Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4639-2023
https://doi.org/10.5194/gmd-16-4639-2023
Methods for assessment of models
 | 
18 Aug 2023
Methods for assessment of models |  | 18 Aug 2023

Using Probability Density Functions to Evaluate Models (PDFEM, v1.0) to compare a biogeochemical model with satellite-derived chlorophyll

Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath

Related authors

Ocean color algorithm for the retrieval of the particle size distribution and carbon-based phytoplankton size classes using a two-component coated-sphere backscattering model
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023,https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0
Kristofer Döös, Bror Jönsson, and Joakim Kjellsson
Geosci. Model Dev., 10, 1733–1749, https://doi.org/10.5194/gmd-10-1733-2017,https://doi.org/10.5194/gmd-10-1733-2017, 2017
Short summary
Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal timescales using satellite chlorophyll and O2 / Ar observations
B. F. Jonsson, S. Doney, J. Dunne, and M. L. Bender
Biogeosciences, 12, 681–695, https://doi.org/10.5194/bg-12-681-2015,https://doi.org/10.5194/bg-12-681-2015, 2015
Short summary

Related subject area

Oceanography
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024,https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024,https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024,https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024,https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary
Modelling the water isotope distribution in the Mediterranean Sea using a high-resolution oceanic model (NEMO-MED12-watiso v1.0): evaluation of model results against in situ observations
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024,https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary

Cited articles

Aas, E.: Two-stream irradiance model for deep waters, Appl. Optics, 26, 2095–2101, 1987. a
Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102, 12–23, https://doi.org/10.1016/j.rse.2006.01.015, 2006. a
Beaugrand, G., Reid, P. C., Ibañez, F., and Planque, B.: Biodiversity of North Atlantic and North Sea calanoid copepods, Mar. Ecol. Prog. Ser., 204, 299–303, 2000. a
Cael, B., Bisson, K., and Follett, C. L.: Can rates of ocean primary production and biological carbon export be related through their probability distributions?, Global Biogeochem. Cy., 32, 954–970, 2018. a
Campbell, J. W.: The lognormal distribution as a model for bio‐optical variability in the sea, J. Geophys. Res.-Oceans, 100, 13237–13254, https://doi.org/10.1029/95jc00458, 1995. a
Download
Short summary
While biogeochemical models and satellite-derived ocean color data provide unprecedented information, it is problematic to compare them. Here, we present a new approach based on comparing probability density distributions of model and satellite properties to assess model skills. We also introduce Earth mover's distances as a novel and powerful metric to quantify the misfit between models and observations. We find that how 3D chlorophyll fields are aggregated can be a significant source of error.