue Jin, Manuel Espino, Daniel Fernández, and Albert Folch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3384,https://doi.org/10.5194/egusphere-2024-3384, 2024
Short summary
Biological response to hydrodynamic factors in estuarine-coastal systems: a numerical analysis in a micro-tidal bay
Marta F.-Pedrera Balsells, Manel Grifoll, Margarita Fernández-Tejedor, Manuel Espino, Marc Mestres, and Agustín Sánchez-Arcilla
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-322,https://doi.org/10.5194/bg-2021-322, 2021
Revised manuscript not accepted
Short summary
Characterization of bottom sediment resuspension events observed in a micro-tidal bay
Manel Grifoll, Pablo Cerralbo, Jorge Guillén, Manuel Espino, Lars Boye Hansen, and Agustín Sánchez-Arcilla
Ocean Sci., 15, 307–319, https://doi.org/10.5194/os-15-307-2019,https://doi.org/10.5194/os-15-307-2019, 2019
Short summary
Use of a hydrodynamic model for the management of water renovation in a coastal system
Pablo Cerralbo, Marta F.-Pedrera Balsells, Marc Mestres, Margarita Fernandez, Manuel Espino, Manel Grifoll, and Agustin Sanchez-Arcilla
Ocean Sci., 15, 215–226, https://doi.org/10.5194/os-15-215-2019,https://doi.org/10.5194/os-15-215-2019, 2019
Short summary

Related subject area

Oceanography
An optimal transformation method for inferring ocean tracer sources and sinks
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024,https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024,https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024,https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024,https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024,https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary

Cited articles

Allard, R., Rogers, E., and Carroll, S. N.: User's Manual for the Simulating WAves Nearshore Model (SWAN), https://doi.org/10.21236/ADA409177, 2002. a
Alsina, J. M., Jongedijk, C. E., and van Sebille, E.: Laboratory Measurements of the Wave-Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density, J. Geophys. Res.-Oceans, 125, e2020JC016294, https://doi.org/10.1029/2020JC016294, 2020. a
Alvarez Fanjul, E., García Sotillo, M., Pérez Gómez, B., García Valdecasas, J., Pérez Rubio, S., Lorente, P., Rodríguez Dapena, Á., Martínez Marco, I., Luna, Y., Padorno, E., Santos Atienza, I., Díaz Hernandez, G., López Lara, J., Medina, R., Grifoll, M., Espino, M., Mestres, M., Cerralbo, P., and Sánchez Arcilla, A.: Operational Oceanography at the Service of the Ports, in: New Frontiers in Operational Oceanography, GODAE OceanView, https://doi.org/10.17125/gov2018.ch27, 2018. a
Bezerra, M. O., Diez, M., Medeiros, C., Rodriguez, A., Bahia, E., Sanchez-Arcilla, A., and Redondo, J. M.: Study on the influence of waves on coastal diffusion using image analysis, Appl. Sci. Res., 59, 191–204, https://doi.org/10.1023/a:1001131304881, 1997. a
Bosi, S., Broström, G., and Roquet, F.: The Role of Stokes Drift in the Dispersal of North Atlantic Surface Marine Debris, Front. Mar. Sci., 8, 697430, https://doi.org/10.3389/fmars.2021.697430, 2021. a
Download
Short summary
The LOCATE numerical model was developed to conduct Lagrangian simulations of the transport and dispersion of marine debris at coastal scales. High-resolution hydrodynamic data and a beaching module that used particle distance to the shore for land–water boundary detection were used on a realistic debris discharge scenario comparing hydrodynamic data at various resolutions. Coastal processes and complex geometric structures were resolved when using nested grids and distance-to-shore beaching.