Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7375-2023
https://doi.org/10.5194/gmd-16-7375-2023
Review and perspective paper
 | 
19 Dec 2023
Review and perspective paper |  | 19 Dec 2023

Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations

Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann

Related authors

How biased are our models? – a case study of the alpine region
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021,https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Effects of transient processes for thermal simulations of the Central European Basin
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021,https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary

Related subject area

Numerical methods
Developing meshing workflows in Gmsh v4.11 for the geologic uncertainty assessment of high-temperature aquifer thermal energy storage
Ali Dashti, Jens C. Grimmer, Christophe Geuzaine, Florian Bauer, and Thomas Kohl
Geosci. Model Dev., 17, 3467–3485, https://doi.org/10.5194/gmd-17-3467-2024,https://doi.org/10.5194/gmd-17-3467-2024, 2024
Short summary
Development and preliminary validation of a land surface image assimilation system based on the Common Land Model
Wangbin Shen, Zhaohui Lin, Zhengkun Qin, and Juan Li
Geosci. Model Dev., 17, 3447–3465, https://doi.org/10.5194/gmd-17-3447-2024,https://doi.org/10.5194/gmd-17-3447-2024, 2024
Short summary
NorSand4AI: a comprehensive triaxial test simulation database for NorSand constitutive model materials
Luan Carlos de Sena Monteiro Ozelim, Michéle Dal Toé Casagrande, and André Luís Brasil Cavalcante
Geosci. Model Dev., 17, 3175–3197, https://doi.org/10.5194/gmd-17-3175-2024,https://doi.org/10.5194/gmd-17-3175-2024, 2024
Short summary
ParticleDA.jl v.1.0: a distributed particle-filtering data assimilation package
Daniel Giles, Matthew M. Graham, Mosè Giordano, Tuomas Koskela, Alexandros Beskos, and Serge Guillas
Geosci. Model Dev., 17, 2427–2445, https://doi.org/10.5194/gmd-17-2427-2024,https://doi.org/10.5194/gmd-17-2427-2024, 2024
Short summary
HETerogeneous vectorized or Parallel (HETPv1.0): an updated inorganic heterogeneous chemistry solver for the metastable-state NH4+–Na+–Ca2+–K+–Mg2+–SO42−–NO3–Cl–H2O system based on ISORROPIA II
Stefan J. Miller, Paul A. Makar, and Colin J. Lee
Geosci. Model Dev., 17, 2197–2219, https://doi.org/10.5194/gmd-17-2197-2024,https://doi.org/10.5194/gmd-17-2197-2024, 2024
Short summary

Cited articles

Abdi, D. S., Wilcox, L. C., Warburton, T. C., and Giraldo, F. X.: A GPU-accelerated continuous and discontinuous Galerkin non-hydrostatic atmospheric model, Int. J. High Perform. C., 33, 81–109, https://doi.org/10.1177/1094342017694427, 2017. a
Adams, B., Bohnhoff, W., Dalbey, K., Ebeida, M., Eddy, J., Eldred, M., Hooper, R., Hough, P., Hu, K., Jakeman, J., Khalil, M., Maupin, K., Monschke, J., Ridgway, E., Rushdi, A., Seidl, D., Stephens, J., Swiler, L., and Winokur, J.: DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.12 User's Manual, Sandia National Laboratories, Tech. Rep., SAND2020-12495, 2020. a, b, c
Afanasyev, A., Bianco, M., Mosimann, L., Osuna, C., Thaler, F., Vogt, H., Fuhrer, O., VandeVondele, J., and Schulthess, T. C.: GridTools: A framework for portable weather and climate applications, Software X, 15, 100707, https://doi.org/10.1016/j.softx.2021.100707, 2021. a
Alexander, F., Almgren, A., Bell, J., Bhattacharjee, A., Chen, J., Colella, P., Daniel, D., DeSlippe, J., Diachin, L., Draeger, E., Dubey, A., Dunning, T., Evans, T., Foster, I., Francois, M., Germann, T., Gordon, M., Habib, S., Halappanavar, M., Hamilton, S., Hart, W., Huang, Z. H., Hungerford, A., Kasen, D., Kent, P. R. C., Kolev, T., Kothe, D. B., Kronfeld, A., Luo, Y., Mackenzie, P., McCallen, D., Messer, B., Mniszewski, S., Oehmen, C., Perazzo, A., Perez, D., Richards, D., Rider, W. J., Rieben, R., Roche, K., Siegel, A., Sprague, M., Steefel, C., Stevens, R., Syamlal, M., Taylor, M., Turner, J., Vay, J.-L., Voter, A. F., Windus, T. L., and Yelick, K.: Exascale applications: skin in the game, Philos. T. Roy. Soc. A, 378, 20190056, https://doi.org/10.1098/rsta.2019.0056, 2020. a, b
Download
Executive editor
This manuscript provides a review of physics-based machine learning methods, and provides a perspective on their use.
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.