Articles | Volume 16, issue 19
https://doi.org/10.5194/gmd-16-5601-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5601-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
Nathan J. Mayne
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
Thomas Bendall
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Ian A. Boutle
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
Alex Brown
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Iva Kavčič
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
James Kent
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Krisztian Kohary
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
James Manners
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Thomas Melvin
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Enrico Olivier
Research Software Engineering, University of Exeter, Exeter, EX4 4QE, UK
Lokesh K. Ragta
Department of Information Technology, University of Leicester, University Road, Leicester, LE1 7RH, UK
Ben Shipway
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Jon Wakelin
Department of Information Technology, University of Leicester, University Road, Leicester, LE1 7RH, UK
Nigel Wood
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Mohamed Zerroukat
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Related authors
Danny McCulloch, Denis E. Sergeev, Nathan Mayne, Matthew Bate, James Manners, Ian Boutle, Benjamin Drummond, and Kristzian Kohary
Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023, https://doi.org/10.5194/gmd-16-621-2023, 2023
Short summary
Short summary
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We describe our model set-up conditions and run two scenarios, with radiatively active/inactive dust. We compare both scenarios to results from an existing Mars climate model, the planetary climate model. We find good agreement in winds and air temperatures, but dust amounts differ between models. This study highlights the importance of using the UM for future Mars research.
Sophia Adams, James Manners, Nathan Mayne, Mei Ting Mak, and Eric Hebrard
EGUsphere, https://doi.org/10.5194/egusphere-2025-2908, https://doi.org/10.5194/egusphere-2025-2908, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We perform calculations of photolysis reactions using an existing model but including updated input data. These reactions are important in shaping the composition of our upper atmosphere and that of other planets, for example, controlling ozone formation and destruction. The results of our model are compared with those of previous benchmarks, and rates of various reactions provided to facilitate other researchers in developing accurate schemes to capture photolysis in planetary atmospheres.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025, https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre- and sub-kilometre-scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and an improved representation of clouds and visibility.
Martin Richard Willett, Melissa Brooks, Andrew Bushell, Paul Earnshaw, Samantha Smith, Lorenzo Tomassini, Martin Best, Ian Boutle, Jennifer Brooke, John M. Edwards, Kalli Furtado, Catherine Hardacre, Andrew J. Hartley, Alan Hewitt, Ben Johnson, Adrian Lock, Andy Malcolm, Jane Mulcahy, Eike Müller, Heather Rumbold, Gabriel G. Rooney, Alistair Sellar, Masashi Ujiie, Annelize van Niekerk, Andy Wiltshire, and Michael Whitall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1829, https://doi.org/10.5194/egusphere-2025-1829, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA8GL9, which includes improvements to the represenation of convection and other physical processes. GA8GL9 is used for operational weather prediction in the UK and forms the basis for the next GA and GL configuration.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Anthony Jones, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, Noah Asch, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3376, https://doi.org/10.5194/egusphere-2024-3376, 2024
Short summary
Short summary
We study aerosol-fog interactions near Paris using a weather and climate model with high spatial resolution. We show that our model can simulate fog lifecycle effectively. We find that the fog droplet number concentrations, the amount of liquid water in the fog, and the vertical structure of the fog are highly sensitive to the parameterization that simulates droplet formation and growth. The changes we propose could improve fog forecasts significantly without increasing computational costs.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3397, https://doi.org/10.5194/egusphere-2024-3397, 2024
Short summary
Short summary
We study the lifecycle of fog events in Europe using a weather and climate model. By incorporating droplet formation and growth driven by radiative cooling, our model better simulates the total liquid water in foggy atmospheric columns. We show that both adiabatic and radiative cooling play significant, often equally important roles in driving droplet formation and growth. We discuss strategies to address droplet number overpredictions, by improving model physics and addressing model artifacts.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev., 16, 1713–1734, https://doi.org/10.5194/gmd-16-1713-2023, https://doi.org/10.5194/gmd-16-1713-2023, 2023
Short summary
Short summary
Building on the baseline of RAL1, the RAL2 science configuration is used for regional modelling around the UM partnership and in operations at the Met Office. RAL2 has been tested in different parts of the world including Australia, India and the UK. RAL2 increases medium and low cloud amounts in the mid-latitudes compared to RAL1, leading to improved cloud forecasts and a reduced diurnal cycle of screen temperature. There is also a reduction in the frequency of heavier precipitation rates.
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023, https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Short summary
This paper introduces the Met Office's new shallow water model. The shallow water model is a building block towards the Met Office's new atmospheric dynamical core. The shallow water model is tested on a number of standard spherical shallow water test cases, including flow over mountains and unstable jets. Results show that the model produces similar results to other shallow water models in the literature.
Danny McCulloch, Denis E. Sergeev, Nathan Mayne, Matthew Bate, James Manners, Ian Boutle, Benjamin Drummond, and Kristzian Kohary
Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023, https://doi.org/10.5194/gmd-16-621-2023, 2023
Short summary
Short summary
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We describe our model set-up conditions and run two scenarios, with radiatively active/inactive dust. We compare both scenarios to results from an existing Mars climate model, the planetary climate model. We find good agreement in winds and air temperatures, but dust amounts differ between models. This study highlights the importance of using the UM for future Mars research.
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Rachel E. Hawker, Annette K. Miltenberger, Jill S. Johnson, Jonathan M. Wilkinson, Adrian A. Hill, Ben J. Shipway, Paul R. Field, Benjamin J. Murray, and Ken S. Carslaw
Atmos. Chem. Phys., 21, 17315–17343, https://doi.org/10.5194/acp-21-17315-2021, https://doi.org/10.5194/acp-21-17315-2021, 2021
Short summary
Short summary
We find that ice-nucleating particles (INPs), aerosols that can initiate the freezing of cloud droplets, cause substantial changes to the properties of radiatively important convectively generated anvil cirrus. The number concentration of INPs had a large effect on ice crystal number concentration while the INP temperature dependence controlled ice crystal size and cloud fraction. The results indicate information on INP number and source is necessary for the representation of cloud glaciation.
Craig Poku, Andrew N. Ross, Adrian A. Hill, Alan M. Blyth, and Ben Shipway
Atmos. Chem. Phys., 21, 7271–7292, https://doi.org/10.5194/acp-21-7271-2021, https://doi.org/10.5194/acp-21-7271-2021, 2021
Short summary
Short summary
We present a new aerosol activation scheme suitable for modelling both fog and convective clouds. Most current activation schemes are designed for convective clouds, and we demonstrate that using them to model fog can negatively impact its life cycle. Our scheme has been used to model an observed fog case in the UK, where we demonstrate that a more physically based representation of aerosol activation is required to capture the transition to a deeper layer – more in line with observations.
Rachel E. Hawker, Annette K. Miltenberger, Jonathan M. Wilkinson, Adrian A. Hill, Ben J. Shipway, Zhiqiang Cui, Richard J. Cotton, Ken S. Carslaw, Paul R. Field, and Benjamin J. Murray
Atmos. Chem. Phys., 21, 5439–5461, https://doi.org/10.5194/acp-21-5439-2021, https://doi.org/10.5194/acp-21-5439-2021, 2021
Short summary
Short summary
The impact of aerosols on clouds is a large source of uncertainty for future climate projections. Our results show that the radiative properties of a complex convective cloud field in the Saharan outflow region are sensitive to the temperature dependence of ice-nucleating particle concentrations. This means that differences in the aerosol source or composition, for the same aerosol size distribution, can cause differences in the outgoing radiation from regions dominated by tropical convection.
Cited articles
Adams, S., Ford, R., Hambley, M., Hobson, J., Kavčič, I., Maynard, C.,
Melvin, T., Müller, E., Mullerworth, S., Porter, A., Rezny, M., Shipway, B.,
and Wong, R.: LFRic: Meeting the challenges of scalability and
performance portability in Weather and Climate models, J.
Parall. Distr. Com., 132, 383–396,
https://doi.org/10.1016/j.jpdc.2019.02.007, 2019. a, b, c, d, e, f, g, h, i, j
Amundsen, D. S., Mayne, N. J., Baraffe, I., Manners, J., Tremblin, P.,
Drummond, B., Smith, C., Acreman, D. M., and Homeier, D.: The UK Met
Office global circulation model with a sophisticated radiation scheme
applied to the hot Jupiter HD 209458b, Astron. Astrophys., 595, A36,
https://doi.org/10.1051/0004-6361/201629183, 2016. a, b
Balaji, V., Couvreux, F., Deshayes, J., Gautrais, J., Hourdin, F., and Rio, C.:
Are general circulation models obsolete?, P. Natl. Acad.
Sci. USA, 119, e2202075119, https://doi.org/10.1073/pnas.2202075119, 2022. a
Barnes, R.: Tidal locking of habitable exoplanets, Celest. Mech.
Dyn. Astr., 129, 509–536, https://doi.org/10.1007/s10569-017-9783-7, 2017. a
Bendall, T. M., Gibson, T. H., Shipton, J., Cotter, C. J., and Shipway, B.: A
compatible finite-element discretisation for the moist compressible Euler
equations, Q. J. Roy. Meteor. Soc., 146,
3187–3205, https://doi.org/10.1002/qj.3841, 2020. a
Bendall, T. M., Wood, N., Thuburn, J., and Cotter, C. J.: A solution to the
trilemma of the moist Charney–Phillips staggering, Q. J.
Roy. Meteor. Soc., 149, 262–276, https://doi.org/10.1002/qj.4406, 2022. a
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a, b
Boutle, I. A., Eyre, J. E. J., and Lock, A. P.: Seamless Stratocumulus
Simulation across the Turbulent Gray Zone, Mon. Weather Rev.,
142, 1655–1668, https://doi.org/10.1175/MWR-D-13-00229.1, 2014. a
Boutle, I. A., Mayne, N. J., Drummond, B., Manners, J., Goyal, J.,
Hugo Lambert, F., Acreman, D. M., and Earnshaw, P. D.: Exploring the climate
of Proxima B with the Met Office Unified Model, Astron.
Astrophys., 601, A120, https://doi.org/10.1051/0004-6361/201630020, 2017. a
Boutle, I. A., Joshi, M., Lambert, F. H., Mayne, N. J., Lyster, D., Manners,
J., Ridgway, R., and Kohary, K.: Mineral dust increases the habitability of
terrestrial planets but confounds biomarker detection, Nat. Commun.,
11, 2731, https://doi.org/10.1038/s41467-020-16543-8, 2020. a, b
Braam, M., Palmer, P. I., Decin, L., Ridgway, R. J., Zamyatina, M., Mayne,
N. J., Sergeev, D. E., and Abraham, N. L.: Lightning-induced chemistry on
tidally-locked Earth-like exoplanets, Mon. Not. R.
Astron. Soc., 517, 2383–2402, https://doi.org/10.1093/mnras/stac2722, 2022. a, b
Brown, A. R., Beare, R. J., Edwards, J. M., Lock, A. P., Keogh, S. J., Milton,
S. F., and Walters, D. N.: Upgrades to the Boundary-Layer Scheme in the
Met Office Numerical Weather Prediction Model, Bound.-Lay.
Meteorol., 128, 117–132, https://doi.org/10.1007/s10546-008-9275-0,
2008. a
Carone, L., Keppens, R., and Decin, L.: Connecting the dots – II. Phase
changes in the climate dynamics of tidally locked terrestrial exoplanets,
Mon. Not. R.
Astron. Soc., 453, 2413–2438,
https://doi.org/10.1093/mnras/stv1752, 2015. a
Carone, L., Keppens, R., and Decin, L.: Connecting the dots – III.
Nightside cooling and surface friction affect climates of tidally locked
terrestrial planets, Mon. Not. R. Astron. Soc., 461,
1981–2002, https://doi.org/10.1093/mnras/stw1265,
2016. a
Carone, L., Keppens, R., Decin, L., and Henning, T.: Stratosphere circulation
on tidally locked ExoEarths, Mon. Not. R. Astron. Soc., 473, 4672–4685, https://doi.org/10.1093/mnras/stx2732,
Publisher: Oxford Academic, 2018. a, b
Christie, D. A., Mayne, N. J., Lines, S., Parmentier, V., Manners, J., Boutle,
I., Drummond, B., Mikal-Evans, T., Sing, D. K., and Kohary, K.: The impact of
mixing treatments on cloud modelling in 3D simulations of hot Jupiters,
Mon. Not. R. Astron. Soc., 506, 4500–4515,
https://doi.org/10.1093/mnras/stab2027, 2021. a, b
Christie, D. A., Lee, E. K. H., Innes, H., Noti, P. A., Charnay, B., Fauchez,
T. J., Mayne, N. J., Deitrick, R., Ding, F., Greco, J. J., Hammond, M.,
Malsky, I., Mandell, A., Rauscher, E., Roman, M. T., Sergeev, D. E., Sohl,
L., Steinrueck, M. E., Turbet, M., Wolf, E. T., Zamyatina, M., and Carone,
L.: CAMEMBERT: A Mini-Neptunes General Circulation Model
Intercomparison, Protocol Version 1.0.A CUISINES Model
Intercomparison Project, Planet. Sci. J., 3, 261,
https://doi.org/10.3847/PSJ/ac9dfe, 2022. a, b
Cohen, M., Bollasina, M. A., Palmer, P. I., Sergeev, D. E., Boutle, I. A.,
Mayne, N. J., and Manners, J.: Longitudinally Asymmetric Stratospheric
Oscillation on a Tidally Locked Exoplanet, Astrophys. J.,
930, 152, https://doi.org/10.3847/1538-4357/ac625d, 2022. a, b
Cotter, C. and Shipton, J.: Mixed finite elements for numerical weather
prediction, J. Comput. Phys., 231, 7076–7091,
https://doi.org/10.1016/j.jcp.2012.05.020, 2012. a
Dressing, C. D. and Charbonneau, D.: The occurrence of potentially
habitable planets orbiting m dwarfs estimated from the full
Kepler dataset and an empirical measurement of the
detection sensitivity, Astrophys. J., 807, 45,
https://doi.org/10.1088/0004-637X/807/1/45, 2015. a
Drummond, B., Hébrard, E., Mayne, N. J., Venot, O., Ridgway, R. J., Changeat,
Q., Tsai, S.-M., Manners, J., Tremblin, P., Abraham, N. L., Sing, D., and
Kohary, K.: Implications of three-dimensional chemical transport in hot
Jupiter atmospheres: Results from a consistently coupled
chemistry-radiation-hydrodynamics model, Astron. Astrophys., 636, A68,
https://doi.org/10.1051/0004-6361/201937153, 2020. a
Eager-Nash, J. K., Reichelt, D. J., Mayne, N. J., Lambert, F. H., Sergeev,
D. E., Ridgway, R. J., Manners, J., Boutle, I. A., Lenton, T. M., and Kohary,
K.: Implications of different stellar spectra for the climate of tidally
locked Earth-like exoplanets, Astron. Astrophys., 639, A99,
https://doi.org/10.1051/0004-6361/202038089, 2020. a, b
Edson, A., Lee, S., Bannon, P., Kasting, J. F., and Pollard, D.: Atmospheric
circulations of terrestrial planets orbiting low-mass stars, Icarus, 212,
1–13, https://doi.org/10.1016/j.icarus.2010.11.023, 2011. a
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code. I:
Choosing a configuration for a large-scale model, Q. J.
Roy. Meteor. Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107,
1996. a
Fauchez, T. J., Turbet, M., Wolf, E. T., Boutle, I., Way, M. J., Del Genio, A. D., Mayne, N. J., Tsigaridis, K., Kopparapu, R. K., Yang, J., Forget, F., Mandell, A., and Domagal Goldman, S. D.: TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0, Geosci. Model Dev., 13, 707–716, https://doi.org/10.5194/gmd-13-707-2020, 2020. a, b, c, d, e, f, g, h
Fauchez, T. J., Turbet, M., Sergeev, D. E., Mayne, N. J., Spiga, A., Sohl, L.,
Saxena, P., Deitrick, R., Gilli, G., Domagal-Goldman, S. D., Forget, F.,
Consentino, R., Barnes, R., Haqq-Misra, J., Way, M. J., Wolf, E. T., Olson,
S., Crouse, J. S., Janin, E., Bolmont, E., Leconte, J., Chaverot, G., Jaziri,
Y., Tsigaridis, K., Yang, J., Pidhorodetska, D., Kopparapu, R. K., Chen, H.,
Boutle, I. A., Lefevre, M., Charnay, B., Burnett, A., Cabra, J., and Bouldin,
N.: TRAPPIST Habitable Atmosphere Intercomparison (THAI) Workshop
Report, Planet. Sci. J., 2, 106, https://doi.org/10.3847/PSJ/abf4df,
2021. a, b, c, d
Fauchez, T. J., Villanueva, G. L., Sergeev, D. E., Turbet, M., Boutle, I. A.,
Tsigaridis, K., Way, M. J., Wolf, E. T., Domagal-Goldman, S. D., Forget, F.,
Haqq-Misra, J., Kopparapu, R. K., Manners, J., and Mayne, N. J.: The
TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). III.
Simulated Observables – the Return of the Spectrum, Planet.
Sci. J., 3, 213, https://doi.org/10.3847/PSJ/ac6cf1,
2022. a
Ge, H., Li, C., Zhang, X., and Lee, D.: A Global Nonhydrostatic
Atmospheric Model with a Mass- and Energy-conserving Vertically
Implicit Correction (VIC) Scheme, Astrophys. J., 898,
130, https://doi.org/10.3847/1538-4357/ab9ec7, 2020. a
Gillon, M., Triaud, A. H. M. J., Demory, B.-O., Jehin, E., Agol, E., Deck,
K. M., Lederer, S. M., de Wit, J., Burdanov, A., Ingalls, J. G., Bolmont, E.,
Leconte, J., Raymond, S. N., Selsis, F., Turbet, M., Barkaoui, K., Burgasser,
A., Burleigh, M. R., Carey, S. J., Chaushev, A., Copperwheat, C. M., Delrez,
L., Fernandes, C. S., Holdsworth, D. L., Kotze, E. J., Van Grootel, V.,
Almleaky, Y., Benkhaldoun, Z., Magain, P., and Queloz, D.: Seven temperate
terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1,
Nature, 542, 456–460, https://doi.org/10.1038/nature21360, 2017. a
Gregory, D. and Rowntree, P. R.: A Mass Flux Convection Scheme with
Representation of Cloud Ensemble Characteristics and
Stability-Dependent Closure, Mon. Weather Rev., 118, 1483–1506,
https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2, iSBN: 0027-0644, 1990. a
Hammond, M. and Lewis, N. T.: The rotational and divergent components of
atmospheric circulation on tidally locked planets, P.
Natl. Acad. Sci. USA, 118, e2022705118,
https://doi.org/10.1073/pnas.2022705118, 2021. a
Haqq-Misra, J., Wolf, E. T., Joshi, M., Zhang, X., and Kopparapu, R. K.:
Demarcating Circulation Regimes of Synchronously Rotating
Terrestrial Planets within the Habitable Zone, Astrophys.
J., 852, 67, https://doi.org/10.3847/1538-4357/aa9f1f, 2018. a
Haqq-Misra, J., Wolf, E. T., Fauchez, T. J., Shields, A. L., and Kopparapu,
R. K.: The Sparse Atmospheric Model Sampling Analysis (SAMOSA)
Intercomparison: Motivations and Protocol Version 1.0: A CUISINES
Model Intercomparison Project, Planet. Sci. J., 3, 260,
https://doi.org/10.3847/PSJ/ac9479, 2022. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río,
J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array
programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020a. a
Harris, L., Zhou, L., Lin, S., Chen, J., Chen, X., Gao, K., Morin, M., Rees,
S., Sun, Y., Tong, M., Xiang, B., Bender, M., Benson, R., Cheng, K., Clark,
S., Elbert, O. D., Hazelton, A., Huff, J. J., Kaltenbaugh, A., Liang, Z.,
Marchok, T., Shin, H. H., and Stern, W.: GFDL SHiELD: A Unified
System for Weather-to-Seasonal Prediction, J. Adv.
Model. Earth Sy., 12, e2020MS002223, https://doi.org/10.1029/2020MS002223,
2020b. a
Heng, K. and Vogt, S. S.: Gliese 581g as a scaled-up version of Earth:
atmospheric circulation simulations, Mon. Not. R. Astron. Soc., 415, 2145–2157,
https://doi.org/10.1111/j.1365-2966.2011.18853.x, 2011. a, b
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput.
Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Joshi, M. M., Elvidge, A. D., Wordsworth, R., and Sergeev, D.: Earth’s
Polar Night Boundary Layer as an Analog for Dark Side
Inversions on Synchronously Rotating Terrestrial Exoplanets,
Astrophys. J., 892, L33, https://doi.org/10.3847/2041-8213/ab7fb3, 2020. a
Komacek, T. D. and Abbot, D. S.: The Atmospheric Circulation and Climate
of Terrestrial Planets Orbiting Sun-like and M Dwarf Stars over
a Broad Range of Planetary Parameters, Astrophys. J.,
871, 245, https://doi.org/10.3847/1538-4357/aafb33, 2019. a
Komacek, T. D., Gao, P., Thorngren, D. P., May, E. M., and Tan, X.: The
Effect of Interior Heat Flux on the Atmospheric Circulation of
Hot and Ultra-hot Jupiters, Astrophys. J. Lett., 941,
L40, https://doi.org/10.3847/2041-8213/aca975, 2022. a, b
Kopparapu, R. K., Wolf, E. T., Arney, G., Batalha, N. E., Haqq-Misra, J.,
Grimm, S. L., and Heng, K.: Habitable Moist Atmospheres on Terrestrial
Planets near the Inner Edge of the Habitable Zone around M
Dwarfs, Astrophys. J., 845, 5, https://doi.org/10.3847/1538-4357/aa7cf9,
2017. a
Kopparla, P., Deitrick, R., Heng, K., Mendonça, J. M., and Hammond, M.:
General Circulation Model Errors Are Variable across Exoclimate
Parameter Spaces, Astrophys. J., 923, 39,
https://doi.org/10.3847/1538-4357/ac2d27,
2021. a
Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, W., Ford, R., Maynard, C., Mullerworth, S., Osuna, C., Porter, A., Serradell, K., Valcke, S., Wedi, N., and Wilson, S.: Crossing the chasm: how to develop weather and climate models for next generation computers?, Geosci. Model Dev., 11, 1799–1821, https://doi.org/10.5194/gmd-11-1799-2018, 2018. a
Leconte, J., Forget, F., Charnay, B., Wordsworth, R., Selsis, F., Millour, E.,
and Spiga, A.: 3D climate modeling of close-in land planets: Circulation
patterns, climate moist bistability, and habitability, Astron.
Astrophys., 554, A69, https://doi.org/10.1051/0004-6361/201321042,
2013. a
Lee, E. K. H., Parmentier, V., Hammond, M., Grimm, S. L., Kitzmann, D., Tan,
X., Tsai, S.-M., and Pierrehumbert, R. T.: Simulating gas giant exoplanet
atmospheres with Exo-FMS: Comparing semi-grey, picket fence and
correlated-k radiative-transfer schemes, Mon. Not. R. Astron. Soc., 506, 2695–2711, https://doi.org/10.1093/mnras/stab1851, 2021. a, b, c
Li, C. and Chen, X.: Simulating Nonhydrostatic Atmospheres on Planets
(SNAP): Formulation, Validation, and Application to the Jovian
Atmosphere, Astrophys. J. Suppl. S., 240, 37,
https://doi.org/10.3847/1538-4365/aafdaa,
2019. a
Lines, S., Mayne, N. J., Boutle, I. A., Manners, J., Lee, G. K. H., Helling,
C., Drummond, B., Amundsen, D. S., Goyal, J., Acreman, D. M., Tremblin, P.,
and Kerslake, M.: Simulating the cloudy atmospheres of HD 209458 b and HD
189733 b with the 3D Met Office Unified Model, Astron.
Astrophys., 615, A97, https://doi.org/10.1051/0004-6361/201732278,
2018. a
Lines, S., Mayne, N. J., Manners, J., Boutle, I. A., Drummond, B., Mikal-Evans,
T., Kohary, K., and Sing, D. K.: Overcast on Osiris: 3D
radiative-hydrodynamical simulations of a cloudy hot Jupiter using the
parametrized, phase-equilibrium cloud formation code EddySed, Mon. Not. R. Astron. Soc., 488, 1332–1355,
https://doi.org/10.1093/mnras/stz1788, 2019. a, b
Little, B.: geovista, Zenodo [code], https://doi.org/10.5281/zenodo.7608302, 2023. a
Lock, A. P.: The Numerical Representation of Entrainment in
Parameterizations of Boundary Layer Turbulent Mixing, Mon.
Weather Rev., 129, 1148–1163,
https://doi.org/10.1175/1520-0493(2001)129<1148:TNROEI>2.0.CO;2, 2001. a
Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., and Smith, R. N. B.: A
New Boundary Layer Mixing Scheme. Part I: Scheme
Description and Single-Column Model Tests, Mon. Weather Rev.,
128, 3187–3199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2,
2000. a
Manners, J., Edwards, J. M., Hill, P., and Thelen, J.-C.: SOCRATES (Suite
Of Community RAdiative Transfer codes based on Edwards and
Slingo) Technical Guide, 1–125,
https://code.metoffice.gov.uk/trac/socrates (last access: 4 September 2023),
2022. a
Maynard, C., Melvin, T., and Müller, E. H.: Multigrid preconditioners for the
mixed finite element dynamical core of the LFRic atmospheric model,
Q. J. Roy. Meteor. Soc., 146, 3917–3936,
https://doi.org/10.1002/qj.3880,
2020. a, b, c
Mayne, N. J., Baraffe, I., Acreman, D. M., Smith, C., Browning, M. K.,
Amundsen, D. S., Wood, N., Thuburn, J., and Jackson, D. R.: The unified
model, a fully-compressible, non-hydrostatic, deep atmosphere global
circulation model, applied to hot Jupiters, Astron. Astrophys., 561,
A1, https://doi.org/10.1051/0004-6361/201322174, 2014a. a, b, c
Mayne, N. J., Baraffe, I., Acreman, D. M., Smith, C., Wood, N., Amundsen, D. S., Thuburn, J., and Jackson, D. R.: Using the UM dynamical cores to reproduce idealised 3-D flows, Geosci. Model Dev., 7, 3059–3087, https://doi.org/10.5194/gmd-7-3059-2014, 2014b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
Mayne, N. J., Drummond, B., Debras, F., Jaupart, E., Manners, J., Boutle,
I. A., Baraffe, I., and Kohary, K.: The Limits of the Primitive
Equations of Dynamics for Warm, Slowly Rotating Small Neptunes
and Super Earths, Astrophys. J., 871, 56,
https://doi.org/10.3847/1538-4357/aaf6e9, 2019. a, b
McCulloch, D., Sergeev, D. E., Mayne, N., Bate, M., Manners, J., Boutle, I., Drummond, B., and Kohary, K.: A modern-day Mars climate in the Met Office Unified Model: dry simulations, Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023, 2023. a
Melvin, T., Dubal, M., Wood, N., Staniforth, A., and Zerroukat, M.: An
inherently mass-conserving iterative semi-implicit semi-Lagrangian
discretization of the non-hydrostatic vertical-slice equations, Q.
J. Roy. Meteor. Soc., 136, 799–814,
https://doi.org/10.1002/qj.603, 2010. a
Mendonça, J. M.: Mass transport in a moist planetary climate model, Astron.
Astrophys., 659, A43, https://doi.org/10.1051/0004-6361/202141638, 2022. a
Mendonça, J. M., Grimm, S. L., Grosheintz, L., and Heng, K.: THOR: a new
and flexible global circulation model to explore planetary
atmospheres, Astrophys. J., 829, 115,
https://doi.org/10.3847/0004-637X/829/2/115, 2016. a, b
Met Office: Iris: A Python library for analysing and visualising
meteorological and oceanographic data sets,
http://scitools.org.uk/ (last access: 4 September 2023), 2022. a
Met Office: iris-esmf-regrid: A collection of structured and unstructured ESMF regridding schemes for Iris, Github [code], https://github.com/SciTools-incubator/iris-esmf-regrid, last access: 4 September 2023. a
Met Office Science Repository Service: LFRic-Atmosphere, https://code.metoffice.gov.uk, last access: 4 September 2023. a
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015. a
Noda, S., Ishiwatari, M., Nakajima, K., Takahashi, Y., Takehiro, S., Onishi,
M., Hashimoto, G., Kuramoto, K., and Hayashi, Y.-Y.: The circulation pattern
and day-night heat transport in the atmosphere of a synchronously rotating
aquaplanet: Dependence on planetary rotation rate, Icarus, 282, 1–18,
https://doi.org/10.1016/j.icarus.2016.09.004, 2017. a, b, c
Paradise, A., Macdonald, E., Menou, K., Lee, C., and Fan, B. L.: ExoPlaSim:
Extending the Planet Simulator for exoplanets, Mon. Not. R. Astron. Soc., 511, 3272–3303, https://doi.org/10.1093/mnras/stac172,
2022. a, b, c
Polichtchouk, I., Cho, J.-K., Watkins, C., Thrastarson, H., Umurhan, O., and
de la Torre Juárez, M.: Intercomparison of general circulation models for
hot extrasolar planets, Icarus, 229, 355–377,
https://doi.org/10.1016/j.icarus.2013.11.027, 2014. a, b
Rajpurohit, A. S., Reylé, C., Allard, F., Homeier, D., Schultheis, M.,
Bessell, M. S., and Robin, A. C.: The effective temperature scale of M
dwarfs, Astron. Astrophys., 556, A15,
https://doi.org/10.1051/0004-6361/201321346, 2013. a
Ridgway, R. J., Zamyatina, M., Mayne, N. J., Manners, J., Lambert, F. H.,
Braam, M., Drummond, B., Hébrard, E., Palmer, P. I., and Kohary, K.: 3D
modelling of the impact of stellar activity on tidally locked terrestrial
exoplanets: atmospheric composition and habitability, Mon. Not.
R. Astron. Soc., 518, 2472–2496, https://doi.org/10.1093/mnras/stac3105,
2023. a, b
Saffin, L., Lock, A., Tomassini, L., Blyth, A., Böing, S., Denby, L., and
Marsham, J.: Kilometer-Scale Simulations of Trade-Wind Cumulus
Capture Processes of Mesoscale Organization, J. Adv.
Model. Earth Sy., 15, e2022MS003295, https://doi.org/10.1029/2022MS003295, 2023. a
Sergeev, D. E.: dennissergeev/lfric_exo_bench_code: Version 0, Zenodo [data set and code],
https://doi.org/10.5281/zenodo.7818107, 2023. a, b
Sergeev, D. E. and Zamyatina, M.: Aeolus – a Python library for the analysis
and visualisation of climate model output, Zenodo [code], https://doi.org/10.5281/ZENODO.6478085,
2022. a
Sergeev, D. E., Lambert, F. H., Mayne, N. J., Boutle, I. A., Manners, J., and
Kohary, K.: Atmospheric Convection Plays a Key Role in the Climate
of Tidally Locked Terrestrial Exoplanets: Insights from
High-resolution Simulations, Astrophys. J., 894, 84,
https://doi.org/10.3847/1538-4357/ab8882,
2020. a, b, c, d, e
Sergeev, D. E., Fauchez, T. J., Turbet, M., Boutle, I. A., Tsigaridis, K., Way,
M. J., Wolf, E. T., Domagal-Goldman, S. D., Forget, F., Haqq-Misra, J.,
Kopparapu, R. K., Lambert, F. H., Manners, J., and Mayne, N. J.: The
TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). II.
Moist Cases – The Two Waterworlds, Planet. Sci. J.,
3, 212, https://doi.org/10.3847/PSJ/ac6cf2,
2022a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
Shashkin, V. V. and Goyman, G. S.: Semi-Lagrangian shallow water equations
solver on the cubed-sphere grid as a prototype of new-generation global
atmospheric model, J. Phys. Conf. Ser., 1740, 012073,
https://doi.org/10.1088/1742-6596/1740/1/012073, 2021. a
Showman, A. P., Fortney, J. J., Lian, Y., Marley, M. S., Freedman, R. S.,
Knutson, H. A., and Charbonneau, D.: Atmospheric circulation of hot
jupiters: coupled radiative-dynamical general circulation model
simulations of HD 189733b and HD 209458b, Astrophys. J.,
699, 564–584, https://doi.org/10.1088/0004-637X/699/1/564, 2009. a, b
Smith, R. N. B.: A scheme for predicting layer clouds and their water content
in a general circulation model, Q. J. Roy. Meteor. Soc., 116, 435–460, https://doi.org/10.1002/qj.49711649210, 1990. a
Staniforth, A. and Thuburn, J.: Horizontal grids for global weather and climate
prediction models: a review, Q. J. Roy. Meteor.
Soc., 138, 1–26, https://doi.org/10.1002/qj.958, 2012. a, b, c, d
Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X.,
Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Kodama, C., Kornblueh,
L., Lin, S.-J., Neumann, P., Putman, W. M., Röber, N., Shibuya, R.,
Vanniere, B., Vidale, P. L., Wedi, N., and Zhou, L.: DYAMOND: the
DYnamics of the Atmospheric general circulation Modeled On
Non-hydrostatic Domains, Prog. Earth Planet. Sc., 6, 61,
https://doi.org/10.1186/s40645-019-0304-z, 2019. a
Turbet, M., Leconte, J., Selsis, F., Bolmont, E., Forget, F., Ribas, I.,
Raymond, S. N., and Anglada-Escudé, G.: The habitability of Proxima
Centauri b, Astron. Astrophys., 596, A112,
https://doi.org/10.1051/0004-6361/201629577, 2016. a
Turbet, M., Bolmont, E., Bourrier, V., Demory, B.-O., Leconte, J., Owen, J.,
and Wolf, E. T.: A Review of Possible Planetary Atmospheres in the
TRAPPIST-1 System, Space Sci. Rev., 216, 100,
https://doi.org/10.1007/s11214-020-00719-1, 2020. a
Turbet, M., Bolmont, E., Chaverot, G., Ehrenreich, D., Leconte, J., and Marcq,
E.: Day–night cloud asymmetry prevents early oceans on Venus but not on
Earth, Nature, 598, 276–280, https://doi.org/10.1038/s41586-021-03873-w, 2021. a
Turbet, M., Fauchez, T. J., Sergeev, D. E., Boutle, I. A., Tsigaridis, K., Way,
M. J., Wolf, E. T., Domagal-Goldman, S. D., Forget, F., Haqq-Misra, J.,
Kopparapu, R. K., Lambert, F. H., Manners, J., Mayne, N. J., and Sohl, L.:
The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). I.
Dry Cases – The Fellowship of the GCMs, Planet. Sci.
J., 3, 211, https://doi.org/10.3847/PSJ/ac6cf0, 2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Vallis, G. K., Colyer, G., Geen, R., Gerber, E., Jucker, M., Maher, P., Paterson, A., Pietschnig, M., Penn, J., and Thomson, S. I.: Isca, v1.0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity, Geosci. Model Dev., 11, 843–859, https://doi.org/10.5194/gmd-11-843-2018, 2018. a, b
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a, b, c
Way, M. J., Aleinov, I., Amundsen, D. S., Chandler, M. A., Clune, T. L., Genio,
A. D. D., Fujii, Y., Kelley, M., Kiang, N. Y., Sohl, L., and Tsigaridis, K.:
Resolving Orbital and Climate Keys of Earth and Extraterrestrial
Environments with Dynamics (ROCKE-3D) 1.0: A General
Circulation Model for Simulating the Climates of Rocky Planets,
Astrophys. J. Suppl. S., 231, 12,
https://doi.org/10.3847/1538-4365/aa7a06, 2017. a
Wedi, N. P. and Smolarkiewicz, P. K.: A framework for testing global
non-hydrostatic models, Q. J. Roy. Meteor.
Soc., 135, 469–484, https://doi.org/10.1002/qj.377,
2009. a
White, A. A., Hoskins, B. J., Roulstone, I., and Staniforth, A.: Consistent
approximate models of the global atmosphere: shallow, deep, hydrostatic,
quasi-hydrostatic and non-hydrostatic, Q. J. Roy.
Meteor. Soc., 131, 2081–2107, https://doi.org/10.1256/qj.04.49, 2005. a
Wilson, D. R. and Ballard, S. P.: A microphysically based precipitation scheme
for the UK meteorological office unified model, Q. J.
Roy. Meteor. Soc., 125, 1607–1636, https://doi.org/10.1002/qj.49712555707,
1999. a
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., and
Morcrette, C. J.: PC2: A prognostic cloud fraction and condensation
scheme. I: Scheme description, Q. J. Roy.
Meteor. So., 134, 2093–2107, https://doi.org/10.1002/qj.333, 2008. a
Wiltshire, A. J., Duran Rojas, M. C., Edwards, J. M., Gedney, N., Harper, A. B., Hartley, A. J., Hendry, M. A., Robertson, E., and Smout-Day, K.: JULES-GL7: the Global Land configuration of the Joint UK Land Environment Simulator version 7.0 and 7.2, Geosci. Model Dev., 13, 483–505, https://doi.org/10.5194/gmd-13-483-2020, 2020. a
Wolf, E. T., Kopparapu, R., Haqq-Misra, J., and Fauchez, T. J.: ExoCAM: A
3D Climate Model for Exoplanet Atmospheres, Planet. Sci.
J., 3, 7, https://doi.org/10.3847/PSJ/AC3F3D, 2022. a, b, c
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M.,
Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An
inherently mass-conserving semi-implicit semi-Lagrangian discretization of
the deep-atmosphere global non-hydrostatic equations, Q. J.
Roy. Meteor. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235,
2014. a, b, c, d
Wordsworth, R. and Kreidberg, L.: Atmospheres of Rocky Exoplanets, Annu.
Rev. Astron. Astr., 60, 159–201,
https://doi.org/10.1146/annurev-astro-052920-125632, 2022. a
Wordsworth, R. D., Forget, F., Selsis, F., Millour, E., Charnay, B., and
Madeleine, J.-B.: Gliese 581D is the first discovered
terrestrial-mass exoplanet in the habitable zone,
Astrophys. J., 733, L48, https://doi.org/10.1088/2041-8205/733/2/L48, 2011. a
Yang, J., Cowan, N. B., and Abbot, D. S.: Stabilizing cloud feedback
dramatically expands the habitable zone of tidally locked
planets, Astrophys. J., 771, L45,
https://doi.org/10.1088/2041-8205/771/2/L45, 2013. a
Yang, J., Leconte, J., Wolf, E. T., Merlis, T., Koll, D. D. B., Forget, F., and
Abbot, D. S.: Simulations of Water Vapor and Clouds on Rapidly
Rotating and Tidally Locked Planets: A 3D Model
Intercomparison, Astrophys. J., 875, 46,
https://doi.org/10.3847/1538-4357/ab09f1, 2019. a
Zamyatina, M., Hébrard, E., Drummond, B., Mayne, N. J., Manners, J., Christie,
D. A., Tremblin, P., Sing, D. K., and Kohary, K.: Observability of signatures
of transport-induced chemistry in clear atmospheres of hot gas giant
exoplanets, Mon. Not. R. Astron. Soc., 519,
3129–3153, https://doi.org/10.1093/mnras/stac3432, 2023.
a, b
Zhang, F. (Ed.): The Schur Complement and Its Applications, vol. 4,
Springer-Verlag, New York, https://doi.org/10.1007/b105056, 2005. a
Short summary
Three-dimensional climate models are one of the best tools we have to study planetary atmospheres. Here, we apply LFRic-Atmosphere, a new model developed by the Met Office, to seven different scenarios for terrestrial planetary climates, including four for the exoplanet TRAPPIST-1e, a primary target for future observations. LFRic-Atmosphere reproduces these scenarios within the spread of the existing models across a range of key climatic variables, justifying its use in future exoplanet studies.
Three-dimensional climate models are one of the best tools we have to study planetary...