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Abstract. An accurate assessment of the physical states of
the Earth system is an essential component of many scien-
tific, societal, and economical considerations. These assess-
ments are becoming an increasingly challenging computa-
tional task since we aim to resolve models with high resolu-
tions in space and time, to consider complex coupled partial
differential equations, and to estimate uncertainties, which
often requires many realizations. Machine learning methods
are becoming a very popular method for the construction
of surrogate models to address these computational issues.
However, they also face major challenges in producing ex-
plainable, scalable, interpretable, and robust models. In this
paper, we evaluate the perspectives of geoscience applica-
tions of physics-based machine learning, which combines
physics-based and data-driven methods to overcome the lim-
itations of each approach taken alone. Through three desig-
nated examples (from the fields of geothermal energy, geo-
dynamics, and hydrology), we show that the non-intrusive
reduced-basis method as a physics-based machine learning

approach is able to produce highly precise surrogate models
that are explainable, scalable, interpretable, and robust.

1 Introduction

Applications in geosciences dealing with land surface and
subsurface environments cover a broad range of disciplines
and Earth system compartments comprising lithosphere (in-
cluding deep reservoirs), groundwater, soil, and the land
surface. Subsurface environment applications typically deal
with the management of natural resources such as subsurface
water stored in soils and aquifers (e.g., water supply, contam-
ination) as well as energy (e.g., geothermal energy, hydro-
carbons) that require an in-depth understanding of the gov-
erning physical, chemical, and biological principles. In ad-
dition, subsurface environments are heterogeneous across a
variety of spatial scales, and processes in these environments
are typically complex, highly nonlinear, and time-dependent.
Spatial scales may range from the nanoscale to the basin and
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continental scale. Despite the enormous variation in appli-
cations in terms of scale and processes, there are underly-
ing common principles. Many of these processes are gov-
erned by partial differential equations (PDEs) and are em-
bedded in continuum physics approaches (Bauer et al., 2021;
Bergen et al., 2019). In this study, we focus on subsurface
applications from the fields of geodynamics, hydrology, and
geothermal energy to showcase various methods that are ap-
plied in applications which are characterized by data sparsity
and difficult accessibility for sampling and measuring states
and fluxes as well as for mapping the spatial organization of
key subsurface properties.

We focus on continuum PDEs and examine how to accel-
erate the numerical solution of PDEs that arise from geo-
scientific applications combining methods from the field of
projection-based model order reduction (Benner et al., 2015)
and machine learning. Our decision to focus on the aspect
of accelerating the solution of PDEs stems from the fact
that this is essential in geoscientific applications that aim
at improving the understanding of the Earth system with its
associated physical processes. An improved understanding
requires extensive parameter estimation studies, sensitivity
analyses, and uncertainty quantification, which are compu-
tationally expensive for many geoscientific PDE-based mod-
els (Degen et al., 2022c). This problem is further increased
by the circumstance that the governing PDEs are becoming
more and more complex as our understanding of the phys-
ical processes and their coupling increases. As an exam-
ple, geothermal studies moved from a purely thermal system
to a coupled thermo–hydro–mechanical and, depending on
the scale, also a chemical system (e.g., Gelet et al., 2012;
Jacquey and Cacace, 2020b; Kohl et al., 1995; Kolditz et al.,
2012; O’Sullivan et al., 2001; Stefansson et al., 2020; Taron
and Elsworth, 2009). Recent studies include more advanced
considerations of the mechanical components, yielding non-
linear hyperbolic PDEs (e.g., Gelet et al., 2012; Jacquey and
Cacace, 2017, 2020b, a; Poulet et al., 2014).

The more complex PDEs allow a better characterization of
the physical processes in the subsurface. However, they also
lead to several challenges.

– Challenge 1. In geoscientific applications, one primary
interest is to determine which parameters (e.g., rock
and fluid properties) influence the state distribution
(e.g., temperature, pressure, stress) to what extent. This
question can be addressed through sensitivity analyses,
which are categorized into local and global sensitivity
analysis (SA) (Wainwright et al., 2014). Local SAs are
computationally fast and require only a few simulations.
However, they neither return information on the param-
eter correlation nor allow the exploration of the entirety
of the parameter space (Wainwright et al., 2014; Sobol,
2001). Global SAs overcome these issues but are com-
putationally challenging because they demand numer-

ous simulations (Degen et al., 2021b; Degen and Ca-
cace, 2021).

– Challenge 2. Geoscientific and geophysical investiga-
tions are often subject to various sources of uncertainty.
To assess these uncertainties, stochastic descriptions
of the PDEs or probabilistic inverse methods such as
Markov chain Monte Carlo are commonly employed.
However, these methods have in common that they re-
quire solving many forward evaluations, yielding an
even more computationally demanding problem (Rogelj
and Knutti, 2016; Stewart and Lewis, 2017).

– Challenge 3. Often, PDE-based systems are required
for predictions and real-time applications (Bauer et al.,
2021; Sabeena and Reddy, 2017). Hence, there is the
need to solve PDEs fast. This imposes further difficul-
ties since the simulations for fully coupled nonlinear
hyperbolic PDEs are too demanding to allow such fast
applications. Therefore, they currently have only lim-
ited applicability in many geoscientific research areas
(Bauer et al., 2021; Bergen et al., 2019; Willcox et al.,
2021).

These challenges have one important aspect in common:
they require multiple or fast simulations. If a single simula-
tion already requires a long simulation time, then addressing
these challenges becomes difficult to prohibitive.

In this work, we focus on the utility of surrogate models
as a way to speed up PDE-based simulations of the phys-
ical state in geoscientific problems. In particular, we deter-
mine how surrogate models (sometimes also referred to as
meta models) can be employed to obtain precise predictions
at a reduced computational cost. With the increasing interest
in machine learning and the availability of various physics-
driven approaches, it is becoming apparent that we need to
clarify which requirements we have for our surrogate mod-
els. Machine learning has become very popular and powerful
in application fields where a vast number of data are available
(Baker et al., 2019; Willcox et al., 2021). However, Baker
et al. (2019) also stated in their report to the United States
Department of Energy that machine learning models need
to be scalable, interpretable, generalizable, and robust to be
attractive for scientific applications, which is also stated in
Willcox et al. (2021). This is important not only for scien-
tific machine learning models but also for surrogate models
in general.

– Requirement 1.1, physical scalability. The system res-
olutions are constantly increasing since one wants to
resolve models with higher and higher resolutions in
space and time (Bauer et al., 2021; van Zelst et al.,
2022). This increase in numerical system size, which
is, for instance, noticeable by the increase in degrees
of freedom, yields a computationally demanding prob-
lem. As an example in geodynamic simulations, one is
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interested both in large- and small-scale deformations
simultaneously. For the time component, variations of
the order of milliseconds (seismic cycle) and variations
of the order of millions of years (basin- and plate-scale
geodynamics) are of interest. In hydrological problems,
capturing the spatial small-scale heterogeneity of the
surface and subsurface, the short-term nature of mete-
orological forcing (hours to days), and the long-term
nature of subsurface fluxes (tens of years and longer)
poses similar challenges (Blöschl and Sivapalan, 1995;
Condon et al., 2021; Fan et al., 2019; Paniconi and Putti,
2015). This results in computational expensive prob-
lems (van Zelst et al., 2022), which often require high-
performance computing (HPC) infrastructures even for
solving a single forward problem.

– Requirement 1.2, performance scalability. Porting ap-
plications to HPC infrastructures is another major re-
quirement, which requires the rewrite of major parts
of the software packages (Alexander et al., 2020; Ar-
tigues et al., 2019; Baig et al., 2020; Bauer et al., 2021;
Bertagna et al., 2019; Lawrence et al., 2018; Gan et al.,
2020; Grete et al., 2021; Hokkanen et al., 2021). There-
fore, one important aspect is to evaluate how physics-
based machine learning methods can help in the transi-
tion to modern HPC infrastructures.

– Requirement 2, interpretability. Another main require-
ment is to produce surrogate models that maintain the
characteristic of PDE solutions and the original struc-
ture of the governing principles (i.e., that they map from
model parameters to state information). Related to this
is the consideration of nonlinear problems (Grepl, 2012;
Hesthaven and Ubbiali, 2018; Reichstein et al., 2019;
van Zelst et al., 2022), which, in the field of geosciences,
is often related to the consideration of mechanical or
complex flow effects. Such nonlinear problems result in
extensive computation times because of extra iterations
in the numerical solve (van Zelst et al., 2022).

– Requirement 3, generalizability. Furthermore, it is im-
portant that the approaches apply to various disciplines
and are not restricted to single applications only. To en-
able a transfer between disciplines it is important to pro-
vide accessible solutions. Often software packages are
developed in-house and are not available to the entire
community.

– Requirement 4, robustness. The last requirement is ro-
bustness. It is critical that the solutions produced by
the surrogate models are consistent for different levels
of accuracy. As an example, it is not desired to have
a surrogate model that predicts lower accuracy for a
diffusion-dominated solution and slightly increased ac-
curacy for an advection-dominated solution.

The paper is structured as follows: we present the PDEs
considered in this study first (see Sect. 2). Afterwards, we
present the concept of data-driven, physics-based approaches
and physics-based machine learning in the same section. In
Sect. 3, we present three designated case studies, from the
field of geothermal energy, geodynamics, and hydrology, to
illustrate the potential of physics-based machine learning.
This is further emphasized in Sect. 4, where we evaluate how
physics-based machine learning can address various chal-
lenges commonly occurring in the field of geosciences. We
conclude the paper in Sect. 5.

2 Surrogate modeling methods

In the following, we introduce different surrogate model
techniques to address the challenges presented in Sect. 4.
Thereby, the focus is on inverse applications, uncertainty
quantification methods, global sensitivity analyses, and other
methods concerned with parameter estimation.

Surrogate models can be constructed with physics- and
data-driven approaches (Fig. 1a, b). Physics-driven ap-
proaches preserve the governing equations, meaning that
they, for instance, conserve mass, momentum, and energy
in the same way as the original discretized version. They
also maintain the characteristic that for a given set of model
parameters (e.g., material properties), they produce informa-
tion about the state variables (e.g., temperature, pressure) at,
for instance, every node of the discretized model. But they
are limited in the complexity that they can capture (Fig. 1a).
We focus here on hyperbolic and/or nonlinear PDEs as these
pose computational challenges in physics-based methods, as
outlined above. We will not cover linear elliptic and linear
parabolic PDEs for which we advise using pure physics-
based approaches. These can provide error bounds in ad-
dition to the surrogate model, allowing us to obtain objec-
tive guarantees of the approximation quality. In Table 1, we
list the PDEs used throughout the paper and their respective
classes.

Within the physics-driven approaches, we focus on tech-
niques that allow a retrieval of the entire state. Projection-
based model order reduction techniques, such as proper or-
thogonal decomposition (POD), balanced truncation, and the
reduced-basis method, belong to this class (Benner et al.,
2015). We discuss physics-based approaches in detail in
Sect. 2.1. Machine learning techniques are a common ex-
ample of data-driven approaches (Baker et al., 2019; Bauer
et al., 2021; Willcox et al., 2021). They have the advantage
of capturing the full complexity of the model at hand but lose
the information about the physical system (Fig. 1b). Exam-
ples of other data-driven techniques are kriging (Gaussian
processes), polynomial chaos expansion, and response sur-
faces (e.g., Miao et al., 2019; Mo et al., 2019; Navarro et al.,
2018). Data-driven methods are described in Sect. 2.2. The
last category is physics-based machine learning, which com-
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Table 1. List of partial differential equations and their respective classes used throughout the paper.

PDE Class

Heat transfer equation Nonlinear, hyperbolic
Heat transfer equation with shear heating Nonlinear, hyperbolic
Time-dependent Richard’s equation Nonlinear, elliptic–parabolic

bines aspects of both physics-based and data-driven tech-
niques to overcome the limitations of the individual ap-
proaches (Fig. 1c). A detailed overview of this technique is
provided in Sect. 2.3.

2.1 Physics-based surrogate modeling and model order
reduction

Model order reduction (also called reduced-order modeling)
has been extensively used in various application fields, such
as groundwater (Ghasemi and Gildin, 2016; Gosses et al.,
2018; Rousset et al., 2014) and thermal studies (Rizzo et al.,
2017). The idea is to find a low-dimensional representa-
tion of the original high-dimensional problem, while main-
taining the input–output relationship. This low-dimensional
representation allows a fast computation, enabling, in turn,
probabilistic inverse methods and other forward-intensive al-
gorithms. Commonly known methods of projection-based
model order reduction techniques are proper orthogonal de-
composition (POD) (Benner et al., 2015; Hesthaven et al.,
2016; Volkwein, 2011), the reduced-basis (RB) method
(Hesthaven et al., 2016; Prud’homme et al., 2002; Quarteroni
et al., 2015), and balanced truncation (Antoulas, 2005). In the
following, we will briefly introduce the POD and RB meth-
ods since they are relevant for the remaining case studies. For
a more detailed overview of projection-based model order re-
duction, we refer to Benner et al. (2015).

POD is the probably most widely used projection-based
model order reduction technique. For the construction of the
reduced model, we first calculate snapshots. Snapshots are
state distributions for different parameters (e.g., rock prop-
erties) and/or different time steps. Afterwards, we perform
a singular value decomposition. The reduced basis is ob-
tained by keeping the singular vectors corresponding to the
largest singular values. The resulting orthonormal POD basis
is turned into the reduced model through a Galerkin projec-
tion (Benner et al., 2015; Hesthaven et al., 2016; Volkwein,
2011). We categorize the POD as a physics-based method
since through the projection the PDE is translated from the
space of the spatial coordinates to the material properties. In
the case that all POD modes are used this leads to an equiv-
alent representation. The Galerkin projection needs access
to the stiffness matrix and load vector and hence direct ac-
cess to the discretized version of the PDE. Note that a POD
can also be directly applied to, for instance, image data that
have not been constructed by PDEs. However, in this case,

no Galerkin projection would be applied. In the geoscience
community, the POD method has been used in, for instance,
thermal applications (Rousset et al., 2014) and groundwater
studies (e.g., Ghasemi and Gildin, 2016; Gosses et al., 2018;
Rizzo et al., 2017; Vermeulen et al., 2004; Vermeulen and
Heemink, 2006).

Another physics-based method is the RB method. The idea
of RB is similar to the principle of POD. The main dif-
ference is the construction of the reduced basis. In RB the
selection of the snapshots is often performed via a greedy
algorithm as the sampling strategy. The greedy algorithm
chooses the solution that adds the highest information con-
tent at each iteration (Bertsimas and Tsitsiklis, 1997; Veroy
et al., 2003). Afterwards, the orthonormalized snapshots are
added to the reduced basis and the reduced model is again
obtained via a Galerkin projection (Benner et al., 2015; Hes-
thaven et al., 2016; Prud’homme et al., 2002; Quarteroni
et al., 2015). Since this version of the RB method does not
calculate the snapshots in advance but calculates them “on
the fly” it performs slightly better for higher-dimensional pa-
rameter spaces (Jung, 2012). However, for the efficient con-
struction of the reduced basis, an error bound or estimator is
required. Currently, no efficient error bounds for hyperbolic
PDEs exist, limiting the applicability of the method. The RB
method is a physics-based method since, as described for
the POD above, it is a projection method, and the Galerkin
method requires the discretized version of the PDE.

A note of caution: the combination of the POD and the
Galerkin projection step is sometimes referred to as POD
(Swischuk et al., 2019) only and sometimes as POD-Galerkin
(Busto et al., 2020).

Both the POD and the RB method have limitations when
considering complex geophysical problems. Both methods
aim at an affine decomposable problem, meaning that our
problem is decomposable into a parameter-dependent and
parameter-independent part. This requirement is naturally
given for linear but not for nonlinear problems. Methods such
as the empirical interpolation method (Barrault et al., 2004)
exist to extend the methods for the nonlinear case, but their
performance for high-order nonlinearities is limited.

Our choice to mostly rely on physics-based methods stems
from the fact that understanding the physical processes is
a central component in geosciences. Physics-driven meth-
ods are ideal for predictions and risk assessments, but they
also have the major disadvantage of being computationally
too demanding for complex coupled subsurface processes.
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Figure 1. Schematic comparison of physics-based, data-driven, and physics-based machine learning methods for the construction of surrogate
models. “Meas.” indicates measured (e.g., well data, surface observations) and “Sim.” indicates simulated. The boxes with a+ list advantages,
and the boxes with a − list disadvantages of the method above.

In the literature, this can often be observed indirectly. For
example, in geothermal applications basin-scale applications
usually consider a hydrothermal system, whereas reservoir-
scale applications also incorporate the mechanical and/or
chemical processes (e.g., Freymark et al., 2019; Gelet et al.,
2012; Jacquey and Cacace, 2017, 2020b, a; Kohl et al., 1995;
Kolditz et al., 2012; Koltzer et al., 2019; O’Sullivan et al.,
2001; Poulet et al., 2014; Stefansson et al., 2020; Taron and
Elsworth, 2009; Taron et al., 2009; Vallier et al., 2018; Well-
mann and Reid, 2014). Another example is magnetotellurics
(MT). The inversion of MT data is very costly; hence, most
inversions are performed in 1D or 2D (e.g., Chen et al.,
2012; Conway et al., 2018; Jones et al., 2017; Rosas-Carbajal
et al., 2014). 3D MT inversion is challenging even with HPC
infrastructures (Rochlitz et al., 2019; Schaa et al., 2016).
How to accelerate solving the Maxwell equations through the
reduced-basis method and simultaneously achieve efficient
error estimates or bounds has been shown fundamentally in,
e.g., Chen et al. (2010), Hammerschmidt et al. (2015), Hess
and Benner (2013a), Hess and Benner (2013b), and Hess
et al. (2015). The potential of the reduced-basis method is
well illustrated in Manassero et al. (2020), where the authors
perform an adaptive Markov chain Monte Carlo run for an
MT application using the reduced-basis method.

2.2 Data-driven techniques

In applications where we have a huge amount of data (e.g.,
earthquake and seismic applications) and only limited knowl-
edge of the physical processes, data-driven approaches such

as machine learning are superior to purely physics-based
methods (Bergen et al., 2019; Raissi et al., 2019). Ma-
chine learning approaches are powerful in discovering low-
dimensional patterns and in reducing the dimensionality of
the model. Hence, they would be ideal for surrogate models.
A review of the state and potential of machine learning tech-
niques for the solid Earth community is provided in Bergen
et al. (2019) focusing on data-rich applications such as the
analyses of earthquakes. The applied methods in this field
comprise, for instance, (deep) neural networks, random for-
est, decision trees, and support vector machines. However,
open questions remain about the reliability, the explainabil-
ity of the models, the robustness, and the rigorousness of how
much the underlying assumptions have been tested and vali-
dated (Baker et al., 2019; Willcox et al., 2021). This is crit-
ical in applications such as risk assessment, where we need
to provide guarantees and confidence intervals for our pre-
dictions. Another issue is that data-driven approaches such
as machine learning are problematic in terms of robustness
and have no proven convergence if applied to the so-called
“small data” regime (Raissi et al., 2019). Raissi et al. (2019)
define the small data regime as a regime where the collection
of data becomes too expensive and thus conclusions have to
be drawn on incomplete datasets.

This is especially critical for the application field of solid
Earth, where we are classically concerned with a lack of data.
Hence, this field does not allow straightforward applicabil-
ity of data-driven approaches. Furthermore, in this field, we
need to perform predictions and risk assessments. Therefore,
black-box approaches, such as machine learning, pose a ma-
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jor challenge in how to provide guarantees and how to ob-
tain interpretable models (Baker et al., 2019; Willcox et al.,
2021).

Some data-driven methods assume that we are interested
in a quantity of interest and not in the entire state distri-
bution. Possible quantities of interest are the value of the
state variable at a certain location in space or the amount of
substance that is accumulated over time in a certain region.
Note that this class of methods allows a violation of the gov-
erning conservation laws since it commonly uses statistical
methods for the construction of the surrogate model (Bez-
erra et al., 2008; Cressie, 1990; Khuri and Mukhopadhyay,
2010). Typical methods used in the field of geosciences are
kriging, polynomial chaos expansion, and response surfaces
(Baş and Boyacı, 2007; Bezerra et al., 2008; Frangos et al.,
2010; Khuri and Mukhopadhyay, 2010; Miao et al., 2019;
Mo et al., 2019; Myers et al., 2016; Navarro et al., 2018). We
will not further discuss this class of methods since in this pa-
per we focus on applications that are not only interested in a
quantity of interest but also in the entire state distribution. For
an overview of data-driven machine learning techniques, we
refer to Jordan and Mitchell (2015), Kotsiantis et al. (2007),
and Mahesh (2020).

2.3 Physics-based machine learning

Data-driven methods are a nonideal choice in the Earth sci-
ences because they do not provide an understanding of the
underlying subsurface processes (Reichstein et al., 2019).
Furthermore, they require more data than physics-based
methods (Willcox et al., 2021), which is relevant because
some applications fields such as geodynamics and geother-
mal applications are characterized by data sparsity. However,
physics-based methods are also not applicable for complex
coupled processes since they do not capture the full com-
plexity of the problem.

This is the reason why we introduce the concept of
physics-based machine learning. Note that we discuss the
potential of these methods for applications where primar-
ily physical knowledge is available (in the form of PDEs)
with very sparse to no data. The discussion would be differ-
ent in a data-dominated application. Physics-based machine
learning uses a combination of data-driven and physics-based
techniques, as schematically shown in Fig. 1. For solving
PDEs Willard et al. (2020) distinguish various techniques,
comprising the categories of physics-guided loss functions,
physics-guided architectures, and hybrid models. These vari-
ous approaches are already compared in several papers (e.g.,
Faroughi et al., 2022; Swischuk et al., 2019; Willard et al.,
2020). However, they focus on applications where substan-
tially more data are available than in most subsurface appli-
cations. Therefore, we shift the focus to applications with
very sparse datasets. This impacts the potential of physics-
based machine learning methods differently, depending on
the paradigm used to combine physics- and data-based meth-

ods. So, instead of presenting numerous of these techniques
in detail, as already done in the aforementioned papers, we
want to discuss the different paradigms that exist. Here, we
identify two end-member cases: (i) physics-guided loss func-
tions and (ii) hybrid models.

In physics-guided loss function methods, the idea is to
use a data-driven approach and incorporate the physics in
the loss function to force the system to fulfill the physical
principles. They have a better performance for the small data
regime since the physical constraints regularize the system
and they constrain the size of admissible solutions (Raissi
et al., 2019). Within the field of physics-guided loss functions
various different approaches are available (e.g., Bar-Sinai
et al., 2019; De Bézenac et al., 2019; Dwivedi and Srini-
vasan, 2020; Geneva and Zabaras, 2020; Karumuri et al.,
2020; Meng and Karniadakis, 2020; Meng et al., 2020; Pang
et al., 2019, 2020; Peng et al., 2020; Raissi et al., 2019; Shah
et al., 2019; Sharma et al., 2018; Wu et al., 2020; Yang et al.,
2018; Yang and Perdikaris, 2018; Yang et al., 2020; Zhu
et al., 2019). For the following, we focus on the method of
physics-informed neural networks (PINNs) as an example.

The second class of physics-based machine learning tech-
niques that we present in more detail are hybrid models. In
this technique, the physics are not added as a constraint in the
loss function, but instead we perform both a physics-based
and a data-driven approach. Often the physics-based method
is executed first and the output serves as an input to the ma-
chine learning approach (Willard et al., 2020; Hesthaven and
Ubbiali, 2018; Swischuk et al., 2019). Also, for this class
of methods, various methods are available (Hesthaven and
Ubbiali, 2018; Malek and Beidokhti, 2006; Swischuk et al.,
2019; Wang et al., 2019); here we focus on the non-intrusive
RB method.

Note that both methods act as examples to better illustrate
the different concepts used for combining physics- and data-
based approaches. Numerous other methods exist such as the
physics-encoded neural network (PeNN) (Chen et al., 2018a;
Li et al., 2020; Rao et al., 2021), physics-encoded recurrent-
convolutional neural network (PeRCNN) (Rao et al., 2021),
the Fourier neural operator (FNO) (Li et al., 2020), and Deep-
ONets (Lu et al., 2021). We will not discuss these in detail
but shortly explain their relations to the two paradigms, rep-
resented by PINNs and the non-intrusive RB method.

2.3.1 Physics-guided loss functions and
physics-informed neural networks

PINNs overcome the shortcomings of machine learning tech-
niques by including physics in the system. The principle is
that in applications where we lack data we often have other
sources of information, including domain expert knowledge
and physical laws (e.g., conservation and empirical laws).
By including these additional sources into machine learning
the problem is regularized and the set of admissible solu-
tions greatly reduced, yielding significantly improved perfor-
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mance of the algorithm (Raissi et al., 2019). The idea of in-
cluding physical knowledge is well known for Gaussian pro-
cesses. However, Gaussian processes have only limited ap-
plicability for nonlinear problems (Raissi et al., 2017; Raissi
and Karniadakis, 2018). Therefore, PINNs rely on neural net-
works which are known for their good performance in the
estimation of nonlinear functions (Raissi et al., 2019).

In Fig. 2, we show the setup of a PINN schematically. The
first step is to create a (deep) neural network with space and
time as inputs. The network generates a model for the state
variable u. Through automatic differentiation, we obtain the
spatial and temporal derivatives, which, in turn, are used in
the calculation of the PDE. We learn the shared parameters of
the network and the PDE by minimizing a joint loss function
as presented in Eq. (1) (Raissi et al., 2019):

MSE=MSEu+MSEf ,

where MSEu =
1
Nu

Nu∑
i=1
|u
(
t iu,x

i
u

)
− ui |2,

and MSEf =
1
Nf

Nf∑
i=1
|f
(
t if ,x

i
f

)
|
2. (1)

Here, MSE stands for mean squared error, u(t,x) de-
notes the variable with the training data {t iu,x

i
u,u

i
}
Nu
i=1, and

{t if ,x
i
f , }

Nf
i=1 represents the collocation points for our PDE

f (x, t). The subscript u refers to the constraints for the
boundary and initial conditions and the subscript f to the
PDE constrains. Consequently, the MSEu minimizes the dif-
ference between the data u and the simulated data at the col-
location points (for the boundary and initial conditions). The
MSEf enforces the structure of the PDE at selected colloca-
tion points. Through the terms 1

Nu
and 1

Nf
, we can weight the

components of the loss function depending on, for instance,
the amount of available data and physical knowledge.

PINNs are frequently used due to their high flexibility and
straightforward implementation. They are used as a state es-
timation technique since they can recover the entire state
from a given set of observations. PINNs face problems in
high-frequency and multiscale feature scenarios (Wang et al.,
2022). Further disadvantages of PINNs are that the PDE is
used as a constraint (among other constrains) and is enforced
at a limited number of selected points only. Chuang and
Barba (2022) point out that PINNs also have disadvantages
concerning their computational efficiency. Due to the usage
of automatic differentiation many residuals need to be eval-
uated, leading to high computational costs. Additionally, in
their tested computational fluid dynamics applications, losses
close to zero needed to be minimized, yielding performance
and convergences issues. This problem is also expected for a
wide range of geoscientific applications. Lastly, Chuang and
Barba (2022) reported that PINNs did not reproduce the de-
sired physical solution in all of their benchmark examples.

Therefore, the applicability of PINNs should be investigated
prior to their use.

Numerous variations of PINNs are available, and we pro-
vide an overview of the following:

– B-PINNs (provide a built-in uncertainty quantification,
Yang et al., 2020)

– fPINNs (for fractional PDEs, Pang et al., 2019)

– nPINNs (for a nonlocal universal Laplace operator,
Pang et al., 2020)

– PPINNs (offer a time parallelization, Meng et al., 2020)

– sPINNs (for stochastic PDEs, Chen et al., 2019)

– XPINNs (offer an efficient space–time decomposition,
Jagtap and Karniadakis, 2020)

PINNs directly provide an estimate of the state and do not
preserve the input–output relationship (e.g., from model pa-
rameters to state information) of our original physical prob-
lem. Hence, we no longer have a model that takes rock and
fluid properties as input and produces estimates of, for in-
stance, the temperature or pressure as our output. Addition-
ally, PINNs assume that observation data might be sparse but
are available. In many geoscientific applications, we have an
extremely sparse dataset and sometimes no direct observa-
tion data. Just as an example, if we want to investigate the for-
mation of a sedimentary basin, we have only direct measure-
ments for the present state. For the past, we have at best in-
direct measurements at hand. Consequently, we do not have
enough data to utilize the PINN. In order to compensate, an
enrichment of the dataset by, for instance, numerical simu-
lations is needed. However, these numerical simulations are
the results of PDEs. So, the natural question would be why
we do not use a method that builds upon the principles of
PDEs rather than using the PDEs as a constraint. Therefore,
we do not see benefits in employing PINNs for applications
that have nearly no data, which is the case for the geother-
mal and geodynamic applications we consider in this paper.
For subsurface hydrological data the situation is better since
exhaustive data for the land surface are available. However,
the data are commonly of low quality (e.g., coarse, with sys-
tematic biases and measurement gaps). This yields similar
problems for the PINNs as in the “no data” case. Hence, we
focus in the remaining part of the paper on another physics-
based machine learning technique, namely the non-intrusive
RB method, which we present in the next section.

2.3.2 Hybrid methods – non-intrusive reduced-basis
method

The non-intrusive RB method originates from the model or-
der reduction community. Model order reduction and ma-
chine learning have huge similarities. For example, proper
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Figure 2. Schematic representation of a physics-informed neural network.

orthogonal decomposition is very closely connected to prin-
cipal component analysis (Swischuk et al., 2019). Swischuk
et al. (2019) pointed out that the difference between the meth-
ods has historical reasons. Model order reduction methods
have been developed by the scientific computing community
to reduce the high-dimensional character of typical scientific
applications. In contrast, machine learning originates from
the computer science community aiming at generating low-
dimensional representations through black-box approaches
(Swischuk et al., 2019).

The first method that we presented, physics-informed neu-
ral networks, can be seen as a machine-learning method,
where we use physics to constrain our system. On the other
hand, the non-intrusive RB approach can be seen as a modi-
fication of the model order reduction techniques of POD and
RB using data-driven approaches. The major difference be-
tween the methods is the question of what we learn from the
algorithm. For PINNs, we are learning the operators them-
selves. In contrast, the non-intrusive RB method derives a
mapping between the input parameters (e.g., rock properties)
and the output (e.g., temperature and pressure distribution)
(Swischuk et al., 2019).

The idea behind model order reduction is that the reduced
solution uL (x;µ) can be expressed as the sum of the prod-
uct of the basis functions ψ (x) and the reduced coefficients
urb (µ). Here, x defines the spatial coordinates and µ the pa-
rameters. The procedure is described in Eq. (2) (Hesthaven
and Ubbiali, 2018):

uL (x;µ)=

L∑
l=1

u
(l)
rb (µ)ψl (x) . (2)

So, for the construction of the surrogate model, two steps
are required. First the basis functions are determined, and
afterwards the reduced coefficients are conventionally de-
termined by a Galerkin projection. In Sect. 2.1, we present

two projection-based model order reduction techniques. The
disadvantage of the presented methods is that they have
only limited applicability to nonlinear PDEs (Hesthaven and
Ubbiali, 2018; Wang et al., 2019). Furthermore, they re-
quire access to the decomposed stiffness matrix and load
vector. However, this retrieval is sometimes prevented by
the forward solver (i.e., in commercial software packages)
(Peherstorfer and Willcox, 2016). Limitations regarding
both nonlinearity and the software arise from this intrusive
Galerkin projection.

To overcome the problem with the projection recent
advances have replaced the intrusive projection with a
non-intrusive approximation (Hesthaven and Ubbiali, 2018;
Wang et al., 2019). Hesthaven and Ubbiali (2018) and Wang
et al. (2019) propose a (deep) neural network for learning
the reduced coefficient. Other approaches including interpo-
lation and machine learning methods have been explored for
this purpose (Swischuk et al., 2019). Swischuk et al. (2019)
compare four machine learning methods, namely neural net-
works, multivariate polynomial regression, k-nearest neigh-
bors, and decision trees, for the determination of the reduced
coefficients in aerodynamic and structural applications. Au-
douze et al. (2009, 2013) and Wirtz et al. (2015) use Gaus-
sian process regression to determine the reduced coefficients.
Another strategy is proposed in Mainini and Willcox (2015),
where the reduced coefficients are learned by an adaptive
mixture of self-organizing maps and response surfaces.

Due to the different methods for obtaining the reduced
coefficients, the commonly used greedy sampling strategy
of the intrusive RB method (Hesthaven et al., 2016; Veroy
et al., 2003) has to be modified. For the selection of basis
functions, we can either use a POD (Hesthaven and Ubbiali,
2018; Wang et al., 2019) or a modified greedy sampling strat-
egy (Chen et al., 2018b). In the case of the POD, which is
used in this paper, the snapshots (i.e., simulation results for
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Figure 3. Schematic representation of the non-intrusive reduced-basis method with a proper orthogonal decomposition sampling strategy.

different model parameters) serve as an input and the basis
functions as an output. For the second stage, the projection
is via a machine learning method. The labels are the differ-
ent model parameters (e.g., permeability, thermal conductiv-
ity), the training data the matrix product of the snapshots and
the basis functions, and the outputs the reduced coefficients.
Taking the matrix product of snapshots and basis functions
means that the dimension of spatial degrees of freedom does
not enter into the training of the machine learning model,
which has great implications regarding the cost of training
these models, as we will detail in Sect. 3.5.

Note that non-intrusive model order reduction is not re-
stricted to the inference of the output states via the in-
put parameters. As an example, Peherstorfer and Will-
cox (2016) developed a data-driven operator inference non-
intrusive method. However, this method is restricted to low-
dimensional nonlinearities for computational reasons (Pe-
herstorfer and Willcox, 2016). As we aim to demonstrate
the potential of physics-based machine learning, we chose
as an example two techniques: one closer to the community
of computer science and the other closer to the community of
scientific computing. We do not aim to provide an overview
of all possible methods.

Again, we add a note of caution with regard to the ter-
minology. The non-intrusive RB method consists of a sam-
pling and projection step. If we use, for instance, the POD as
the sampling method and the NN as the projection method,
then this is often referred to as POD-NN (Hesthaven and Ub-
biali, 2018) instead of non-intrusive RB. In this paper, we
use various machine learning techniques for the projection
step. Since this has no general impact on the applicability
of physics-based machine learning we use the more general
term of non-intrusive RB to avoid unnecessary confusion.

2.3.3 Other physics-based machine learning methods

As discussed before, many physics-based machine learning
methods are available, all with their own advantages and dis-
advantages. Nonetheless, we can identify generally differ-
ent approaches regarding how to integrate physics into data-
driven approaches; see also Willcox et al. (2021). These di-
verse approaches yield different potential for addressing cur-

rent challenges faced in subsurface applications, as we will
present in Sect. 4. So, in the following, we briefly present
other physics-based machine learning methods and how they
relate to the two paradigms presented in detail.

The idea behind PeNNs is to hard-encode the prior phys-
ical knowledge in the architecture of neural networks. This
can be achieved through various methods (Chen et al., 2018a;
Li et al., 2020; Rao et al., 2021). One possibility is the PeR-
CNN, where an optional physics convolution layer is imple-
mented. This means that the method is in between PINNs
and the non-intrusive RB method. It is able to overcome
some common problems encountered with PINNs since it
does not implement physics as one of many possible con-
straints. However, the method is still a statistical interpola-
tion method and therefore cannot guarantee a preservation of
the physics. Regarding the categories that are used in Willard
et al. (2020), this method would fall under the category of
physics-guided architectures.

Another method that is associated with PeNNs involves
FNOs (Faroughi et al., 2022; Li et al., 2020). This method
uses Fourier layers instead of the typical layers used in a neu-
ral network. Conceptually this is close to the non-intrusive
RB method. In the Fourier layers the data are decomposed,
similar to the POD step of the non-intrusive RB method.
However, the main difference is that FNO is limited to sine
and cosine functions. Neural operators are known to require
large training datasets (Lu et al., 2022), which is critical in
the applications presented here since the generation of the
data is often very costly. Furthermore, they are limited when
it comes to complex 3D problems (Lu et al., 2022). Another
difference to the non-intrusive RB method is that again the
approach is embedded into a data-driven scheme. Something
similar is the case for DeepONets (Lu et al., 2021), which
overcome the requirement of structured data that FNOs have
but show conceptually similar limitations as FNOs.

2.3.4 Differences in physics-based machine learning

We provide examples from the field of hydrology and water
resource management since machine learning is currently ac-
tively being studied in these research fields (Shen et al., 2021;
Sit et al., 2020). This is fueled by the promise of ML to un-
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ravel information and provide hydrological insights (Nearing
et al., 2021) in what can be considered increasingly rich(er)
datasets, especially for surface hydrology (in comparison to
subsurface hydrology and other subsurface geoscientific ap-
plications, such as geodynamics). Typical applications of ML
include runoff and flood forecasting, drought forecasting,
water quality, and subsurface flows, among many others (see
Ardabili et al., 2020; Bentivoglio et al., 2021; Mohammadi,
2021; Sit et al., 2020; Zounemat-Kermnai et al., 2021, for ex-
tended reviews on the topic). Many of these applications are
based on artificial neural networks (ANNs) and deep learn-
ing tool sets which have become accessible to hydrologists
thanks to the arrival of well-established and GPU-enabled li-
braries. It is currently clear that ML offers a wide range of
possibilities in hydrology, such as faster-than-real-time fore-
casting, extracting information from citizen data, parameter
inversion, and uncertainty quantification. The idea of ML
surrogates is increasingly being exploited in hydrological re-
search (e.g., Bermúdez et al., 2018; Liang et al., 2019; Tran
et al., 2021; Zahura et al., 2020; Zanchetta and Coulibaly,
2022).

Physics-based ML is still rare and incipient in hydrol-
ogy, with efforts largely motivated by overcoming the black-
box nature of traditional ML techniques (Jiang et al., 2020;
Young et al., 2017) and the need to include physical con-
straints and theory (Nearing et al., 2021). The techniques to
inform ML of the physics, as well as how much of the physics
is embedded into the problem, depend on the application and
the underlying deterministic model, ranging from ordinary
partial differential equations (ODEs) (Jiang et al., 2020) to
classical lumped cascade hydrological models (Young et al.,
2017), subsurface hydraulic parameter estimation based on
nonlinear diffusion equations (Tartakovsky et al., 2020), the
Darcy equation (He et al., 2020) and Richards equation
(Bandai and Ghezzehei, 2021), and overland flow (Maxwell
et al., 2021). It is therefore clear that there is growing mo-
mentum and clear potential gains in exploring physics-based
ML in hydrological sciences, motivated by methodological,
theoretical, and computational factors.

The term physics-based machine learning is used in an in-
creasing number of scientific works; however, the method-
ologies employed vastly differ. Therefore, we would like
to briefly elaborate on the differences between these tech-
niques. Note that this explanation is purely meant to illus-
trate the usage of the term physics-based machine learning
throughout the remaining part of this paper. To our knowl-
edge, there is no unique definition of that term. Furthermore,
we will only illustrate the differences between the method-
ologies presented here. We do not aim to provide a complete
overview of all physics-based ML techniques but rather il-
lustrate the various concept associated with the technique in
general.

What might be sometimes defined as physics-informed or
physics-based approaches are applications whereby the sur-
rogate model is constructed with classical data-driven ML

techniques but the data originate from a physical model in-
stead of observation data. In this paper, the definition of
physics-based ML is purely based on the methodology. Since
the former application is methodology-wise the same as a
data-driven approach this would be defined here as a data-
driven and not a physics-based ML technique.

The two physics-based ML techniques presented here are
PINNs and the non-intrusive RB method. Both methods have
similar aims but are vastly different in where and how ML
techniques and physics are utilized. PINNs use the physics as
an additional constraint in the loss function and do not pre-
serve the original structure of the problem. In contrast, the
non-intrusive RB method extracts the main physical char-
acteristics and weights them using an ML technique, while
maintaining the input–output relationship.

3 Benchmark studies

Combining both data- and physics-driven techniques allows
for robust and reliable (surrogate) models that enable proba-
bilistic inverse processes, which yield a significant improve-
ment in the understanding of the Earth system. For an illus-
tration of the potential that physics-based machine learning
has for the community, we present in the following three
benchmark studies from the field of geothermal, geodynami-
cal, and hydrological applications. Afterwards, we use these
studies to illustrate how physics-based machine learning can
help to overcome the challenges introduced at the beginning
of the paper.

3.1 General workflow

Before we present three case studies in the next section, we
present a general workflow (Fig. 4) and point out some com-
mon pitfalls for the data-driven part of the methodology. Al-
though the procedure is developed with the projection part
of the non-intrusive RB method in mind, it applies to a wide
range of data-driven approaches. For the following workflow,
we assume that a geometrical and physical model is already
available. Hence, we assume that the model is already tested
for single forward simulations.

1. At the beginning of the procedure, we need to define the
training and validation set. For its generation, several
aspects have to be taken into account.

a. The sampling strategy is crucial to ensure a small
and reliable training set. We recommend using the
Latin hypercube sampling method. Regular sam-
pling schemes with equal spacings should be used
with caution. They bear the danger of always hav-
ing the same ratio between the various input param-
eters. In this case, the predictions will only be ac-
curate if that ratio is maintained. To ensure that the
sampling method is not negatively impacting the
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prediction, we strongly recommend using a differ-
ent sampling strategy for the validation and training
dataset. In our studies, we use randomly chosen pa-
rameter combinations for the validation dataset.

b. Another important aspect is the size of the training
and validation set. The size of the training dataset
cannot be determined in general since it is depen-
dent on the underlying complexity of the parame-
ter space. However, as a control check, the train-
ing dataset needs to be significantly larger than the
number of basis functions obtained via the POD
method. The size of the validation dataset should
be at least 10 % of the training dataset.

2. After generating the training and validation dataset and
before applying the physics-based machine learning
method, it is important to preprocess the data. The pre-
processing involves the following steps.

a. The first is the scaling of the input parameters.
Common scaling methods are the normal and the
min–max transform. In this study, we use normal
transformed parameters. This means that the mean
of each of the input parameters is zero and that they
have a standard deviation of 1.

b. Also crucial is the preprocessing of the actual train-
ing and validation data. This consists of two steps.

i. The first step is the removal of static effects
such as the initial conditions. As an example,
we often have an initial temperature distribution
that is a magnitude larger than the changes in-
duced by the varying rock properties. In order to
capture the changes induced by the rock prop-
erties it is important to remove this “masking”
effect.

ii. The other important step is the scaling of the
data. Again, common scaling methods are the
normal and the min–max transform. In this pa-
per, we employed, where necessary, the min–
max transform.

3. After preparing the data, we can perform the physics-
based machine learning method. When using methods
such as neural networks, the search for optimal hyper-
parameters (parameters that determine the architecture
of the machine learning model) can be extremely time-
consuming. This is a cost that should not be underes-
timated since it can prolong the construction time of
the surrogate model significantly, which majorly im-
pacts the efficiency of the concept. To considerably
speed up the hyperparameter search, we advise us-
ing a Bayesian optimization scheme with hyperbands
(BOHB) (Falkner et al., 2018). The idea behind BOHB
is to accelerate the convergence rate of the Bayesian op-
timization for the tuning of the hyperparameters with

the hyperbands. Furthermore, the methodology yields
a scalable approach suited for parallel computing. For
further details, we refer to Falkner et al. (2018).

3.2 Geothermal example

For the geothermal benchmark study, we consider a three-
dimensional model with three equally spaced horizontal lay-
ers (Fig. 5). The problem is nondimensional, with an extent
of 1 in the x, y, and z direction. The spatial mesh is a tetra-
hedral mesh with 11 269 nodes.

As the physical model, we take a fully coupled hydrother-
mal simulation into account, for which we consider the heat
transfer equation (Nield and Bejan, 2017):

∂ ((ρc)mT )

∂t
=∇ · (λ∇T − (ρcT )fv)+H,

with (ρc)m = (1−φ)ρscs+φρfcf,

and λm = (1−φ)λs+φλf. (3)

Here, ρ is the density, c the specific heat capacity, T the tem-
perature, t the time, λ the thermal conductivity, H the radio-
genic heat production, and φ the porosity. The subscripts m,
s, and f stand for the porous medium, the solid properties,
and the fluid properties, respectively. For the fluid discharge
v, we consider Darcy’s law (Nield and Bejan, 2017):

v =−
k

µ
(∇p+ ρfg∇z), (4)

where k denotes the permeability, µ the viscosity, p the pres-
sure, g the gravity acceleration, and z the vertical coordinate
component. In this section, we consider natural convection
resulting in a temperature-dependent density of the follow-
ing form (Nield and Bejan, 2017):

ρf = ρref (1−α (T − Tref)) , (5)

where the subscript ref denotes the reference properties and α
the thermal expansion coefficient. Furthermore, we consider
the Boussinesq assumption (Nield and Bejan, 2017):

B = α1T . (6)

Note that we consider the nondimensional representation to
investigate the relative importance of the material properties
and to improve the efficiency. This means all properties and
variables in the following are presented in their dimension-
less form. Since nondimensionalization is not the focus of
this paper, we only present the nondimensional equations
themselves and not their derivations. For a detailed deriva-
tion of the nondimensional equations refer to Degen (2020)
and Huang (2018). The nondimensional heat and fluid flow
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Figure 4. Schematic representation of the workflow to efficiently generate surrogate models by using physics-based machine learning tech-
niques.

Figure 5. Representation of the geological model used for the
geothermal benchmark study. In addition to the geological layers
the boundary conditions are also indicated.

can be expressed as

∇ · q∗ = 0,

q∗ =−∇∗p∗+
√

RaT ∗ĵ ,
∂T ∗

∂t
+
√

Raq∗ · ∇∗T ∗−∇2T ∗ = 0,

with Ra=
ρrefgαklref1T

µκ
,

and κ =
λm

ρrefcf
.

(7)

Here, the asterisk denotes the nondimensional variables, ĵ
the unit vector, and lref the reference length.

For the numerical modeling, we use the finite-element
software DwarfElephant (Degen et al., 2020a, b), which is
based on the MOOSE framework (Permann et al., 2020).

The pressure distribution has a Dirichlet boundary condi-
tion of zero at the top and the remaining boundary condi-
tions are no-flow boundaries. For the temperature, we apply
Dirichlet boundary conditions at the top and the base of the
model, where the top boundary condition has a value of zero
and the base one has a value of 1. The remaining boundaries
have zero Neumann boundary conditions. For the time step-
ping, we consider an equal spacing between 0 and 0.8, result-
ing in 15 time steps. Note that the time is dimensionless. The
initial condition is zero everywhere in the model domain.

During the study, we assume that the top and base layers
are low-permeability layers with a variation range of 1 to 4
for the Rayleigh number (Ra) and the middle layer is a highly
permeable layer with a variation range of 36 to 64 for Ra. For
these parameter ranges, we construct two training datasets:
one with 50 samples and one with 100 samples. Throughout
the entire paper, we use a Latin hypercube sampling strategy
for the training datasets and a random sampling strategy for
the validation dataset. In the case of the geothermal example,
we have a validation dataset consisting of 20 samples.

For this benchmark example, we investigate how to con-
struct reliable surrogate models for the pressure and temper-
ature distribution resulting from the nonlinear and hyperbolic
PDE (Eq. 3). We employ the non-intrusive RB method with a
Gaussian process regression (GPR) as the machine learning
method during the projection step since the variations tested
here are linear. We use the GPR method during the projection
step since it is known to perform well for linear variations
and has fewer hyperparameters that need to be determined,
yielding a more efficient construction of the surrogate model.
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Figure 6. Representation of the accuracy for the pressure and temperature distribution of the geothermal benchmark study. The top three
panels show the model for the pressure response; panel (a) contains the original pressure distribution of the finite-element model, panel (b)
shows the error between the reduced and full model, and panel (c) lists the accuracy of the reduced pressure response model for different
training sample sizes. Analogously, the three bottom panels display the temperature response; panel (d) shows the temperature response of
the finite-element model, panel (e) illustrates the error between the reduced and full model, and panel (f) displays the accuracy of the reduced
temperature response model for varying training sample sizes.

We start the discussion with the surrogate model for the
pressure distribution (top three panels of Fig. 6). The pres-
sure distribution for the full finite-element model is shown in
Fig. 6a. As mentioned in the description of the non-intrusive
RB method, the method consists of two steps: the POD step
(where we determine the basis functions) and the projection
step (where the weights are determined). Overall, we de-
sire to achieve an accuracy of 10−3; this accuracy is chosen
with respect to typical errors of pressure measurements. To
reach this accuracy, we require five basis functions, which
are partly shown in Fig. 3. The error distribution for one ran-
domly chosen sample from the validation dataset is shown in
Fig. 6b. Here, we can see that the error distributions follow
the pattern of the higher-order modes obtained by the POD
method. This is in accordance with our expectations since we
truncated the basis after reaching the desired accuracy. Con-
sequently, we lose information about the higher-order modes.
In Fig. 6c, we compare the accuracies for the training datasets
with 100 and 50 samples, and we reach our desired accuracy
for 50 simulations .

Similar results are obtained for the temperature distribu-
tion (Fig. 6d), where we require seven basis functions to
obtain an accuracy of 10−3. Note that in this example, we
chose the same tolerances for the pressure and temperature
model. However, they do not need to be the same. Hence,
the tolerances can be adjusted to the varying measurement

accuracies of, for instance, pressure and temperature mea-
surements. Also, for the temperature model we observe that
the errors (Fig. 6e) follow the distribution of the higher-order
POD modes and that 50 simulations in the training set are
sufficient to reach the desired tolerance (Fig. 6f).

The benefits of the method become apparent when we have
a closer look at the computation times. The finite-element
model requires 85 s to solve for the pressure and temperature
for all time steps. On the other hand, the reduced model re-
quires 1 ms for solving either the pressure or the temperature
for a single time step. Note that in the case of the reduced
model, we can solve for individual time steps and state vari-
ables and do not need to solve for the entire time period if we
are, for instance, only interested in the final time step. But
even if we want to solve for both variables for all time steps,
we are nearly 3 orders of magnitude faster with the reduced
model. From previous studies using the intrusive RB method,
this speed-up is expected to be higher for real case models be-
cause the complexity of these models increases more slowly
than the degrees of freedom (Degen et al., 2020a; Degen and
Cacace, 2021; Degen et al., 2021b).

3.3 Geodynamic example

For the numerical modeling of the geodynamic benchmark,
we use the thermomechanical finite-element code SULEC v.
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6.1 (Buiter and Ellis, 2012; Ellis et al., 2011; Naliboff et al.,
2017). The software solves the conservation of momentum,

∇ · σ ′−∇p+ ρg = 0, (8)

and the incompressible continuity equation,

∇ · v = 0, (9)

where σ ′ is the deviatoric stress tensor, p is the pressure, ρ is
the density, g is the gravitational acceleration, and v is the ve-
locity. The density variations are described analogous to the
geothermal example (Eq. 5). Also, the heat transfer is simi-
lar to the geothermal description (Eq. 3), with the main dif-
ference that we obtain shear heating as an additional source
term:

ρc

(
∂T

∂t
+ v · ∇T

)
=∇ · λ∇T +H + 2σ ′2 · ε̇

′

2. (10)

Here, σ ′2 and ε̇′2 are the second invariant of the deviatoric
stress and strain tensors, respectively.

For this study, we consider the development of a salt
dome (Fig. 7). The linear viscous salt rises buoyantly upward
through linear viscous sediment layers. The rise is initiated
by a sinusoidal perturbation of the salt–sediment interface
with a 40 m amplitude. Note that all Neumann boundary con-
ditions (Fig. 7) are no-flow boundary conditions. All velocity
Dirichlet boundary conditions have a value of 0 m s−1. Fur-
thermore, the temperature at the top of the model has a fixed
value of 0 ◦C and at the base a value of 140 ◦C. The dis-
charge temperature Dirichlet boundary condition at the lat-
eral sides has a value of 0 m3 s−1. The model extends 8 km
in the x direction and 4 km in the y direction. For the spatial
discretization of the 2D benchmark study, we use quadratic
cells with a resolution of 40 m× 40 m, resulting in a struc-
tured mesh with 20 301 nodes. SULEC solves for velocities
on the nodes, whereas pressure is constant over the cells and
obtained in Uzawa iterations (Pelletier et al., 1989).

For the time stepping, we use fixed time steps of 5 kyr and
simulated from 0 to 6.25 Ma. In contrast to the previous ex-
ample, we consider the dimensional case here. Nondimen-
sional forward simulations are more efficient for physics-
based machine learning methods. However, many simula-
tions in the field of geosciences are often conducted in di-
mensional form. Hence, we want to illustrate how these sim-
ulations need to be processed to ensure an efficient construc-
tion of the surrogate models. Note that we describe the gen-
eral workflow in Sect. 3.1; we will only briefly highlight the
most important steps for the geodynamic case study here.

For the given example, we allow a variation of
the thermal conductivity of the sediments between 2.5
and 3.0 W m−1 K−1 and for the salt between 5.0 and
8.0 W m−1 K−1. This means we assume that the thermal con-
ductivity of the salt has higher uncertainty than that of the
sediments. We construct a training set of 50 samples with a

Latin hypercube sampling strategy, and the validation dataset
consists of 10 randomly chosen samples. The remaining
model parameters stay constant throughout all simulations
and are displayed in Table 2. We consider linear viscous ma-
terials that are tracked with tracers. For the benchmark ex-
ample, we have in total 182 709 tracers at the start, yielding a
minimum of 16 and a maximum of 20 tracers per cell (which
are maintained by a tracer population control). The tracers
are moved using a second-order Runge–Kutta scheme.

In Fig. 8, we present the result of the finite-element for-
ward model and the accuracy of the surrogate model. Fig-
ure 8a shows the temperature distribution of the full model
ranging from 0 to 140◦C. We observe that the changes in-
duced by the variations of the thermal conductivities (at
the interface between the salt dome and the sediments) are
much smaller than the initial temperature distribution. Fur-
thermore, the initial temperature distribution is independent
of any variations in the thermal conductivity. Hence it is
the same for all forward simulations. Therefore, we train
the model only on the temperature variations, which we ad-
ditionally scale between 0 and 1 by calculating the mini-
mum and maximum temperature values of the entire train-
ing dataset. The scaled temperature distribution used within
the algorithm is shown in Fig. 8b. If visualizations of the ab-
solute temperature distribution are desired they are obtained
by adding the initial condition after calculating the reduced
forward model.

Figure 8c displays the difference between the full and re-
duced model, where the highest errors are of the order of
0.1 ◦C. This means that the errors induced by the approxi-
mation are lower than those of typical temperature measure-
ments. We observe the highest errors at the flanks, in the
lower part of the model. This matches our expectations since
we have the largest changes at the interface between the salt
diapir and the surrounding sediments. Furthermore, the tem-
perature distribution at the flanks is more diffusive in contrast
to the very sharp changes at the top of the salt dome, which
adds to the higher errors of the reduced model at these lo-
cations. In total, we required 18 basis functions to reach the
given accuracy. Note that the number of basis functions is
relatively high because of the rather abrupt changes that we
need to capture.

Analogously to the geothermal example, we evaluate the
gain in computation time. The average computation time
over 50 finite-element simulations is 1.05 h (including input–
output processes) on two Intel Xeon Platinum 8160 CPUs
(24 cores, 2.1 GHz, 192 GB of RAM) using the PARallel
DIrect SOlver (PARDISO) (Schenk and Gärtner, 2004). In
contrast, the average computation time over 50 reduced sim-
ulations is about 2 ms for a single time step. Note that with
the reduced model, we can perform predictions for individual
time steps. That this is of general interest can be seen directly
in this case study. Although we calculate the solution for all
1250 time steps, we output 14 only. Note that only these 14
time steps have been used to construct the surrogate model.
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Figure 7. Geological model of the salt diapir at 4.5 Myr. The temperature isolines are plotted for a realization from the training dataset.

Table 2. Model parameters of the geodynamic benchmark example.

Parameter Value

Sediments Salt

Density 2300 kg m3 2160 kg m3

Viscosity 3.00× 1019 Pa s 2.67× 1018 Pa s
Gravitational acceleration −9.81 m s−2 (in y direction only)
Specific heat capacity 833 J kg−1 K−1

Radiogenic heat production 0 W m−3

Thermal expansion coefficient 0 K−1

However, the model is trained for spatial and temporal vari-
ations. Hence, we can also retrieve intermediate time steps.
The obtained speed-ups range between 5 orders of magni-
tude (interested in all 14 display time steps) and 6 orders of
magnitude (interested in a single time step).

To construct the surrogate model, we require in total 18
basis functions to reach our POD tolerance of 10−3, as dis-
played in Fig. 9. Having a closer look at the basis functions,
we observe that the “low-frequency” information is pre-
sented in the first basis functions and the “high-frequency”
information in the last basis functions. This nicely shows
the analogy between the non-intrusive RB method and the
Fourier decomposition.

For the determination of the hyperparameters, we use
Bayesian optimization with hyperbands (as described in
Sect. 3.1). To save memory, the training was performed us-
ing only every second node. All results and accuracies pre-
sented here are calculated using all nodes in space. The hy-
perparameters obtained after optimization are presented in
Table 3. With these hyperparameters, we obtain an error of
2.21× 10−6 for the scaled training dataset and an error of
1.99× 10−6 for the scaled validation dataset.

3.4 Hydrological example

In this section, we present a proof-of-concept hydrological
application inspired by a well-known two-dimensional infil-
tration problem on a domain with soil heterogeneity, origi-
nally proposed by Forsyth et al. (1995). The setup is illus-
trated in Fig. 10. The domain has impervious lateral and
bottom boundaries and four zones with different soils, rep-
resented through different permeabilities. A uniform initial
pressure of h=−100 cm was set and an infiltration flux q is
prescribed on the top left corner of the domain.

Although this is evidently a benchmark problem, it offers
many of the complexities which arise in subsurface flow sim-
ulation, such as heterogeneity and sharp infiltration fronts,
and therefore nicely serves as a proof of concept.

The physical model for variably saturated flow in a porous
medium is the Richards equation (Richards, 1931):

∂θ

∂t
=∇ [K(h)∇ (h+ z)] , (11)

where h is pressure, θ is the volumetric soil water content,K
is hydraulic conductivity, t is the time, and z is the vertical
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Figure 8. Comparison of the full finite-element and the reduced model. (a) The temperature distribution of the finite-element solution, (b) the
scaled finite-element solution as utilized in the training of the reduced model, and (c) the difference between the reduced and full solution.

Table 3. Hyperparameters of the neural network for the geodynamic benchmark example. Note that hl denotes hidden layers.

Hyperparameter Value

Number of hidden layers 3
Number of neurons per hidden layer 427 (hl 1), 383 (hl 2), 313 (hl 3)
Number of epochs 22 438
Learning rate 4.68× 10−4

Batch size 216
Loss function Sigmoid
Optimizer Adam

coordinate. A soil model is necessary to provide closure rela-
tionships, for which, for this case, we use the Mualem model
for the water retention curve θ(h) and the van Genuchten
model for K(θ(h)) (van Genuchten, 1980). The resulting
mathematical model is a highly nonlinear diffusion equation,
formally an elliptic–parabolic PDE, which also shows very
sharp front propagation akin to that of advection problems
(Caviedes-Voullième et al., 2013).

To numerically solve Eq. (11) we rely on the well-
established hydrological model ParFlow (Kuffour et al.,
2020). ParFlow solves the Richards equation via a back-
ward Euler finite-difference scheme and uses multigrid-
preconditioned Newton–Krylov methods to solve the result-
ing system. It is massively parallelized and, in fact, recently
ported to GPUs (Hokkanen et al., 2021). For the infiltration
problem here, we do not leverage ParFlow’s HPC capabili-
ties, since the time to solution of this problem is only a few
seconds on a single CPU core. In contrast, we ran all realiza-
tions of both training sets in parallel in an HPC node in the
JUWELS system at the Jülich Supercomputing Centre.

In this proof-of-concept exercise, we first construct a train-
ing set for the non-intrusive RB method. A total of 100 dif-
ferent combinations of permeabilities for the four materials
in the domain are considered, as well as various inflow rates
q. A Latin hypercube strategy was used for sampling the five-
dimensional parameter space. A validation set of 20 samples
(with a random sampling strategy) was also generated. Im-
portantly, permeability values follow a lognormal distribu-
tion, whereas the infiltration flux follows a uniform distribu-
tion. The original permeabilities proposed by Forsyth et al.
(1995) were selected as the mean value for the lognormal dis-
tributions with a standard deviation of 1. The uniform distri-
bution for the infiltration flux was centered around 4 cm d−1

and a standard deviation of 0.5.
Similar to the previous case studies, we use the non-

intrusive RB method to construct a surrogate model that pre-
dicts the hydraulic head for every parameter combination in
the above-defined ranges at every time step. For the construc-
tion of the surrogate model, we require 124 basis functions.
This number is significantly larger than in the previous ex-
amples. This is related to the more pronounced nonlinearity
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Figure 9. Illustration of the 18 basis functions of the surrogate model, where (a) shows the first basis function and (r) the last basis function.

of the solutions, which differs for the various time periods.
Nonetheless, we obtain solutions in less than 3 ms (calcu-
lated over 100 iterations), yielding a speed-up of 3 orders
of magnitude (if we want to predict the solution for a single
time step). With the hyperparameters presented in Table 4,
we achieve an accuracy of 8.71× 10−7 for the scaled train-
ing set and 2.89 · 10−5 for the validation dataset.

The errors for the training and validation dataset are global
errors. In the next step, we look at the spatial distribution of
the approximation errors. Therefore, we pick an arbitrary so-

lution from the validation dataset and compare the solution
for the last time step (Fig. 11). Figure 11a and b look visu-
ally the same, which is the reason we focus the presentation
on the difference plot displayed in Fig. 11c. Here, we ob-
serve that no part of the model is underrepresented and that
the errors are the highest in areas where there is strong spatial
heterogeneity of the permeability fields and of the infiltration
flux (most notably around zone 4), both of which contribute
to strong nonlinear gradients in hydraulic head. The magni-
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Figure 10. Sketch of the infiltration problem for the proof-of-
concept hydrological application. Adapted from Forsyth et al.
(1995).

Table 4. Hyperparameters of the neural network for the hydrologi-
cal benchmark example. Note that hl denotes hidden layers.

Hyperparameter Value

Number of hidden layers 6
Number of neurons per hidden layer 88
Number of epochs 26 750
Learning rate 3.08× 10−4

Batch size 152
Loss function Sigmoid
Optimizer Adam

tude of the differences is below 2 cm, which for all practical
purposes is excellent agreement.

To ensure that the behavior is the same over the entire time
period, we pick four random time steps and repeat the pro-
cedure (Fig. 12). Note that for an easier comparison between
the various temporal responses, we plot the solution over the
number of nodes and no longer in the 2D representation from
above. We observe that the approximation quality is good
over the entire time period and that the errors tend to de-
crease with progressing time steps, which is again related to
the nonlinearity.

3.5 Physics-based machine learning versus data-driven
machine learning

In the previous section, we demonstrated how the non-
intrusive RB method can be used to construct reliable and ef-
ficient surrogate models through three designated benchmark
examples. The focus of this paper is to illustrate the perspec-

tive of physics-based machine learning for subsurface geo-
scientific applications and how this perspective might differ
for various approaches existing for physics-based machine
learning. Therefore, we extend the previous sections by con-
structing surrogate models through neural networks for all
three examples. We chose neural networks for this purpose
because this enables a comparison between a physics-based
and a data-driven machine learning approach, while at the
same time also showing the differences between the two
paradigms presented for physics-based machine learning, as
we detail later on.

One advantage associated with physics-based machine
learning vs. data-driven approaches is the reduction in the
amount of training data required by reducing the number of
admissible solutions through physical knowledge (Faroughi
et al., 2022; Raissi et al., 2019). Due to the simplicity of the
presented examples this could not be observed, and we ob-
tained similar global errors for both the non-intrusive RB and
the NN surrogate models. Nonetheless, it has been shown in,
for instance, Santoso et al. (2022) that for more complex ap-
plications significantly fewer data are required for physics-
based approaches.

Another important aspect becomes apparent by focusing
on the local error distributions presented in Fig. 13. Gen-
erally, the error distributions show a noisy behavior for the
data-driven approach, whereas they exhibit a smooth behav-
ior for the non-intrusive RB method. Furthermore, we can
observe in the areas marked with A and B that boundary con-
ditions are not preserved. Not only are they not preserved
but also show one of the highest errors in the entire surro-
gate model, which is related to the general challenge of op-
timizing for loss function values close to zero (Chuang and
Barba, 2022). Furthermore, we observe a sharp line in area
C, where regions of higher and lower error values occur adja-
cent to each other, which can not be explained through phys-
ical processes. Similar observations of error distributions not
corresponding to physical effects are observed for areas D
and E. In contrast, the error behavior of the non-intrusive RB
method is clearly related to physical processes and changes
in material properties, as detailed in the previous sections.
This observation is not only relevant for the comparison of
data-driven and physics-based machine learning approaches
but also for distinguishing between the various physics-based
machine learning methods. Methods that use physics-guided
loss functions (e.g., PINNs) will exhibit the same error be-
havior as the physics only enter in the loss functions, and
physics-guided architecture will also suffer from this as long
as the outer layer still operates as a neural network.

Finally, in Table 5, we compare the construction times for
the surrogate models (for both the non-intrusive RB method
and the NN), the evaluation times for a single surrogate
model run, and the original computation times for the full-
dimensional simulations. The first observation is that the
construction time of the surrogate models is considerably
smaller for the non-intrusive RB method than for the NN.
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Figure 11. Comparison of the prediction accuracy of the surrogate model for subsurface hydrology. We show in (a) the full solution of the
Richards equation, in (b) the prediction from the surrogate model, and in (c) the difference between the full and reduced solutions for the
time step 30 of an arbitrarily chosen solution from the validation dataset.

Figure 12. Comparison of the prediction accuracy of the surrogate model for various time steps. We show in (a) the response and in (b) the
differences between the full and reduced solutions. In panel (a) the full solutions are denoted by solid lines and the reduced solutions by
dashed lines.

This is related to the dimension of the training dataset en-
tering the machine learning part. For the non-intrusive RB
method, we first determine the basis functions and deter-
mine only the coefficient over the machine learning tech-
nique. This means that the training data have the dimension
Ns×Nbfs, where Ns is the number of snapshots and Nbfs is
the number of basis functions. In contrast, the dimension of
the training dataset for the NN is Ns×Ndofs, where Ndofs de-
notes the number of spatial degrees of freedom (e.g., nodes,
elements). Typically the number of basis functions is orders
of magnitude smaller than the degrees of freedom, yielding a
reduction in the construction time. The evaluation cost of the
surrogate models is comparable for both the non-intrusive
RB method and the NN. Furthermore, the evaluation times

of the surrogate model are between 3 and 6 orders of magni-
tude lower than the full-order evaluations. This demonstrates
the benefits of surrogate models for applications where ei-
ther results are required in real time or numerous evaluations
are necessary. Note that again the discussed aspect of the in-
creased construction time applies not only to NNs but also to
methods such as PINNs.

To conclude, even in applications where we do not have
the added benefit of the reduction in the amount of simula-
tion required, the non-intrusive RB method performs better
than data-driven alternatives, while yielding a lower compu-
tational cost.

Another point to note is that in this paper we looked at pa-
rameterized partial differential equations, assuming the pa-
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Figure 13. Comparison of the local error distribution for the surrogate models of the geothermal example (a) non-intrusive RB method and
(b) NN, the geodynamic example (c) non-intrusive RB method and (d) NN, and the hydrological example (e) non-intrusive RB method and
(f) NN.

Table 5. Comparison of the computational cost for the three benchmark examples considering both physics-based and data-driven machine
learning methods. Note that the construction time excludes the time required for the generation of the training data. The hyperparameters of
the NN are identical to the ones described for the non-intrusive RB method. For the geothermal example, we use the hyperparameters provided
for the geodynamic example since the non-intrusive RB method used a Gaussian process regression, and we perform the construction only
for the temperature.

Geothermal Geodynamic Hydrological

NI-RB NN NI-RB NN NI-RB NN

Surrogate construction time [min] 0.58 84 7 125 20 115
Surrogate evaluation time [ms] 1 3 2 3 3 2
Full model solve [min] 1.4 63 0.05

rameter of interest is a material parameter. This assumption
is purely exemplary. PINNs sampling the input from the state
itself can incorporate changing initial and boundary condi-
tions through the sampling. Similar considerations are valid
for the non-intrusive RB method. Here, additional parame-

ters are included to take variations in the initial and bound-
ary conditions into account. Examples are provided in, for
instance, Degen (2020), Degen and Cacace (2021), Degen
et al. (2022b), and Grepl (2005).
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4 Challenges and requirements

We introduced three challenges and four requirements com-
mon to many geoscientific applications in the Introduction.
In the following, we elaborate on how physics-based ma-
chine learning, in particular the non-intrusive RB method,
can help to address these challenges and fulfill the require-
ments.

4.1 Challenge 1: sensitivity analysis

Global sensitivity analyses determine the relevant physical
parameters for the respective processes and their correla-
tion (Sobol, 2001). Therefore, they enhance our understand-
ing of the subsurface but are computationally demanding,
making them prohibitive for large-scale models. The non-
intrusive RB method addresses this computational challenge
through the construction of surrogate models. As pointed
out by Razavi et al. (2012) and Song et al. (2015) the us-
age of surrogate models in sensitivity analyses is critical. It
is critical because if the surrogate model does not represent
the high-dimensional model appropriately, we face the high
risk of producing biased sensitivity analyses and deriving the
wrong conclusions. Although we agree with this statement,
we think it is useful to distinguish between different surro-
gate modeling techniques highlighting the importance of a
surrogate model fulfilling the four listed requirements. As
shown for its intrusive counterpart, the results of a sensitivity
analysis do not change significantly with the surrogate model
accuracy (Degen and Cacace, 2021).

The non-intrusive RB method maintains the input–output
relationship of the PDEs, in contrast to, for instance, PINNs.
This means that in the classical formulation PINNs sample
from spaces in time and space and produce as output state in-
formation at any arbitrary location of the model. These con-
siderations are for a fixed set of model parameters (e.g., ma-
terial properties), making the method unsuitable for sensitiv-
ity analysis, where the model parameters need to be changed.
This is a disadvantage not only of PINNs but also of all other
methods that follow the idea of going from state informa-
tion to state information, while maintaining the same mate-
rial properties. Note that recent developments (Zhang et al.,
2022) allow a variation of the material properties. However,
the disadvantage is that the material properties embedded
in the loss function change throughout the training process,
meaning that an unphysical correlation between hyperparam-
eters and physical parameters is introduced.

In contrast, the non-intrusive RB method yields surrogates
that do not change the general characteristics of the orig-
inal problem. Consequently, we can address the challenge
of performing computationally expensive global sensitivity
analysis by using surrogate models constructed by the non-
intrusive RB method. This reduces the computational cost by
several orders of magnitude, making it a suitable technique
to also ensure the feasibility of global sensitivity studies for

large-scale models (Degen et al., 2021b; Degen and Cacace,
2021; Degen et al., 2021a, 2022b).

4.2 Challenge 2: uncertainty

Another application field where the non-intrusive RB method
offers great potential is the field of uncertainty quantification.
Here, the method can be used to generate fast surrogate mod-
els as a replacement for the computationally expensive high-
dimensional problem (Degen et al., 2021b, 2022c, a). Uncer-
tainty quantification (Iglesias and Stuart, 2014) determines
the uncertainties of the input parameters and has great poten-
tial in reducing the risk associated with installations. Uncer-
tainties can be further reduced by finding the optimal position
of new measurement locations by employing optimal exper-
imental design methods (Alexanderian, 2021). Also, for this
technique, the non-intrusive RB method is suitable to con-
struct surrogate models as shown in Degen et al. (2022a). An
important consideration in the usage of surrogate models for
uncertainty quantification is the reliability of the surrogate.
The surrogate needs to be representative of the original high-
dimensional model because otherwise the uncertainty quan-
tification is biased, analog to the discussion in the previous
section. Therefore, we require at least error estimators for the
surrogate model and in the ideal case error bounds, i.e., guar-
antees of the model accuracy. In contrast to other surrogate
modeling techniques, the non-intrusive RB method further
has the advantage of preserving the input–output relationship
and therefore maintains the structure of the original model.

Adaptive MCMC approaches are also interesting, where a
smaller reduced basis is constructed which is adapted during
the MCMC analysis. The idea of constructing an adaptable
reduced basis is presented in Qian et al. (2017), where the
authors create a reduced basis that is valid for a trust region.
An adaptive MCMC algorithm for MT applications has been
presented in Manassero et al. (2020), which follows up on
the ideas of Ortega-Gelabert et al. (2020).

To conclude, as for the sensitivity analyses the compu-
tational challenge is addressed by using surrogate models.
Note that as before methods that map from model parameters
to state information are more suitable within an uncertainty
quantification framework.

4.3 Challenge 3: real time

In many geoscientific applications, we need to obtain re-
sults in real time. Examples are forecasting applications of-
ten employed in the fields of hydrology and climate (Bauer
et al., 2021; Sabeena and Reddy, 2017), as well as monitoring
and/or risk analyses (Asante-Duah, 2021; Kumar et al., 2021;
Yu et al., 2018). The latter analysis is often important for
fields such as geothermal energy and natural hazards (Kumar
et al., 2021; Liu and Ramirez, 2017; Yu et al., 2018). In the
field of geothermal energy that concerns the topic of induced
seismicity, there is a need to have fast and reliable predic-
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tions to employ necessary security measures. However, with
increasingly complex models that require more and more
computation time, this leads to major challenges. In order
to address these challenges, a possibility might be to think
of employing physically simplified models, which could re-
sult in additional error sources that might bias further analy-
ses. Another possibility is to employ data-driven approaches;
however, how the quality of these models can be guaran-
teed is an open research question (Baker et al., 2019; Will-
cox et al., 2021). Therefore, physics-based machine learning
techniques, such as the non-intrusive RB method that fulfill
the four listed requirements, have great potential since the
surrogate models produced are computationally fast to com-
pute and at the same time maintain the general characteristics
of the original problem.

Consequently, the challenge of producing real-time pre-
dictions is addressable by the use of surrogate models. We
generally see greater potential in methods that follow the
conceptual ideas of the non-intrusive RB method since they
allow for both parameter and state estimation. Nonetheless,
in the context of state estimation and in situations in which
some physical knowledge is available, methods that map
from state-to-state information (such as PINNs) are advan-
tageous since they allow also a direct incorporation of the
measurement data. However, these are not the target applica-
tions of this paper.

Looking at all three presented challenges, we see great
potential in the non-intrusive RB method, which combines
physics-based and data-driven approaches. This avoids sim-
plifications on the physical level and at the same time
yields explainable, generalizable, scalable, and robust mod-
els (Willcox et al., 2021), as we will detail in the next sec-
tions.

4.4 Requirement 1.1: physical scalability

To improve our understanding of the subsurface, we often
want to construct models with an increasingly higher reso-
lution in space and time and also concerning the parameter
representation. To give a few examples, in the field of geo-
dynamics we typically aim to investigate different scales in
both time and space. On the one hand, we are interested in
large-scale spatial deformations related to plate tectonics; on
the other hand, we want to investigate how microstructures
form. For the time component, we face the same issues of
being interested in seismic cycles (of the order of millisec-
onds) and basin dynamics (of the order of millions of years)
(Bauer et al., 2021; van Zelst et al., 2022). Having a single
model that crosses over all scales is computationally infeasi-
ble, even with adaptive time stepping and spatial discretiza-
tion schemes. Furthermore, we need to additionally consider
the complexity of the parameter space. On a larger scale, lo-
cal heterogeneities are often negligible and we can use ho-
mogenization approaches (Regenauer-Lieb et al., 2013) and
often simpler physical formulations. On a smaller scale, these

concepts are not applicable and we need to consider the full
complexity.

One way to address this problem is a multilevel approach,
a concept that works independently of physics-based ma-
chine learning. However, physics-based machine learning
and other surrogate modeling techniques can considerably
accelerate the procedure, as we show later on. The advan-
tages of multilevel approaches to improve convergence have
been pointed out by, for instance, Bauer et al. (2021). We
can, for example, combine models with different spatial and
temporal resolutions, which yields faster convergences. This
faster convergence is achieved by starting the solve on the
coarsest level first. Once we obtain results for this level, we
move to the next level which has a higher resolution. How-
ever, since we already have a good starting guess, we need
significantly fewer iterations on this level in comparison to
the number of iterations required if we directly solved on the
finer level. Multilevel or multi-fidelity approaches not only
imply different spatial and temporal resolutions but also al-
low for the employment of different physical descriptions
(adjusted to the resolution) and different methodologies (Pe-
herstorfer et al., 2018).

Physics-based machine learning can improve the computa-
tional time on several levels. First of all, we can provide sur-
rogate models for the coarse levels through methods such as
the non-intrusive RB method. The non-intrusive RB method
performs very well in the reduction of the spatial and tempo-
ral degrees of freedom but is inefficient if the dimension of
the parameter space becomes too large. However, other meth-
ods might be less efficient in the reduction of space and time
but more efficient in dealing with high-dimensional parame-
ter spaces (Benner et al., 2015). Multilevel approaches allow
combining these techniques. Hence, we can employ different
methodologies on each of these levels tailored to the differ-
ent requirements. On the finest level, we can even employ the
original full-dimensional problem.

4.5 Requirement 1.2: performance scalability

In the following, we elaborate on how physics-based ma-
chine learning approaches impact the field of HPC. There-
fore, we first present the current issues we face and after-
wards explain how the methods presented here help to ad-
dress these aspects.

Previously, we illustrated that the complexity of the con-
sidered physical processes and their associated coupling pro-
cesses are constantly increasing. This has a high impact on
the computational resources since more complex scenarios
yield a higher computational demand, hence often requiring
HPC infrastructures. At the same time, we observe the end
of the scalability laws such as Dennard scaling (Frank et al.,
2001) and Moore’s law (Bondyopadhyay, 1998).

A paradigm shift is underway as a consequence of this.
The hardware infrastructure has been moving more and more
to graphics processing units (GPUs) and is becoming more
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heterogeneous than before. This poses major challenges for
most areas of geosciences (Bauer et al., 2021), as we can
no longer rely on hardware developments to cover the re-
quired higher computational demand (end of the free-lunch
era), but we need to invest in adapting the algorithms and
codes themselves (Bauer et al., 2021). This is a nontrivial
and potentially time-consuming process that often requires
rather specialized knowledge. Moreover, the specific prob-
lems can vary greatly for the different geoscientific commu-
nities. For example, the climate community relies on very
large, well-established community models. Although efforts
are underway to port them to GPUs (Bauer et al., 2021),
the size and complexity of the codes, and potentially even
their inherent structure, make this an ambitious and costly
task (Lawrence et al., 2018). Often, more than one inten-
sive kernel may exist and the low-hanging computational
hotspot to port is not obvious (Gan et al., 2020). A criti-
cism raised by Bauer et al. (2021) is that software develop-
ments are primarily driven by scientific relevance, neglecting
computer science aspects in terms of efficiency, which fur-
ther complicates the transition to future HPC infrastructures.
The situation is different for other geoscientific communi-
ties since they have smaller – and possibly more manageable
– codes, which can therefore be more flexible adapted, or
more recent codes, which may even already leverage novel
technologies. In either case, porting tasks are still not triv-
ial, but with the help of current developments to leverage
GPUs, such as CUDA and OpenACC, as well as domain-
specific languages (DSLs) – e.g., Kokkos (Edwards et al.,
2014; Trott et al., 2021), RAJA (Beckingsale et al., 2019),
Alpaka (Zenker et al., 2016), GridTools (Afanasyev et al.,
2021), ClawDSL (Clement et al., 2018) – the resources and
expertise required can be reduced or at least compartmen-
talized and better distributed in time. We can also provide
cross-domain platforms such as MOOSE and Firedrake to
synchronize the developments in computer and domain sci-
ences. Moreover, it is becoming increasingly relevant to con-
sider co-design approaches (Germann, 2021), in which do-
main science applications (and developers) engage with li-
brary, back-end, and even hardware developers in pointing
out where significant (progressive and disruptive) advances
can be made without constant adaptation from scientific ap-
plications.

Other aspects that we would like to address here are the
discretization of time (Bauer et al., 2021) and how to adapt
beyond the current HPC infrastructures. This includes future
proofing against architectural shifts, vendors, and languages.
To name one example, we require strategies to adapt to GPUs
from various manufacturers (e.g., upcoming AMD and Intel
GPU accelerated systems). Solutions such as CUDA are opti-
mized for Nvidia hardware, and comparing the performance
of CUDA against OpenACC (or CUDA through portability
layers such as Kokkos) yields indications that this transi-
tion still poses challenges (Artigues et al., 2019; Baig et al.,
2020). These considerations do not even cover the problems

that might arise from tensor processing units (TPUs). Over-
all, the heterogeneous computing infrastructures of the future
and asynchronous processes pose major and partly unpre-
dictable challenges, emphasizing the need for flexible, open-
source software projects.

There are various possibilities to address these issues. The
first is naturally the intensive training of researchers in the
field of HPC, including, for instance, advanced programming
training sessions, which is a long learning process. However,
here we will focus on how physics-based machine learning
and other methodologies can help to fulfill these require-
ments.

Therefore, let us briefly recap the physical problem.
In fields such as climate, groundwater, geodynamical, and
geothermal applications we often have problems that are
governed by partial differential equations (PDEs). The port-
ing of PDE solvers is an ongoing research question (Alexan-
der et al., 2020; Bertagna et al., 2019; Grete et al., 2021;
Hokkanen et al., 2021) and no general solution is avail-
able yet. We continue to face an immediate need to adjust
to new infrastructures consisting of both central process-
ing units (CPUs) and GPUs, and many codes are still not
ported. An alternative approach to harness HPC resources
is the usage of physics-based machine learning methods to
leverage heterogeneous computations. The need to use GPUs
has also been recognized in climate science (Bauer et al.,
2021), where the use of machine learning techniques wher-
ever it may be possible without a loss of quality is seen as a
way forward. Similar arguments are present in other related
communities where porting and machine learning are seen as
ways to address the computational demands in fluid mechan-
ics (Dauxois et al., 2021) and in hydrodynamics where they
are perceived as possible surrogates for forecasting (Morales-
Hernández et al., 2020).

In the following, we explain how physics-based machine
learning methods help to optimally use HPC infrastructures,
starting with PINNs. PINNs are directly portable to GPUs
since they consist of a deep neural network. The calculation
of the PDE inside the loss function also offers portability
since the derivatives are calculated via automatic differen-
tiation (Raissi et al., 2019). Additionally, the non-intrusive
RB method is partly portable to GPUs insofar as the (deep)
neural network that replaces the classical Galerkin projection
can be directly ported. The calculation of the PDEs and hence
the generation of the training data are not easily portable.
However, note that this task is embarrassingly parallel since
all evaluations are independent of each other. Hence, we can
take full advantage of a given HPC system. This is not the
case for the inverse processes for which we use the surrogate
models. Methods such as Markov chain Monte Carlo are only
partly parallelizable since they are dependent on previous re-
sults, further emphasizing the usefulness of the methodolo-
gies presented here. The presented schemes propose an inter-
mediate solution to solve the paradigm of the new architec-
tural constraints. It can also easily incorporate any new ad-
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vances for porting PDEs to GPUs. Of course, limitations can
still arise when the size and cost of forward simulations for
the training set are too large, which reverts the issue to port-
ing PDE solvers. However, once that is achieved, physics-
based machine learning workflows directly benefit.

The advantage of such workflows is that GPU support
for most of the algorithms required currently exists in en-
vironments such as TensorFlow, PyTorch (as described in
Sect. 4.7), and DSLs. With the software packages presented
here and environments ranging from machine learning li-
braries over cross-domain finite-element solvers to DSLs, we
aim to provide a future-proof concept that can also adapt to
new GPU systems (including vendors other than Nvidia) and
new architectures such as TPUs. In the ideal case, software
built upon these frameworks requires only minimal changes,
if at all, to adapt to the architectural changes.

The high portability of these workflows is in line with the
general proposition in Bauer et al. (2021), where the authors
emphasize the need to use utmost flexible software for adapt-
ability with short-lived hardware infrastructures. We strongly
highlight the fact that the life span of scientific software is
usually substantially longer than that of hardware. Conse-
quently, software sustainability must be at the center of geo-
scientific model development. In the context of a changing
hardware landscape, it is therefore essential to future-proof
codes so that their applicability to new hardware (and soft-
ware) paradigms is ensured, contributing to their sustainabil-
ity. Ideally, it will not be necessary to repeat substantial port-
ing efforts in the future. This future proofing is nontrivial
and intertwined with ongoing porting efforts, and to achieve
these porting efforts we should strive to achieve performance
portability, productivity, and maintainability. For this, a good
separation of concerns (between geoscientific code, algo-
rithms, and hardware-specific code) is necessary, for which
again solutions such as DSLs are interesting, as well as ever
more popular approaches (Artigues et al., 2019; Evans et al.,
2021; Lawrence et al., 2018). Although there are several
paths to this, we argue that leveraging well-established accel-
erated environments to build physics-based machine learning
models acting as PDE solver surrogates is one approach.

From the numerics and algorithmic point of view, there are
also opportunities to improve scalability and performance,
some of which may also be better suited to upcoming hard-
ware, but for which new implementations in specific codes
are inescapable. These include ideas such as mesh adaptivity
(e.g., Chen et al., 2021; Kevlahan, 2021; Gerhard et al., 2015;
Özgen-Xian et al., 2020; Piggott et al., 2005), higher-order
local schemes (e.g., Abdi et al., 2017; Käser and Dumbser,
2006; Gassner and Winters, 2021; Kärnä et al., 2018), lo-
cal time stepping (e.g., Dazzi et al., 2018), and paralleliza-
tion in time (Lions et al., 2001; Maday, 2008). These differ-
ent strategies can also be combined into even more sophisti-
cated algorithms exploiting several features (e.g., Caviedes-
Voullième et al., 2020; Dawson et al., 2013; Rannabauer
et al., 2018). Mesh adaptivity seeks to reduce computational

load, compress data, and reduce communications while keep-
ing accuracy, all of which contribute to scalability. Higher-
order schemes which preserve locality (e.g., discontinuous
Galerkin) increase the load on arithmetic where accelera-
tors excel and allow for a reduction of the number of el-
ements (which potentially reduces memory and communi-
cation costs) for a target accuracy in comparison to lower-
order schemes. Local time stepping explicit schemes allow
for asynchronous updates, which enhances parallelization
and may allow reducing costly reduction operations.

Similarly, parallelization in time can strongly relax the
fundamental constraint of one time step depending on the
previous one (Bauer et al., 2021; Carraro et al., 2015; Fisher
and Gürol, 2017; Hamon et al., 2020). Interestingly, some
physics-based machine learning techniques provide parallel-
in-time schemes (Meng et al., 2020). Here, we highlight the
parareal algorithm, first developed by Lions et al. (2001).
The current stage of the algorithm is presented in Maday
(2008). The algorithm follows domain decomposition ap-
proaches that divide the domain into smaller subdomains.
Domain decomposition methods then solve the problem iter-
atively over the subdomains using different processors. The
parareal algorithm divides the global time evolution into a set
of independent smaller time intervals. For the iterative algo-
rithm, the method relies on a predictor–corrector approach
that yields generally fast convergences (Maday, 2008). A
parareal implementation for PINNs, called PPINNs has been
already developed in Meng et al. (2020). Similarly, the par-
allel full approximation scheme in space and time (PFASST)
(Emmett and Minion, 2012, 2014; Hamon et al., 2020) falls
into the same class as parareal algorithms.

4.6 Requirement 2: interpretability

The next requirement that needs to be addressed is inter-
pretability. For PDE-based applications, we often face the
need to provide predictions. However, guaranteeing the cor-
rectness of these predictions with surrogate models is chal-
lenging (Willcox et al., 2021), especially for nonlinear appli-
cations. Many surrogate model techniques that work well for
linear examples do not work in the nonlinear setting (Grepl,
2012). Some physics-based methods, such as the reduced-
basis method, which yield interpretable models, are extend-
able to the nonlinear case but are significantly impacted in
their efficiency when encountering high degrees of nonlin-
earity (Hesthaven and Ubbiali, 2018). Neural networks are
known for approximating nonlinear problems well (Raissi
et al., 2019) but require a high amount of data, do not pre-
serve physical principles, and are in general not explainable.

Both of these aspects are critical since applications in the
fields of, for instance, geothermal energy and geodynamics
do not have a sufficient amount of data. Furthermore, we
need to conduct predictions and risk assessments, which are
critical with data-driven schemes since their quality is related
to the quality and amount of training data. These aspects
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are the reason why the mentioned application fields heavily
rely on physical models. We see greater potential for meth-
ods such as the non-intrusive RB method that incorporate
the physics into the surrogate model construction instead of
PINNs since the non-intrusive RB method results in explain-
able surrogate models.

To clarify, PINNs are a complete black-box approach. That
means we provide our input data (e.g., sample points in space
and time) and obtain predictions for the entire state. So, the
method can reconstruct the state for non-sampled points in
space and time. In contrast to the non-intrusive RB method,
we provide our input data (e.g., rock and fluid properties)
and obtain the corresponding state output. This state output
consists of two parts, the basis functions (determined by the
sampling method, e.g., the POD method) and the weights
of the basis functions (determined by the machine learning
method). This has several advantages.

1. The POD modes correspond to the different physical
processes (as demonstrated in the case studies in this
paper).

2. The decomposition of our original problem into basis
function time weights is mathematically identical (Hes-
thaven and Ubbiali, 2018).

3. The machine learning method only investigates the
weights.

The last point is especially important for nonlinear examples.
Although a PDE might be nonlinear, that does not necessar-
ily mean that the variations of the state are highly nonlinear
because of different model parameters. The RB method fo-
cuses on the variations of the state caused by changes in the
model parameters. So, it depends on this complexity and not
on the spatial and temporal distributions.

4.7 Requirement 3: generalizability

In the following, we want to emphasize the importance of
generalizability. Approaches to construct suitable surrogate
models need to be applicable across different disciplines and
not restricted to single applications only. In this paper, we fo-
cus on PDE-based systems and demonstrated the suitability
of the non-intrusive RB method for three geoscientific appli-
cations with partly significantly varying conditions and re-
quirements. The non-intrusive RB methods works efficiently
for all three examples, which cover a wide range of the gen-
eral challenges encountered in geoscience applications and
many other PDE-dominated domains.

Connected to the aspect of generalizability is also the
question of accessibility, meaning the open-access and open-
source availability of research and software. Accessibility is
a topic that has great importance in general, especially in the
context of interdisciplinarity. The importance of accessibil-
ity was already recognized in Bergen et al. (2019), who point
out that the recent rapid growth of geoscientific applications

using machine learning is associated with the availability of
easy-to-use machine learning toolboxes.

Machine learning methods are mainly developed by the
computer science community, whereas model order reduc-
tion methods (the second set of methods presented here) orig-
inate from the scientific computing and applied mathemati-
cal community (Swischuk et al., 2019). Geosciences belong
to neither of these communities. However, it heavily relies on
the methodological developments within these communities
to further advance. This opens the path to several subsequent
challenges since the terminology and the purposes of the var-
ious communities are vastly different.

Consequently, if new algorithms are solely presented in the
form of papers, expert knowledge in several fields is required.
This is a major challenge since it makes the exploration
of different methodologies extremely time-consuming, espe-
cially for changing applications. Therefore, it is of great im-
portance to have flexible access to a broad range of methods.
Note that with the term flexible, we mean the implementation
of algorithms that are not tied to a specific forward solver.
Examples of such accessible software frameworks are avail-
able for many scientific fields. For inverse methods, pack-
ages as Dakota (Adams et al., 2020), Raven (Rabiti et al.,
2020), and various designated Python libraries such as SciPy
(Virtanen et al., 2020), SALib (Herman and Usher, 2017),
and pyMC (Patil et al., 2010) are available. Naturally, this
does not mean that no prior knowledge about the methods is
required. A general understanding of the methods is neces-
sary to ensure reliable operation and performance of the re-
spective software packages. The step of accessibility should
solely simplify the applicability and testing of the different
methods for scientific purposes.

In the following, we want to clarify how we understand
the term accessibility and what impacts it has on the de-
velopment of research software. Accessible software means
open-source software. However, accessibility means more
than open-source. Following the classification of black-box
models in Peherstorfer and Willcox (2016), we also define
software packages as inaccessible if the complexity of the
code prevents an understanding of the methodology and if
there is no detailed documentation on the package. Regard-
ing this last point, we want to highlight the difference be-
tween educational and scientific software packages. Educa-
tional software packages are often written in scripting and/or
parsed languages, such as Python, and use simple structures
for the implementation (e.g., Ballarin et al., 2017). This eases
the learning of the procedures but comes at the cost of lower
efficiency. In contrast, scientific software packages are often
written in compiled language packages, such as C++, and/or
using highly object-oriented structures (e.g., Adams et al.,
2020; Rabiti et al., 2020). This complicates the learning pro-
cess but allows the efficient execution of the methods for real-
case applications. In no way do we want to state that only
educational software packages are accessible and should be
further developed. The point that we want to make here is
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that scientific software packages additionally require exten-
sive documentation and tutorials to compensate for the com-
plex nature of the code, as presented in, for example, Adams
et al. (2020), Herman and Usher (2017), Patil et al. (2010),
Rabiti et al. (2020), and Virtanen et al. (2020). However, sci-
entific software packages that lack these additional resources
fall under the category of inaccessible software packages in
our opinion.

With this last aspect, we already covered the main im-
pacts of accessibility on software development. From the
point of view of understanding, scripting and/or parsed lan-
guages are preferential. However, from the efficiency point
of view, compiled languages would be preferential. Having
access to the methods in various compute languages is natu-
rally the ideal case. Here, the parsed implementation serves
as an entry point to improve the understanding, whereas the
compiled implementation is used later on for actual studies.
However, developing the code in several languages or struc-
tures is time-consuming and often neither possible nor feasi-
ble. Therefore, the abovementioned compensation by docu-
mentation seems to be a suitable compromise from our point
of view. Also, note that accessibility is not a responsibility
of the developing communities (such as computer sciences)
alone but a joint responsibility of all communities.

For machine learning methods various high-performance
Python packages exist, such as Keras (Chollet, 2015),
MXNet (Chen et al., 2015), PyTorch (Paszke et al., 2019),
TensorFlow (Abadi et al., 2015), Theano (Al-Rfou et al.,
2016), DeepXDE (implementation of PINNs and various
modifications, Lu et al., 2019), HeAT (Götz et al., 2020), and
SciANN (implementation of PINNs based on Keras/Tensor-
Flow, Haghighat and Juanes, 2021).

The variety of available packages shows the potential
for easy usability of machine learning in geosciences but
also presents one major danger. The software packages are
rapidly developing and, for some, the developments have
stopped (Al-Rfou et al., 2016). Hence, software that relies
on these packages should be developed with the possibility
of interchanging these libraries. Clearly, this is a nontrivial
task but is nevertheless important to consider.

Regarding open-source finite-element solvers, several
packages are available (in various compute languages): e.g.,
FEniCS (Alnæs et al., 2015), Firedrake (Rathgeber et al.,
2016), and the MOOSE framework (Permann et al., 2020).
Note that we need these solvers to generate the input data for
physics-based machine learning methods.

4.8 Requirement 4: robustness

The last requirement we address here is the aspect of robust-
ness. Hence, the question of how to ensure that the model
does not change if, for instance, the accuracy or the amount
of data used for the surrogate model construction is in-
creased. For the application of data-driven methods to PDE-
based systems, that can be rather challenging. If we, for in-

stance, generate training sets from numerical simulations and
use only spatial and temporal sample points of the solutions
to construct our surrogates (as done for PINNs), we need to
be careful that we include all physical effects. To give an ex-
ample, we need to ensure that for a geothermal study we do
not extract samples only in the conductive regime but also
in the advective regime. This is an aspect that does not oc-
cur for the non-intrusive RB method since it constructs the
surrogate model directly on the solution space. For the non-
intrusive RB method (geothermal example in Sect. 3.2) we
construct two surrogate models with different training dataset
sizes. Although we see a difference in the overall accuracy of
the model, both models return the same general characteris-
tics of the physical problem, demonstrating the robustness.
This can be further highlighted by looking at the intrusive
counterpart of the method. Degen and Cacace (2021) show
that the results of the sensitivity analysis are not impacted
by the model accuracy, which demonstrates that the general
characteristic is the same for all models.

5 Conclusions

We present the great potential of physics-based machine
learning for geoscientific systems governed by partial dif-
ferential equations through three designated examples from
the fields of geothermal energy, geodynamical systems, and
hydrology. These three applications fields were chosen to
demonstrate the potential across different geoscientific ap-
plications. We address three challenges here: enabling effi-
cient (i) global sensitivity analyses, (ii) uncertainty quantifi-
cation, and (iii) real-time applications for geoscientific prob-
lems dominated by PDEs. Furthermore, it is essential that the
techniques used for enabling these efficient analyses fulfill
the requirements of being scalable, interpretable, generaliz-
able, and robust.

Bergen et al. (2019) pointed out the importance of pro-
viding an optimal predictive understanding of the processes
for different geosystems. Predictability is a great challenge in
ML techniques if based purely on data. In contrast, methods
that incorporate our physical knowledge have great advan-
tages in the geosciences. We see particular potential for the
non-intrusive RB method since it maintains the structure of
the original physical problem, a viewpoint that is also sup-
ported by Reichstein et al. (2019) and Willcox et al. (2021).

The presented methods allow for real-time or faster-than-
real-time updates of models. This makes them interesting for
applications and concepts such as digital twins. Digital twins
are digital copies of the original process with real-time capa-
bilities to assist in, for instance, decision- and policy-making
(Bauer et al., 2021). However, we are aware that the geo-
science community is rather skeptical concerning black-box
approaches such as ML (Bauer et al., 2021). For this reason,
it is important to ensure transparent qualitative and quantita-
tive measures (Baker et al., 2019), which are a big challenge
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for ML in general. In this regard, we would like to point out
again the non-intrusive RB method, which is in contrast to
the other methodologies based on a mathematically rigorous
proven method. The intrusive version has limited applica-
bility and efficiency for nonlinear (Hesthaven and Ubbiali,
2018) and hyperbolic PDEs (e.g., Benner et al., 2015; Hes-
thaven et al., 2016). In the original formulation of the RB
method, a Galerkin projection is used instead of the ML tech-
niques presented here. In consequence, this means that by
performing simplifications to the physical problem, we are
always able to fall back on a proven scheme for quality as-
surance purposes for elliptic and parabolic PDEs.

Current research on the mathematical foundations of
physics-based machine learning also includes efficient error
estimators for hyperbolic PDEs, as well as extension to high-
dimensional parameter spaces. Further developments in these
directions will allow for ever wider applicability of the meth-
ods in the field of geosciences.

Code and data availability. The training and validation datasets,
their associated model parameters, and the non-intrusive RB
and neural network code for the construction of all surro-
gate models are published in the following Zenodo repository
(https://doi.org/10.5281/zenodo.8369108, Degen et al., 2023). For
the construction of the geothermal dataset the software pack-
age DwarfElephant (Degen et al., 2020a, b) has been used.
This software is based on the finite-element solver MOOSE
(Permann et al., 2020) and is freely available on Zenodo
(https://doi.org/10.5281/zenodo.4074777). For the generation of the
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et al., 2022) with the data provided in the paper.
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