Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7375-2023
https://doi.org/10.5194/gmd-16-7375-2023
Review and perspective paper
 | 
19 Dec 2023
Review and perspective paper |  | 19 Dec 2023

Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations

Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann

Related authors

About the trustworthiness of physics-based machine learning – considerations for geomechanical applications
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025,https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Exploiting Physics-Based Machine Learning to Quantify Geodynamic Effects – Insights from the Alpine Region
Denise Degen, Ajay Kumar, Magdalena Scheck-Wenderoth, and Mauro Cacace
EGUsphere, https://doi.org/10.5194/egusphere-2025-1925,https://doi.org/10.5194/egusphere-2025-1925, 2025
Short summary
How biased are our models? – a case study of the alpine region
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021,https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Effects of transient processes for thermal simulations of the Central European Basin
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021,https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary

Related subject area

Numerical methods
Stabilized two-phase material point method for hydromechanical coupling problems in solid–fluid porous media
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
Geosci. Model Dev., 18, 4743–4758, https://doi.org/10.5194/gmd-18-4743-2025,https://doi.org/10.5194/gmd-18-4743-2025, 2025
Short summary
asQ: parallel-in-time finite element simulations using ParaDiag for geoscientific models and beyond
Joshua Hope-Collins, Abdalaziz Hamdan, Werner Bauer, Lawrence Mitchell, and Colin Cotter
Geosci. Model Dev., 18, 4535–4569, https://doi.org/10.5194/gmd-18-4535-2025,https://doi.org/10.5194/gmd-18-4535-2025, 2025
Short summary
Optimized step size control within the Rosenbrock solvers for stiff chemical ordinary differential equation systems in KPP version 2.2.3_rs4
Raphael Dreger, Timo Kirfel, Andrea Pozzer, Simon Rosanka, Rolf Sander, and Domenico Taraborrelli
Geosci. Model Dev., 18, 4273–4291, https://doi.org/10.5194/gmd-18-4273-2025,https://doi.org/10.5194/gmd-18-4273-2025, 2025
Short summary
Potential-based thermodynamics with consistent conservative cascade transport for implicit large eddy simulation: PTerodaC3TILES version 1.0
John Thuburn
Geosci. Model Dev., 18, 3331–3357, https://doi.org/10.5194/gmd-18-3331-2025,https://doi.org/10.5194/gmd-18-3331-2025, 2025
Short summary
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025,https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary

Cited articles

Abdi, D. S., Wilcox, L. C., Warburton, T. C., and Giraldo, F. X.: A GPU-accelerated continuous and discontinuous Galerkin non-hydrostatic atmospheric model, Int. J. High Perform. C., 33, 81–109, https://doi.org/10.1177/1094342017694427, 2017. a
Adams, B., Bohnhoff, W., Dalbey, K., Ebeida, M., Eddy, J., Eldred, M., Hooper, R., Hough, P., Hu, K., Jakeman, J., Khalil, M., Maupin, K., Monschke, J., Ridgway, E., Rushdi, A., Seidl, D., Stephens, J., Swiler, L., and Winokur, J.: DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.12 User's Manual, Sandia National Laboratories, Tech. Rep., SAND2020-12495, 2020. a, b, c
Afanasyev, A., Bianco, M., Mosimann, L., Osuna, C., Thaler, F., Vogt, H., Fuhrer, O., VandeVondele, J., and Schulthess, T. C.: GridTools: A framework for portable weather and climate applications, Software X, 15, 100707, https://doi.org/10.1016/j.softx.2021.100707, 2021. a
Alexander, F., Almgren, A., Bell, J., Bhattacharjee, A., Chen, J., Colella, P., Daniel, D., DeSlippe, J., Diachin, L., Draeger, E., Dubey, A., Dunning, T., Evans, T., Foster, I., Francois, M., Germann, T., Gordon, M., Habib, S., Halappanavar, M., Hamilton, S., Hart, W., Huang, Z. H., Hungerford, A., Kasen, D., Kent, P. R. C., Kolev, T., Kothe, D. B., Kronfeld, A., Luo, Y., Mackenzie, P., McCallen, D., Messer, B., Mniszewski, S., Oehmen, C., Perazzo, A., Perez, D., Richards, D., Rider, W. J., Rieben, R., Roche, K., Siegel, A., Sprague, M., Steefel, C., Stevens, R., Syamlal, M., Taylor, M., Turner, J., Vay, J.-L., Voter, A. F., Windus, T. L., and Yelick, K.: Exascale applications: skin in the game, Philos. T. Roy. Soc. A, 378, 20190056, https://doi.org/10.1098/rsta.2019.0056, 2020. a, b
Download
Executive editor
This manuscript provides a review of physics-based machine learning methods, and provides a perspective on their use.
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Share