Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4639-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4639-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using Probability Density Functions to Evaluate Models (PDFEM, v1.0) to compare a biogeochemical model with satellite-derived chlorophyll
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
Christopher L. Follett
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L69 3GP
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Jacob Bien
Data Sciences and Operations, University of Southern California, Los Angeles, California, USA
Stephanie Dutkiewicz
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Sangwon Hyun
Department of Statistics, University of California Santa Cruz, Santa Cruz, California, USA
Gemma Kulk
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
Gael L. Forget
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Christian Müller
Department of Statistics, LMU/HMGU Munich, Munich, Germany
Marie-Fanny Racault
School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
Christopher N. Hill
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Thomas Jackson
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
Shubha Sathyendranath
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth PL1 3DH, UK
Related authors
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023, https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
Daniel J. Ford, Gemma Kulk, Shubha Sathyendranath, and Jamie D. Shutler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-389, https://doi.org/10.5194/essd-2025-389, 2025
Preprint under review for ESSD
Short summary
Short summary
Chlorophyll-a is routinely monitored using ocean colour satellites, however, these data records have gaps. Here we present a methodology to provide a spatially and temporally complete chlorophyll-a record, using Biogeochemical Argo floats as a constraint on wintertime chlorophyll-a, and a statistical kriging approach to fill cloud gaps. Thereby, providing a complete record at monthly 0.25° resolution between 1997 and 2023, consistent to the underlying climate data record.
Qi Zheng, Johannes J. Viljoen, Xuerong Sun, Žarko Kovač, Shubha Sathyendranath, and Robert J. W. Brewin
Biogeosciences, 22, 3253–3278, https://doi.org/10.5194/bg-22-3253-2025, https://doi.org/10.5194/bg-22-3253-2025, 2025
Short summary
Short summary
Phytoplankton contribute to half of Earth’s primary production, but not a lot is known about subsurface phytoplankton, living at the base of the sunlit ocean. We develop a two-layered box model to simulate phytoplankton seasonal and interannual variations in different depth layers of the ocean. Our model captures seasonal and long-term trends of the two layers, explaining how they respond to a warming ocean, furthering our understanding of how phytoplankton are responding to climate change.
Raphaël Savelli, Dustin Carroll, Dimitris Menemenlis, Jonathan Lauderdale, Clément Bertin, Stephanie Dutkiewicz, Manfredi Manizza, Anthony Bloom, Karel Castro-Morales, Charles E. Miller, Marc Simard, Kevin W. Bowman, and Hong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1707, https://doi.org/10.5194/egusphere-2025-1707, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Accounting for carbon and nutrients in rivers is essential for resolving carbon dioxide (CO2) exchanges between the ocean and the atmosphere. In this study, we add the effect of present-day rivers to a pioneering global-ocean biogeochemistry model. This study highlights the challenge for global ocean numerical models to cover the complexity of the flow of water and carbon across the Land-to-Ocean Aquatic Continuum.
Clement Bertin, Vincent Le Fouest, Dustin Carroll, Stephanie Dutkiewicz, Dimitris Menemenlis, Atsushi Matsuoka, Manfredi Manizza, and Charles E. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-973, https://doi.org/10.5194/egusphere-2025-973, 2025
Short summary
Short summary
We adjusted a model of the Mackenzie River region to account for the riverine export of organic matter that affects light in the water. We show that such export causes a delay in the phytoplankton growth by two weeks and raises the water surface temperature by 1.7 °C. We found that temperature increase turns this coastal region from a sink of carbon dioxide to an emitter. Our findings suggest that rising exports of organic matter can significantly affect the carbon cycle in Arctic coastal areas.
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023, https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Rachael N. C. Sanders, Daniel C. Jones, Simon A. Josey, Bablu Sinha, and Gael Forget
Ocean Sci., 18, 953–978, https://doi.org/10.5194/os-18-953-2022, https://doi.org/10.5194/os-18-953-2022, 2022
Short summary
Short summary
In 2015, record low temperatures were observed in the North Atlantic. Using an ocean model, we show that surface heat loss in December 2013 caused 75 % of the initial cooling before this "cold blob" was trapped below the surface. The following summer, the cold blob re-emerged due to a strong temperature difference between the surface ocean and below, driving vertical diffusion of heat. Lower than average surface warming then led to the coldest temperature anomalies in August 2015.
Ehud Strobach, Andrea Molod, Donifan Barahona, Atanas Trayanov, Dimitris Menemenlis, and Gael Forget
Geosci. Model Dev., 15, 2309–2324, https://doi.org/10.5194/gmd-15-2309-2022, https://doi.org/10.5194/gmd-15-2309-2022, 2022
Short summary
Short summary
The Green's functions methodology offers a systematic, easy-to-implement, computationally cheap, scalable, and extendable method to tune uncertain parameters in models accounting for the dependent response of the model to a change in various parameters. Herein, we successfully show for the first time that long-term errors in earth system models can be considerably reduced using Green's functions methodology. The method can be easily applied to any model containing uncertain parameters.
Axel Peytavin, Bruno Sainte-Rose, Gael Forget, and Jean-Michel Campin
Geosci. Model Dev., 14, 4769–4780, https://doi.org/10.5194/gmd-14-4769-2021, https://doi.org/10.5194/gmd-14-4769-2021, 2021
Short summary
Short summary
We present a new algorithm developed at The Ocean Cleanup to update ocean plastic models based on measurements from the field to improve future cleaning operations. Prepared in collaboration with MIT researchers, this initial study presents its use in several analytical and real test cases in which two observers in a flow field record regular observations to update a plastic forecast. We demonstrate this improves the prediction, even with inaccurate knowledge of the water flows driving plastic.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Cited articles
Aas, E.: Two-stream irradiance model for deep waters, Appl. Optics, 26,
2095–2101, 1987. a
Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit
validation of ocean color satellite data products, Remote Sens.
Environ., 102, 12–23, https://doi.org/10.1016/j.rse.2006.01.015, 2006. a
Beaugrand, G., Reid, P. C., Ibañez, F., and Planque, B.: Biodiversity of
North Atlantic and North Sea calanoid copepods, Mar. Ecol. Prog.
Ser., 204, 299–303, 2000. a
Cael, B., Bisson, K., and Follett, C. L.: Can rates of ocean primary production
and biological carbon export be related through their probability
distributions?, Global Biogeochem. Cy., 32, 954–970, 2018. a
Campbell, J. W.: The lognormal distribution as a model for bio‐optical
variability in the sea, J. Geophys. Res.-Oceans, 100,
13237–13254, https://doi.org/10.1029/95jc00458, 1995. a
Campin, J.-M., Heimbach, P., Losch, M., Forget, G., Edhill3, Adcroft, A.,
Amolod, Menemenlis, D., Dfer22, Hill, C., Jahn, O., Scott, J.,
Stephdut, Mazloff, M., Baylor Fox-Kemper, Antnguyen13, Doddridge, E.,
Fenty, I., Bates, M., AndrewEichmann-NOAA, Smith, T., Martin, T.,
Lauderdale, J., Abernathey, R., Samarkhatiwala, Hongandyan, Deremble, B.,
Dngoldberg, Bourgault, P., and Dussin, R.: MITgcm/MITgcm: mid 2020 version, Zenodo [data set],
https://doi.org/10.5281/zenodo.3967889, 2020. a
de Mora, L., Butenschön, M., and Allen, J. I.: The assessment of a global marine ecosystem model on the basis of emergent properties and ecosystem function: a case study with ERSEM, Geosci. Model Dev., 9, 59–76, https://doi.org/10.5194/gmd-9-59-2016, 2016. a
Doney, S. C., Lima, I., Lindsay, K., Moore, J. K., Dutkiewicz, S., Friedrichs,
M. A., and Matear, R. J.: Marine Biogeochemical Modeling: Recent Advances and
Future Challenges, Oceanography, 14, 93–107,
https://doi.org/10.5670/oceanog.2001.10, 2001. a
Doney, S. C., Lima, I., Moore, J. K., Lindsay, K., Behrenfeld, M. J.,
Westberry, T. K., Mahowald, N., Glover, D. M., and Takahashi, T.: Skill
metrics for confronting global upper ocean ecosystem-biogeochemistry models
against field and remote sensing data, J. Marine Syst., 76,
95–112, https://doi.org/10.1016/j.jmarsys.2008.05.015, 2009. a, b
Dutkiewicz, S.: Climate Change Simulation output files (1995–2100), Harvard Dataverse [data set],
https://doi.org/10.7910/DVN/08OJUV, 2018. a, b
Dutkiewicz, S., Hickman, A. E., Jahn, O., Gregg, W. W., Mouw, C. B., and Follows, M. J.: Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model, Biogeosciences, 12, 4447–4481, https://doi.org/10.5194/bg-12-4447-2015, 2015. a, b, c
Dutkiewicz, S., Hickman, A. E., and Jahn, O.: Modelling ocean-colour-derived chlorophyll a, Biogeosciences, 15, 613–630, https://doi.org/10.5194/bg-15-613-2018, 2018. a, b, c, d
Dutkiewicz, S., Hickman, A. E., Jahn, O., Henson, S., Beaulieu, C., and Monier,
E.: Ocean colour signature of climate change, Nat. Commun., 10, 578,
https://doi.org/10.1038/s41467-019-08457-x, 2019. a, b, c, d
Dutkiewicz, S., Baird, M., Chai, F., Ciavatta, S., Edwards, C. A., Evers-King,
H., Friedrichs, M. A. M., Frolov, S., Gehlen, M., Henson, S., Hickman, A.,
Ibrahim, A., Jahn, O., Jones, E., Kaufman, D. E., Mélin, F., Mouw, C.,
Muhling, B., Rousseaux, C., Shulman, I., Stock, C. A., Werdell, P. J., and
Wiggert, J. D.: Synergy between Ocean Colour and Biogeochemical/Ecosystem
Models., Tech. Rep., 19, IOCCG, https://doi.org/10.25607/OBP-711, 2020a. a
Dutkiewicz, S., Cermeno, P., Jahn, O., Follows, M. J., Hickman, A. E., Taniguchi, D. A. A., and Ward, B. A.: Dimensions of marine phytoplankton diversity, Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020, 2020b. a, b
Dutkiewicz, S., Boyd, P. W., and Riebesell, U.: Exploring biogeochemical and
ecological redundancy in phytoplankton communities in the global ocean,
Glob. Change Biol., 27, 1196–1213, https://doi.org/10.1111/gcb.15493, 2021. a, b, c
Edwards, P. N.: History of climate modeling, WIRES
Clim. Change, 2, 128–139, https://doi.org/10.1002/wcc.95, 2011. a
Follett, C. L., Dutkiewicz, S., Forget, G., Cael, B. B., and Follows, M. J.:
Moving Ecological and Biogeochemical Transitions Across the North Pacific,
Limnol. Oceanogr., 66, 2442–2454, https://doi.org/10.1002/lno.11763, 2021. a
Forget, G. and Ferreira, D.: Global ocean heat transport dominated by heat
export from the tropical Pacific, Nat. Geosci., 12, 351–354,
https://doi.org/10.1038/s41561-019-0333-7, 2019. a, b
Forget, G. and Ponte, R. M.: The partition of regional sea level variability,
Prog. Oceanogr., 137, 173–195, https://doi.org/10.1016/j.pocean.2015.06.002,
2015. a, b, c
Forget, G. and Wunsch, C.: Estimated Global Hydrographic Variability, J.
Phys. Oceanogr., 37, 1997–2008, https://doi.org/10.1175/jpo3072.1, 2007. a
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a, b, c
Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M., and Poggio, T.: Learning
with a Wasserstein Loss, in: Proceedings of the 28th International Conference
on Neural Information Processing Systems – Volume 2, NIPS'15,
MIT Press, Cambridge, MA, USA, 2053–2061, https://doi.org/10.48550/arXiv.1506.05439, 2015. a
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic regulatory model
of phytoplanktonic acclimation to light, nutrients, and temperature,
Limnol. Oceanogr., 43, 679–694, https://doi.org/10.4319/lo.1998.43.4.0679,
1998. a
Gordon, H. R.: Irradiance attenuation coefficient in a stratified ocean: a
local property of the medium, Appl. Optics, 19, 2092,
https://doi.org/10.1364/ao.19.002092, 1980. a
Hague, M. and Vichi, M.: A Link Between CMIP5 Phytoplankton Phenology and Sea
Ice in the Atlantic Southern Ocean, Geophys. Res. Lett., 45,
6566–6575, https://doi.org/10.1029/2018gl078061, 2018. a
Hansen, P. J., Bjørnsen, P. K., and Hansen, B. W.: Zooplankton grazing and
growth: Scaling within the 2-2,-µm body size range, Limnol.
Oceanogr., 42, 687–704, https://doi.org/10.4319/lo.1997.42.4.0687, 1997. a
Henson, S. A., Dunne, J. P., and Sarmiento, J. L.: Decadal variability in
North Atlantic phytoplankton blooms, J. Geophys. Res.-Oceans, 114, C04013, https://doi.org/10.1029/2008JC005139, 2009. a
Holling, C. S.: Some Characteristics of Simple Types of Predation and
Parasitism, Can. Entomol., 91, 385–398,
https://doi.org/10.4039/Ent91385-7, 1959. a
Jackson, T., Sathyendranath, S., and Mélin, F.: An improved optical
classification scheme for the Ocean Colour Essential Climate Variable and its
applications, Remote Sens. Environ., 203, 152–161,
https://doi.org/10.1016/j.rse.2017.03.036, 2017. a
Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A.,
Helber, R., and Arnone, R. A.: Summary diagrams for coupled
hydrodynamic-ecosystem model skill assessment, J. Marine Syst., 76,
64–82, https://doi.org/10.1016/j.jmarsys.2008.05.014, 2009. a
Jönsson, B.: Example code for processing, statistics, and analysis of data
stored as histograms, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6683849, 2022. a
Jönsson, B. F. and Salisbury, J. E.: Episodicity in phytoplankton dynamics
in a coastal region, Geophys. Res. Lett., 43, 5821–5828,
https://doi.org/10.1002/2016GL068683, 2016. a, b
Jonsson, B. F., Doney, S., Dunne, J., and Bender, M. L.: Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal timescales using satellite chlorophyll and observations, Biogeosciences, 12, 681–695, https://doi.org/10.5194/bg-12-681-2015, 2015. a, b, c, d, e, f
Jönsson, B. F., Sathyendranath, S., and Platt, T.: Trends in Winter Light
Environment Over the Arctic Ocean: A Perspective From Two Decades of Ocean
Color Data, Geophys. Res. Lett., 47, e2020GL089037,
https://doi.org/10.1029/2020GL089037, 2020a. a
Jönsson, B. F., Sathyendranath, S., and Platt, T.: Trends in Winter Light
Environment Over the Arctic Ocean: A Perspective From Two Decades of Ocean
Color Data, Geophys. Res. Lett., 47, e2020GL089037,
https://doi.org/10.1029/2020GL089037, 2020b. a
Jönsson, B. F., Salisbury, J., Atwood, E. C., Sathyendranath, S., and
Mahadevan, A.: Dominant timescales of variability in global satellite
chlorophyll and SST revealed with a MOving Standard deviation Saturation
(MOSS) approach, Remote Sens. Environ., 286, 113404,
https://doi.org/10.1016/j.rse.2022.113404, 2023. a
Kiørboe, T.: A Mechanistic Approach to Plankton Ecology, Princeton
University Press, https://doi.org/10.1515/9780691190310, 2019. a
Lee, Z. and Hu, C.: Global distribution of Case-1 waters: An analysis from
SeaWiFS measurements, Remote Sens. Environ., 101, 270–276,
https://doi.org/10.1016/j.rse.2005.11.008, 2006. a
Lee, Z., Carder, K. L., and Arnone, R. A.: Deriving inherent optical properties
from water color: a multiband quasi-analytical algorithm for optically deep
waters, Appl. Optics, 41, 5755–5772, 2002. a
Levina, E. and Bickel, P.: The Earth Mover's distance is the Mallows distance: some insights from statistics, in: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, BC, Canada, 2001, vol. 2, 251–256, https://doi.org/10.1109/ICCV.2001.937632, 2001. a
Mayner, W., Louf, R., and Braun, V.: pyemd: 0.2.0, Zenodo [code], https://doi.org/10.5281/zenodo.33535,
2015. a
Mélin, F., Vantrepotte, V., Chuprin, A., Grant, M., Jackson, T., and
Sathyendranath, S.: Assessing the fitness-for-purpose of satellite
multi-mission ocean color climate data records: A protocol applied to
OC-CCI chlorophyll-a data, Remote Sens. Environ., 203, 139–151,
https://doi.org/10.1016/j.rse.2017.03.039, 2017. a
Monge, G.: Mémoire sur la théorie des déblais et des remblais, De
l'Imprimerie Royale, https://www.worldcat.org/title/memoire-sur-la-theorie-des-deblais-et-des-remblais/oclc/51928110 (last access: 7 July 2023), 1781. a
Moore, T. S., Campbell, J. W., and Dowell, M. D.: A class-based approach to
characterizing and mapping the uncertainty of the MODIS ocean chlorophyll
product, Remote Sens. Environ., 113, 2424–2430,
https://doi.org/10.1016/j.rse.2009.07.016, 2009. a
Moore, T. S., Dowell, M. D., and Franz, B. A.: Detection of coccolithophore
blooms in ocean color satellite imagery: A generalized approach for use with
multiple sensors, Remote Sens. Environ., 117, 249–263,
https://doi.org/10.1016/j.rse.2011.10.001, 2012. a
Morel, A. and Prieur, L.: Analysis of variations in ocean color1: Ocean color
analysis, Limnol. Oceanogr., 22, 709–722,
https://doi.org/10.4319/lo.1977.22.4.0709, 1977. a
Oliver, E. C., Benthuysen, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J.,
Holbrook, N. J., Schlegel, R. W., and Gupta, A. S.: Marine Heatwaves, Annu.
Rev. Mar. Sci., 13, 313–342,
https://doi.org/10.1146/annurev-marine-032720-095144, 2021. a
O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L.,
Garver, S. A., Kahru, M., and McClain, C.: Ocean color chlorophyll algorithms
for SeaWiFS, J. Geophys. Res.-Oceans, 103, 24937–24953,
https://doi.org/10.1029/98JC02160, 1998. a, b
Orlova, D. Y., Zimmerman, N., Meehan, S., Meehan, C., Waters, J., Ghosn, E.
E. B., Filatenkov, A., Kolyagin, G. A., Gernez, Y., Tsuda, S., Moore, W.,
Moss, R. B., Herzenberg, L. A., and Walther, G.: Earth Mover's Distance
(EMD): A True Metric for Comparing Biomarker Expression Levels in Cell
Populations, PLOS ONE, 11, e0151859,
https://doi.org/10.1371/journal.pone.0151859, 2016. a
Pele, O. and Werman, M.: A Linear Time Histogram Metric for Improved SIFT
Matching, in: Computer Vision – ECCV 2008, ECCV 2008, Lecture Notes in Computer Science, vol. 5304, edited by: Forsyth, D., Torr, P., and Zisserman, A., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-88690-7_37, 2008. a
Pele, O. and Werman, M.: Fast and Robust Earth Mover's Distances, in: 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009, 460–467, https://doi.org/10.1109/ICCV.2009.5459199,
2009. a
Raspaud, M., Hoese, D., Lahtinen, P., Dybbroe, A., Finkensieper, S., Roberts,
W., Rasmussen, L. O., Proud, S., Joro, S., Daruwala, R., Holl, G., Jasmin,
T., BENR0, Leppelt, T., Egede, U., R.K.Garcia, Itkin, M., LTMeyer,
Sigurdsson, E., Radar, S., Division, N., Aspenes, T., Hazbottles,
ColinDuff, Joleenf, , Cody, Clementi, L., Honnorat, M., Schulz, H.,
Hatt, B., and Valentino, A.: pytroll/satpy: Version 0.16.0, Zenodo [code],
https://doi.org/10.5281/zenodo.3250583, 2019. a
Reygondeau, G., Longhurst, A., Martinez, E., Beaugrand, G., Antoine, D., and
Maury, O.: Dynamic biogeochemical provinces in the global ocean, Global
Biogeochem. Cy., 27, 1046–1058, https://doi.org/10.1002/gbc.20089, 2013. a, b
Rubner, Y., Tomasi, C., and Guibas, L. J.: Earth mover's distance as a metric
for image retrieval, Int. J. Comput. Vision, 40, 99–121,
https://doi.org/10.1023/A:1026543900054, 2000. a
Sathyendranath, S. and Platt, T.: Remote sensing of ocean chlorophyll:
consequence of nonuniform pigment profile, Appl. Optics, 28, 490–495,
https://doi.org/10.1364/ao.28.000490, 1989. a
Sathyendranath, S., Brewin, R., Brockmann, C., Brotas, V., Calton, B., Chuprin,
A., Cipollini, P., Couto, A., Dingle, J., Doerffer, R., Donlon, C., Dowell,
M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T., Krasemann,
H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore,
T., Müller, D., Regner, P., Roy, S., Steele, C., Steinmetz, F., Swinton,
J., Taberner, M., Thompson, A., Valente, A., Zühlke, M., Brando, V.,
Feng, H., Feldman, G., Franz, B., Frouin, R., Gould, R., Hooker, S., Kahru,
M., Kratzer, S., Mitchell, B., Muller-Karger, F., Sosik, H., Voss, K.,
Werdell, J., and Platt, T.: An Ocean-Colour Time Series for Use in Climate
Studies: The Experience of the Ocean-Colour Climate Change Initiative
(OC-CCI), Sensors, 19, 4285, https://doi.org/10.3390/s19194285, 2019. a, b
Sathyendranath, S., Jackson, T., Brockmann, C., Brotas, V., Calton, B.,
Chuprin, A., Clements, O., Cipollini, P., Danne, O., Dingle, J., Donlon, C.,
Grant, M., Groom, S., Krasemann, H., Lavender, S., Mazeran, C., Mélin,
F., Moore, T. S., Müller, D., Regner, P., Steinmetz, F., Steele, C.,
Swinton, J., Valente, A., Zühlke, M., Feldman, G., Franz, B., Frouin, R.,
Werdell, J., and Platt, T.: ESA Ocean Colour Climate Change Initiative
(Ocean_Colour_cci): Version 4.2 Data, CEDA Archive [data set],
https://doi.org/10.5285/D62F7F801CB54C749D20E736D4A1039F, 2020. a, b
Schartau, M., Landry, M. R., and Armstrong, R. A.: Density estimation of
plankton size spectra: A reanalysis of IronEx II data, J. Plankton
Res., 32, 1167–1184, https://doi.org/10.1093/plankt/fbq072, 2010. a
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L.,
Tagliabue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J., and
et al.: Tracking Improvement in Simulated Marine Biogeochemistry Between
CMIP5 and CMIP6, Current Climate Change Reports, 6, 95–119,
https://doi.org/10.1007/s40641-020-00160-0, 2020. a
Sommer, U., Charalampous, E., Genitsaris, S., and Moustaka-Gouni, M.:
Benefits, costs and taxonomic distribution of marine phytoplankton body
size, J. Plankton Res., 39, 494–508, https://doi.org/10.1093/plankt/fbw071, 2017. a
Steinmetz, F., Deschamps, P.-Y., and Ramon, D.: Atmospheric correction in
presence of sun glint: application to MERIS, Opt. Express, 19, 9783,
https://doi.org/10.1364/oe.19.009783, 2011. a
Stow, C. A., Jolliff, J., McGillicuddy, D. J., Doney, S. C., Allen, J. I.,
Friedrichs, M. A., Rose, K. A., and Wallhead, P.: Skill assessment for
coupled biological/physical models of marine systems, J. Marine
Syst., 76, 4–15, https://doi.org/10.1016/j.jmarsys.2008.03.011, 2009. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000jd900719, 2001. a, b, c
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Borsheim, Y., Bracher, A., Brando, V., Canuti, E., Chavez, F., Cianca, A., Claustre, H., Clementson, L., Crout, R., Frouin, R., García-Soto, C., Gibb, S. W., Gould, R., Hooker, S. B., Kahru, M., Kampel, M., Klein, H., Kratzer, S., Kudela, R., Ledesma, J., Loisel, H., Matrai, P., McKee, D., Mitchell, B. G., Moisan, T., Muller-Karger, F., O'Dowd, L., Ondrusek, M., Platt, T., Poulton, A. J., Repecaud, M., Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik, H. M., Twardowski, M., Vellucci, V., Voss, K., Werdell, J., Wernand, M., Wright, S., and Zibordi, G.: A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two, Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, 2019a. a
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner,
M., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R. G.,
Bélanger, S., Berthon, J.-F., Besiktepe, S., Borsheim, K. Y., Bracher,
A., Brando, V. E., Canuti, E., Chavez, F. P., Cianca, A., Claustre, H.,
Clementson, L., Crout, R., Frouin, R., García-Soto, C., Gibb, S. W.,
Gould, R., Hooker, S. B., Kahru, M., Kampel, M., Klein, H., Kratzer, S.,
Kudela, R. M., Ledesma, S., Loisel, H., Matrai, P. A., McKee, D., Mitchell,
B. G., Moisan, T., Muller-Karger, F. E., O'Dowd, L., Ondrusek, M., Platt, T.,
Poulton, A. J., Repecaud, M., Schroeder, T., Smyth, T. J., Smythe-Wright, D.,
Sosik, H., Twardowski, M. S., Vellucci, V., Voss, K., Werdell, P. J.,
Wernand, M. R., Wright, S., and Zibordi, G.: A compilation of global
bio-optical in situ data for ocean-colour satellite applications – version
two, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898188, 2019b. a
Vaserstein, L. N.: Markov Processes over Denumerable Products of Spaces,
Describing Large Systems of Automata, Probl. Peredachi Inf., 5, 64–72, https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1811&option_lang=eng (last access: 7 July 2023), 1969.
a
Vichi, M., Allen, J. I., Masina, S., and Hardman‐Mountford, N. J.: The
emergence of ocean biogeochemical provinces: A quantitative assessment and a
diagnostic for model evaluation, Global Biogeochem. Cy., 25, GB2005,
https://doi.org/10.1029/2010gb003867, 2011. a
Short summary
While biogeochemical models and satellite-derived ocean color data provide unprecedented information, it is problematic to compare them. Here, we present a new approach based on comparing probability density distributions of model and satellite properties to assess model skills. We also introduce Earth mover's distances as a novel and powerful metric to quantify the misfit between models and observations. We find that how 3D chlorophyll fields are aggregated can be a significant source of error.
While biogeochemical models and satellite-derived ocean color data provide unprecedented...