Articles | Volume 16, issue 2 
            
                
                    
            
            
            https://doi.org/10.5194/gmd-16-679-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-679-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) – refactoring the NEMO model (version 4.0.1) with the parallel computing framework of JASMIN – Part 1: Adaptive grid refinement in an idealized double-gyre case
Yan Zhang
                                            Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science (DESS), Tsinghua University, Beijing, China
                                        
                                    Xuantong Wang
                                            Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science (DESS), Tsinghua University, Beijing, China
                                        
                                    Yuhao Sun
                                            School of Computer Science and Engineering, Beihang University, Beijing, China
                                        
                                    Chenhui Ning
                                            Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science (DESS), Tsinghua University, Beijing, China
                                        
                                    
                                            Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science (DESS), Tsinghua University, Beijing, China
                                        
                                    
                                            University Corporation for Polar Research (UCPR), Beijing, China
                                        
                                    
                                            Institute of Applied Physics and Computational Mathematics (IAPCM), Beijing, China
                                        
                                    Dehong Tang
                                            Institute of Applied Physics and Computational Mathematics (IAPCM), Beijing, China
                                        
                                    Hong Guo
                                            Institute of Applied Physics and Computational Mathematics (IAPCM), Beijing, China
                                        
                                    Hao Yang
                                            Institute of Applied Physics and Computational Mathematics (IAPCM), Beijing, China
                                        
                                    Ye Pu
                                            State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
                                        
                                    
                                            School of Computer Science and Engineering, Beihang University, Beijing, China
                                        
                                    Bin Wang
                                            Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science (DESS), Tsinghua University, Beijing, China
                                        
                                    
                                            State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
                                        
                                    Related authors
Shiming Xu, Jialiang Ma, Lu Zhou, Yan Zhang, Jiping Liu, and Bin Wang
                                    Geosci. Model Dev., 14, 603–628, https://doi.org/10.5194/gmd-14-603-2021, https://doi.org/10.5194/gmd-14-603-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                A multi-resolution tripolar grid hierarchy is constructed and integrated in CESM (version 1.2.1). The resolution range includes 0.45, 0.15, and 0.05°. Based on atmospherically forced sea ice experiments, the model simulates reasonable sea ice kinematics and scaling properties. Landfast ice thickness can also be systematically shifted due to non-convergent solutions to an 
elastic–viscous–plastic (EVP) model. This work is a framework for multi-scale modeling of the ocean and sea ice with CESM.
                                            
                                            
                                        Siqi Liu, Shiming Xu, Wenkai Guo, Yanfei Fan, Lu Zhou, Jack Landy, Malin Johansson, Weixin Zhu, and Alek Petty
                                    The Cryosphere, 19, 5175–5199, https://doi.org/10.5194/tc-19-5175-2025, https://doi.org/10.5194/tc-19-5175-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                In this study, we explore the potential of using synthetic aperture radars (SAR) to predict the sea ice height measurements by the airborne campaign of Operation IceBridge. In particular, we predict the meter-scale sea ice height with the statistical relationship between the two, overcoming the resolution limitation of SAR images from Sentinel-1 satellites. The prediction and ice drift correction algorithms can be applied to the extrapolation of ICESat-2 measurements in the Arctic region.
                                            
                                            
                                        Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
                                    The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024, https://doi.org/10.5194/tc-18-4399-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
                                            
                                            
                                        Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
                                    Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024, https://doi.org/10.5194/gmd-17-6847-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Sea ice models are mainly based on non-moving structured grids, which is different from buoy measurements that follow the ice drift. To facilitate Lagrangian analysis, we introduce online tracking of sea ice in Community Ice CodE (CICE). We validate the sea ice tracking with buoys and evaluate the sea ice deformation in high-resolution simulations, which show multi-fractal characteristics. The source code is openly available and can be used in various scientific and operational applications. 
                                            
                                            
                                        Weixin Zhu, Siqi Liu, Shiming Xu, and Lu Zhou
                                    Earth Syst. Sci. Data, 16, 2917–2940, https://doi.org/10.5194/essd-16-2917-2024, https://doi.org/10.5194/essd-16-2917-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                In the polar ocean, wind waves generate and propagate into the sea ice cover, forming marginal ice zones (MIZs). Using ESA's CryoSat-2, we construct a 12-year dataset of the MIZ in the Atlantic Arctic, a key region for climate change and human activities. The dataset is validated with high-resolution observations by ICESat2 and Sentinel-1. MIZs over 300 km wide are found under storms in the Barents Sea. The new dataset serves as the basis for research areas, including wave–ice interactions.
                                            
                                            
                                        Xinzhu Yu, Li Liu, Chao Sun, Qingu Jiang, Biao Zhao, Zhiyuan Zhang, Hao Yu, and Bin Wang
                                    Geosci. Model Dev., 16, 6285–6308, https://doi.org/10.5194/gmd-16-6285-2023, https://doi.org/10.5194/gmd-16-6285-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                In this paper we propose a new common, flexible, and efficient parallel I/O framework for earth system modeling based on C-Coupler2.0. CIOFC1.0 can handle data I/O in parallel and provides a configuration file format that enables users to conveniently change the I/O configurations. It can automatically make grid and time interpolation, output data with an aperiodic time series, and accelerate data I/O when the field size is large.
                                            
                                            
                                        Chao Sun, Li Liu, Ruizhe Li, Xinzhu Yu, Hao Yu, Biao Zhao, Guansuo Wang, Juanjuan Liu, Fangli Qiao, and Bin Wang
                                    Geosci. Model Dev., 14, 2635–2657, https://doi.org/10.5194/gmd-14-2635-2021, https://doi.org/10.5194/gmd-14-2635-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Data assimilation (DA) provides better initial states of model runs by combining observations and models. This work focuses on the technical challenges in developing a coupled ensemble-based DA system and proposes a new DA framework  DAFCC1 based on C-Coupler2. DAFCC1 enables users to conveniently integrate a DA method into a model with automatic and efficient data exchanges. A sample DA system that combines GSI/EnKF and FIO-AOW demonstrates the effectiveness of DAFCC1.
                                            
                                            
                                        Shiming Xu, Jialiang Ma, Lu Zhou, Yan Zhang, Jiping Liu, and Bin Wang
                                    Geosci. Model Dev., 14, 603–628, https://doi.org/10.5194/gmd-14-603-2021, https://doi.org/10.5194/gmd-14-603-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                A multi-resolution tripolar grid hierarchy is constructed and integrated in CESM (version 1.2.1). The resolution range includes 0.45, 0.15, and 0.05°. Based on atmospherically forced sea ice experiments, the model simulates reasonable sea ice kinematics and scaling properties. Landfast ice thickness can also be systematically shifted due to non-convergent solutions to an 
elastic–viscous–plastic (EVP) model. This work is a framework for multi-scale modeling of the ocean and sea ice with CESM.
                                            
                                            
                                        Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
                                    The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
                                            
                                            
                                        Hao Yu, Li Liu, Chao Sun, Ruizhe Li, Xinzhu Yu, Cheng Zhang, Zhiyuan Zhang, and Bin Wang
                                    Geosci. Model Dev., 13, 6253–6263, https://doi.org/10.5194/gmd-13-6253-2020, https://doi.org/10.5194/gmd-13-6253-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                Routing network generation is a major step for initializing the data transfer functionality for model coupling. The distributed implementation for routing network generation (DiRong1.0) proposed in this paper can significantly improve the global implementation of routing network generation used in some existing coupling software, because it does not introduce any gather–broadcast communications and achieves much lower complexity in terms of time, memory, and communication.
                                            
                                            
                                        Cited articles
                        
                        Ajayi, A., Le Sommer, J., Chassignet, E. P., Molines, J.-M., Xu, X., Albert,
A., and Dewar, W.: Diagnosing Cross-Scale Kinetic Energy Exchanges From Two
Submesoscale Permitting Ocean Models,
J. Adv. Model. Earth Sy., 13, e2019MS001923, https://doi.org/10.1029/2019MS001923, 2021. a
                    
                
                        
                        Bourdallé-Badie, R., Bell, M., Chanut, J., Clementi, E., Coward, A., Drudi,
M., Éthé, C., Iovino, D., Lea, D., Lévy, C., Madec, G., Martin, N.,
Masson, S., Mathiot, P., Mocavero, S., Müller, S., Nurser, G., Samson, G.,
and Storkey, D.: NEMO ocean engine, Scientific Notes of Climate Modelling
Center 27, Institut Pierre-Simon Laplace (IPSL),
Zenodo, https://doi.org/10.5281/zenodo.1464816, 2019. a
                    
                
                        
                        CAEP Software Center for High Performance Numerical Simulation:
JASMIN (J Parallel Adaptive Structured Mesh Applications Infrastructure),
http://www.caep-scns.ac.cn/JASMIN.php
last access: 20 December 2022. a
                    
                
                        
                        Chassignet, E. P. and Xu, X.: Impact of Horizontal Resolution (1/12° to
1/50°) on Gulf Stream Separation, Penetration, and Variability,
J. Phys. Oceanogr., 47, 1999–2021, https://doi.org/10.1175/JPO-D-17-0031.1,
2017. a
                    
                
                        
                        Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.:
Geographical Variability of the First Baroclinic Rossby Radius of
Deformation, J. Phys. Oceanogr., 28, 433–460,
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a, b
                    
                
                        
                        D'Asaro, E., Lee, C., Rainville, L., Harcourt, R., and Thomas, L.: Enhanced
Turbulence and Energy Dissipation at Ocean Fronts, Science, 332, 318–322,
https://doi.org/10.1126/science.1201515, 2011. a
                    
                
                        
                        Debreu, L. and Patoume, R.: AGRIF: User's Guide, Tech. rep., INRIA, https://agrif.imag.fr/ (last access: 10 December 2022), 2016. a
                    
                
                        
                        Debreu, L., Marchesiello, P., Penven, P., and Cambon, G.: Two-way nesting in
split-explicit ocean models: Algorithms, implementation and validation, Ocean Model., 49-50, 1–21, https://doi.org/10.1016/j.ocemod.2012.03.003, 2012. a, b
                    
                
                        
                        Gasparin, F., Greiner, E., Lellouche, J.-M., Legalloudec, O., Garric, G.,
Drillet, Y., Bourdallé-Badie, R., Traon, P.-Y. L., Rémy, E., and
Drévillon, M.: A large-scale view of oceanic variability from 2007 to 2015
in the global high resolution monitoring and forecasting system at Mercator
Ocean, J. Marine Syst., 187, 260–276,
https://doi.org/10.1016/j.jmarsys.2018.06.015, 2018. a
                    
                
                        
                        Gent, P. R. and McWilliams, J. C.: Isopycnal Mixing in Ocean Circulation
Models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990. a
                    
                
                        
                        Hirschi, J. J.-M., Barnier, B., Böning, C., Biastoch, A., Blaker, A. T.,
Coward, A., Danilov, S., Drijfhout, S., Getzlaff, K., Griffies, S. M.,
Hasumi, H., Hewitt, H., Iovino, D., Kawasaki, T., Kiss, A. E., Koldunov, N.,
Marzocchi, A., Mecking, J. V., Moat, B., Molines, J.-M., Myers, P. G.,
Penduff, T., Roberts, M., Treguier, A.-M., Sein, D. V., Sidorenko, D., Small,
J., Spence, P., Thompson, L., Weijer, W., and Xu, X.: The Atlantic
Meridional Overturning Circulation in High-Resolution Models, J.
Geophys. Res.-Oceans, 125, e2019JC015522,
https://doi.org/10.1029/2019JC015522, 2020. a
                    
                
                        
                        Hoch, K. E., Petersen, M. R., Brus, S. R., Engwirda, D., Roberts, A. F., Rosa,
K. L., and Wolfram, P. J.: MPAS-Ocean Simulation Quality for
Variable-Resolution North American Coastal Meshes, J. Adv. Model. Earth Sy., 12, e2019MS001848, https://doi.org/10.1029/2019MS001848,
2020. a
                    
                
                        
                        Khatri, H., Griffies, S. M., Uchida, T., Wang, H., and Menemenlis, D.: Role of
Mixed-Layer Instabilities in the Seasonal Evolution of Eddy Kinetic Energy
Spectra in a Global Submesoscale Permitting Simulation, Geophys. Res.
Lett., 48, e2021GL094777, https://doi.org/10.1029/2021GL094777, 2021. a
                    
                
                        
                        Marques, G. M., Loose, N., Yankovsky, E., Steinberg, J. M., Chang, C.-Y., Bhamidipati, N., Adcroft, A., Fox-Kemper, B., Griffies, S. M., Hallberg, R. W., Jansen, M. F., Khatri, H., and Zanna, L.: NeverWorld2: an idealized model hierarchy to investigate ocean mesoscale eddies across resolutions, Geosci. Model Dev., 15, 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022, 2022. a, b, c, d
                    
                
                        
                        Matthes, K., Biastoch, A., Wahl, S., Harlaß, J., Martin, T., Brücher, T., Drews, A., Ehlert, D., Getzlaff, K., Krüger, F., Rath, W., Scheinert, M., Schwarzkopf, F. U., Bayr, T., Schmidt, H., and Park, W.: The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): mean state and variability, Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, 2020. a
                    
                
                        
                        Moreton, S. M., Ferreira, D., Roberts, M. J., and Hewitt, H. T.: Evaluating
surface eddy properties in coupled climate simulations with “eddy-present”
and “eddy-rich” ocean resolution, Ocean Model., 147, 101567,
https://doi.org/10.1016/j.ocemod.2020.101567, 2020. a
                    
                
                        
                        Murray, R. J.: Explicit Generation of Orthogonal Grids for Ocean Models,
J. Comput. Phys., 126, 251–273,
https://doi.org/10.1006/jcph.1996.0136, 1996. a
                    
                
                        
                        NEMO forge: NEMO – Release-4.0.1 in NEMO/releases,
http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/releases/release-4.0.1, last access: 3 May 2022. a
                    
                
                        
                        Pennelly, C. and Myers, P. G.: Introducing LAB60: A 1/60∘ NEMO 3.6 numerical simulation of the Labrador Sea, Geosci. Model Dev., 13, 4959–4975, https://doi.org/10.5194/gmd-13-4959-2020, 2020. a
                    
                
                        
                        Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM: a new Lagrangian sea ice model, The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016, 2016. a
                    
                
                        
                        Ringler, T., Thuburn, J., Klemp, J., and Skamarock, W.: A unified approach to
energy conservation and potential vorticity dynamics for
arbitrarily-structured C-grids, J. Comput. Phys., 229,
3065–3090, https://doi.org/10.1016/j.jcp.2009.12.007, 2010. a
                    
                
                        
                        Rocha, C. B., Chereskin, T. K., and Gille, S. T.: Mesoscale to Submesoscale
Wavenumber Spectra in Drake Passage, J. Phys. Oceanogr., 46,
601–620, https://doi.org/10.1175/JPO-D-15-0087.1, 2016. a, b, c, d
                    
                
                        
                        Schwarzkopf, F. U., Biastoch, A., Böning, C. W., Chanut, J., Durgadoo, J. V., Getzlaff, K., Harlaß, J., Rieck, J. K., Roth, C., Scheinert, M. M., and Schubert, R.: The INALT family – a set of high-resolution nests for the Agulhas Current system within global NEMO ocean/sea-ice configurations, Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019, 2019. a, b
                    
                
                        
                        Sein, D. V., Danilov, S., Biastoch, A., Durgadoo, J. V., Sidorenko, D., Harig,
S., and Wang, Q.: Designing variable ocean model resolution based on the
observed ocean variability, J. Adv. Model. Earth Sy., 8,
904–916, https://doi.org/10.1002/2016MS000650, 2016. a
                    
                
                        
                        Sein, D. V., Koldunov, N. V., Danilov, S., Wang, Q., Sidorenko, D., Fast, I.,
Rackow, T., Cabos, W., and Jung, T.: Ocean Modeling on a Mesh With Resolution
Following the Local Rossby Radius, J. Adv. Model. Earth Sy., 9, 2601–2614, https://doi.org/10.1002/2017MS001099, 2017. a
                    
                
                        
                        Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020. a
                    
                
                        
                        Vancoppenolle, M., Rousset, C., Blockley, E., Aksenov, Y., Feltham, D., Fichefet, T., Garric, G., Guémas, V., Iovino, D., Keeley, S., Madec, G., Massonnet, F., Ridley, Jeff, Schroeder, D., and Tietsche, S.: SI3, the NEMO Sea Ice Engine (4.2release_doc1.0), Zenodo, https://doi.org/10.5281/zenodo.7534900, 2023. a
                    
                
                        
                        Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, 2014.
 a
                    
                
                        
                        Xu, S., Wang, B., and Liu, J.: On the use of Schwarz–Christoffel conformal mappings to the grid generation for global ocean models, Geosci. Model Dev., 8, 3471–3485, https://doi.org/10.5194/gmd-8-3471-2015, 2015. a
                    
                
                        
                        Xu, S., Ma, J., Zhou, L., Zhang, Y., Liu, J., and Wang, B.: Comparison of sea ice kinematics at different resolutions modeled with a grid hierarchy in the Community Earth System Model (version 1.2.1), Geosci. Model Dev., 14, 603–628, https://doi.org/10.5194/gmd-14-603-2021, 2021. a, b
                    
                
                        
                        Zhang, Y.: The source code and relevant primary input/output data for OMARE, Zenodo [code, data set], https://doi.org/10.5281/zenodo.6699768, 2022. a
                    
                Short summary
            We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with adaptive mesh refinement. OMARE is based on the refactorization of NEMO with a third-party, high-performance piece of middleware. We report the porting process and experiments of an idealized western-boundary current system. The new model simulates turbulent and temporally varying mesoscale and submesoscale processes via adaptive refinement. Related topics and future work with OMARE are also discussed.
            We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with...
            
         
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
             
             
            