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Abstract. Global biogeochemical ocean models are invalu-
able tools to examine how physical, chemical, and biological
processes interact in the ocean. Satellite-derived ocean color
properties, on the other hand, provide observations of the sur-
face ocean, with unprecedented coverage and resolution. Ad-
vances in our understanding of marine ecosystems and bio-
geochemistry are strengthened by the combined use of these
resources, together with sparse in situ data. Recent model-
ing advances allow the simulation of the spectral properties
of phytoplankton and remote sensing reflectances, bringing
model outputs closer to the kind of data that ocean color
satellites can provide. However, comparisons between model
outputs and analogous satellite products (e.g., chlorophyll a)
remain problematic. Most evaluations are based on point-
by-point comparisons in space and time, where spuriously
large errors can occur from small spatial and temporal mis-
matches, whereas global statistics provide no information on
how well a model resolves processes at regional scales. Here,
we employ a unique suite of methodologies, the Probabil-
ity Density Functions to Evaluate Models (PDFEM), which
generate a robust comparison of these resources. The prob-

ability density functions of physical and biological proper-
ties of Longhurst’s provinces are compared to evaluate how
well a model resolves related processes. Differences in the
distributions of chlorophyll a concentration (mg m−3) pro-
vide information on matches and mismatches between mod-
els and observations. In particular, mismatches help isolate
regional sources of discrepancy, which can lead to improv-
ing both simulations and satellite algorithms. Furthermore,
the use of radiative transfer in the model to mimic remotely
sensed products facilitates model–observation comparisons
of optical properties of the ocean.

1 Introduction

Ocean general circulation models (OGCMs), with the added
ability to simulate biogeochemical and optical processes, are
providing remarkable opportunities to assess relationships
between physical, chemical, biological, and optical oceano-
graphic processes and to identify feedbacks between the
Earth’s oceans and climate (Doney et al., 2001; Edwards,
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2011; Séférian et al., 2020). These models describe pathways
linking biological and chemical standing stocks (state vari-
ables) by either resolving physical, chemical, and biological
processes explicitly or by parameterizing the fluxes. Current
three-dimensional climate class coupled physical–biological
OGCMs have a horizontal resolution that ranges from 2–3◦

down to∼ 10 km for the global domain, while regional mod-
els can resolve horizontal scales down to a few meters. The
associated simulated virtual ecosystems have varying com-
plexity, from one phytoplankton type to hundreds of different
categories of organisms.

One major challenge in the field of ecosystem and bio-
geochemical modeling is to devise appropriate methods to
compare model results with different kinds of observations,
especially since it is often not clear whether the comparisons
necessarily have like-for-like quantities (Dutkiewicz et al.,
2020a). Mismatches are spread over different temporal and
spatial scales, with time lags and spatial shifts that can gen-
erate large errors that can be misleading (Doney et al., 2009).
Current methods to compare the model output with gridded
observations such as satellite-derived data are normally im-
plemented on point-by-point match-ups in space and time,
which can put an unreasonable penalty on the model due to
small local temporal and spatial shifts. A simple but useful
statistical metric is the root mean square difference (RMSD)
that is summed over all match-ups. This approach can be ex-
tended by rescaling the match-up uncertainty to the data un-
certainty and forming a cost function (Forget and Wunsch,
2007; Forget and Ponte, 2015) or can be explored in fre-
quency space (Forget and Ponte, 2015). The method can be
extended to address temporal lags by calculating the devi-
ations between specific time intervals (day, month, season,
and year; Doney et al., 2009).

A common method to collate different categories of errors
when comparing model–observation match-ups over space
and time is the Taylor diagram (Taylor, 2001). Data points
in the Taylor space represent the correlation coefficient and
scaled standard deviation (SD) as a single point in the first
quadrant of a radial plot. The skills of different models or in
different regions, time spans, or variables can be compared
and contrasted by presenting each comparison as individual
data points on the same diagram (Taylor, 2001). The con-
cept of showing different statistical metrics as a normalized
and unifying figure has been further expanded with more ad-
vanced visualizations such as, for example, target diagrams
(Jolliff et al., 2009). These methods are quite useful, and their
concepts can be extended for application in formal data as-
similation (Stow et al., 2009). However, all of these tech-
niques can provide spuriously large errors due to potentially
small mismatches in time and space between the model and
observations. Small process errors, for example, can be mag-
nified by small spatial shifts in locations where spatial gradi-
ents are large. Small shifts in time can equally lead to large
errors in the SD.

Here we present a complementary approach to evaluate
OGCMs, where the statistical properties of probability den-
sity estimates are used instead of model–observation match-
ups. The model probability for finding, for example, the
chlorophyll a (Chl) concentration within a particular interval
(in this case 7 years) either globally or in a specific ecolog-
ical region is compared with the corresponding probability
in the observations, without considering the exact time and
location at which the values were found.

The study is formally based on probability density esti-
mates, and we use the commonly used term of probability
density function (PDF) without assuming that the distribu-
tion of values follows any particular statistical probability
distribution. An example of this approach is the study by
Jonsson et al. (2015), where net community production de-
rived from in situ observations were shown to compare well
with two biogeochemical models when zonal ranges of val-
ues were compared, while direct match-ups suggested no
skill in the models to reproduce observations. Another ex-
ample is the work of de Mora et al. (2016), where distribu-
tions of emergent properties such as phytoplankton commu-
nity structure and carbon-to-chlorophyll ratios in the Euro-
pean Regional Seas Ecosystem Model (ERSEM) were com-
pared with the equivalent satellite-derived or in situ proper-
ties. Mechanistic insight can be attained by comparing the
moments of the probability distributions in different regions
(Cael et al., 2018). The suite of methods and accompany-
ing code package is called Probability Density Functions to
Evaluate Models (PDFEM) version 1.0.

The rationale for our approach is that the distribution of a
certain property has the ability to provide insight into how
well a model resolves physical and biological processes,
without being penalized for small and often unimportant off-
sets in space or time. Comparing the distributions of dif-
ferent properties simulated by models with corresponding
distributions of observations has the potential to illuminate
why observations and models diverge. The difference in the
shapes of two distributions could provide clues as to how
well processes are represented in the models. An absence of
long tails in the model-derived distribution when they are
seen in observations can, for example, suggest that poten-
tially important but rare events are missing (Jönsson and Sal-
isbury, 2016). Bimodality in the model-derived distributions,
when they are not seen in observations, may indicate that the
model solution has unrealistic local equilibria, and the op-
posite might suggest that processes or water masses that are
important in the real world are not resolved by the model.
And two similar but shifted distributions might suggest pa-
rameterization problems within the ecosystem model.

To further counteract spurious mismatches from small spa-
tial displacements in point-by-point comparisons, we ag-
gregate data within ecological provinces and compare the
statistics of model the and observational distributions within
each province. This feature-based comparison can be done at
many different scales, ranging from eddies and fronts to the
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global scale (Vichi et al., 2011), and has been used in the past
to look at, for example, phenology shifts in the North Atlantic
Ocean (Henson et al., 2009). The regions over which data ag-
gregation occurs could in principle be determined separately
for models and observations, but this is challenging in prac-
tice, since such dynamically defined domains change in time
(Reygondeau et al., 2013). Instead, we use static regions that
can readily help us to identify processes that are potentially
misrepresented in the models by isolating provinces that are
expected to be controlled by similar processes and respond
to similar sets of physical forcings.

Finally, we need to formulate metrics to compare mod-
els with observations. This is particularly challenging when
comparing satellite-derived and model-simulated Chl, since
the former is defined as a depth-integrated property that is de-
pendent on the light attenuation in the water column, which
is exponentially weighted towards the surface values (Gor-
don, 1980; Sathyendranath and Platt, 1989), and the model
Chl is depth-resolved. The physical–biogeochemical model
we use here (Darwin-CBIOMES-0; Forget et al., 2015; For-
get and Ferreira, 2019; Dutkiewicz et al., 2015, 2021; Fol-
lett et al., 2021) addresses this challenge by explicitly resolv-
ing the light field vertically and simulating remote sensing
reflectances (Rrs; Bailey and Werdell, 2006). The resulting
2D Rrs fields are converted to Chl using standard algorithms
for satellite-derived Chl (see Sect. 2). These Chl estimates
have analogous benefits and constraints to satellite-derived
Chl when it comes to depth integration, also taking into ac-
count light attenuation in the ocean. The model, in effect, has
a simulated satellite field which allows us to readily compare
Chl estimates from satellites and models.

The paper is organized as follows. Section 2 describes all
data and assumptions used in the study, followed by an analy-
sis of (1) the global probability distributions of Chl from the
Darwin-CBIOMES-0 configuration, the Ocean Colour Cli-
mate Change Initiative (OC-CCI) satellite-derived Chl prod-
uct, and in situ observations, (2) the PDFs in all non-coastal
Longhurst provinces, and (3) the monthly distributions of
Chl in four representative Longhurst provinces in the North
Atlantic Ocean. The Earth mover’s distance (EMD) is used
to quantify the differences in distributions. We end with an
overarching discussion of the use of density distributions,
Longhurst provinces, and model Chl derived from simulated
Rrs to assess the skill of biogeochemical global ocean mod-
els.

2 Methods

2.1 Biogeochemical provinces

The analysis is performed after partitioning the global ocean
according to the Longhurst (2007) geographical classifica-
tion system of biomes and provinces. This classification is
based on physical and chemical conditions and processes that

shape marine ecosystems over large scales. The Longhurst
province system uses a two-level approach, with a higher
level distinguishing the coastal biome from the open-ocean
biomes (i.e., the trades, westerlies, and polar biomes). The
lower level divides each of the coastal and oceanic biomes
into provinces that are characterized by similar traits from
oceanographic, ecological, and topographical perspectives
(Longhurst, 2007). The resulting classification, as seen in
Fig. 1, has 57 distinct biogeochemical provinces (BGCPs)
with generally high internal homogeneity and high exter-
nal heterogeneity in marine biodiversity (Longhurst, 2007;
Beaugrand et al., 2000; Reygondeau et al., 2013). The orig-
inal Longhurst provinces are static in time and space, and
the definition of the province boundaries included qualitative
criteria. It is, therefore, possible that the boundaries between
provinces could be located differently if objective, quantita-
tive criteria were used. The dynamic nature of the boundaries
is not explored in the current study but is an important area
for future research. Our study uses Longhurst provinces as
the basis of the comparisons, assuming that they provide a
reasonable partitioning of regions with similar physical and
ecological characteristics.

2.2 The Darwin-CBIOMES-0
physical–biogeochemical–optical model

We use output from a coupled physical–biogeochemical–
optical model adapted and configured for the Simons Collab-
oration on Computational Biogeochemical Modeling of Ma-
rine Ecosystems (CBIOMES) project. The model configura-
tion, hereafter denoted as Darwin-CBIOMES-0 (Dutkiewicz,
2018), is global and simulates the period 1992–2006 (Forget
and Ferreira, 2019). The physical component uses the MIT-
gcm (Campin et al., 2020) in a three-dimensional global con-
figuration developed as part of the Estimating the Circulation
and Climate of the Ocean project (Forget et al., 2015; For-
get and Ponte, 2015; ECCOv4). The state estimate uses a
least squares with Lagrangian multipliers approach to adjust
the internal model parameters, in addition to the initial and
boundary conditions with global observational data streams,
including satellite altimetry and Argo floats. The resolution
is nominally 1◦ in the horizontal and ranges from 10 m in the
vertical at the surface to 500 m at depth (see Forget et al.,
2015, for details).

The biogeochemical component resolves the cycling
of carbon, phosphorus, nitrogen, silica, iron, and oxygen
through inorganic, living, dissolved, and particulate organic
phases. The ecosystem incorporates 35 phytoplankton and 16
zooplankton types, as in Dutkiewicz et al. (2021). The phyto-
plankton include several biogeochemical functional groups.
Diatoms (that utilize silicic acid), coccolithophores (that cal-
cify), mixotrophs (that photosynthesize and graze on other
plankton), nitrogen-fixing cyanobacteria (diazotrophs), and
picophytoplankton. Each group has a range of size classes,
such that the phytoplankton span from 0.6 to 228 µm equiv-
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Figure 1. Biogeochemical provinces according to Longhurst (2007). Purple shades denote the polar biome, red–yellow the westerlies biome,
blue the trades biome, and green the coastal biome. Regions analyzed in detail in this paper are identified by the codes ARCT (Atlantic Arctic
province), GFST (Gulf Stream province), WTRA (western tropical Atlantic province), and CARB (Caribbean province).

alent spherical diameter (ESD). Several phytoplankton pa-
rameters, including maximum growth rate, nutrient affinity,
and sinking are expressed as functions of the cell volume,
though with distinct differences between functional groups,
as suggested by observations (Dutkiewicz et al., 2020b; Som-
mer et al., 2017). The 16 size classes of zooplankton range
from 6.6 to 2425 µm ESD and graze on (phyto- or zoo-
)plankton 5 to 20 times smaller than themselves but preferen-
tially 10 times smaller (Hansen et al., 1997; Kiørboe, 2019;
Schartau et al., 2010) with a Holling’s type III parameter-
ization (Holling, 1959). The simulation uses Monod kinet-
ics, and C : N : P : Fe stoichiometries are constant over time
(though they differ between phytoplankton groups). We refer
the reader to Dutkiewicz et al. (2015, 2020b, 2021) for a fur-
ther description of the model, in addition to an evaluation of
the modeled plankton size class and functional group distri-
butions. Here we focus instead on the model Chl concentra-
tions. Each of the 35 phytoplankton types have dynamic Chl
that alters as a function of light, nutrients, and temperature,
following Geider et al. (1998). Chlmod refers to the sum of
modeled Chl across all the phytoplankton types.

The optical component of the model includes an explicit
radiative transfer of spectral irradiance in 25 nm bands be-
tween 400 and 700 nm. The three-stream (downward direct,
Ed, downward diffuse, Es, and upwelling, Eu) model (fol-
lowing Aas, 1987; Gregg, 2002; Gregg and Casey, 2009) is
reduced to a tridiagonal system that is solved explicitly (see
Dutkiewicz et al., 2015, for more details). In-water irradi-
ance fields are altered by the spectral absorption and scat-
tering by water molecules, the 35 phytoplankton types, de-
tritus, and colored dissolved organic matter (CDOM). Irradi-
ance just below the surface of the ocean (direct, Edo, and dif-
fuse, Eso, downward) is provided by the Ocean–Atmosphere
Spectral Irradiance Model (Gregg, 2002; Gregg and Casey,
2009; OASIM).

Output from the optical model includes spectral surface
upwelling irradiance similar to that measured by ocean color
satellites (Dutkiewicz et al., 2018, 2019). As in these ear-
lier studies, we calculate model reflectance for each wave-
band as the upwelling just below the surface (Eu) divided
by the total downward (direct and diffuse) irradiance also
just below the surface (as provided by OASIM) as follows:
R(λ,0−)= (Eu(λ))

(Ed0(λ)+Es0(λ))
. We first convert the model sub-

surface irradiance reflectance to remotely sensed reflectance
just below the surface, using a bidirectional function Q as
follows: Rrs(λ,0−)= R(λ,0−)

Q
, where we assume that Q=

3 sr (as in Dutkiewicz et al., 2019; Gregg, 2002). Second,
we convert Rrs(λ,0−) to above-surface remotely sensed re-
flectance Rrs(λ,0+) using the formula of Lee et al. (2002) as
follows: Rrs(λ,0+)= 0.53Rrs(λ,0−))

((1−1.7Rrs(λ,0−)))
. These spectral fields

will be referred to as model Rrs (units of sr−1), and this
is comparable to the Rrs provided by ocean color satellite
databases.

An advantage of having the model Rrs is that we can
provide a model-derived satellite-like Chl similar to that
described in the previous section (see Dutkiewicz et al.,
2018, 2019). In practice, we interpolate the 13 wavebands of
Rrs from the model to the same bands as used in OC-CCI and
use the maximum ratio of the blue signal to the green and a
fourth-order polynomial to estimate the satellite-like-derived
Chl (following O’Reilly et al., 1998). Here, for simplicity, we
use the OC version 2 algorithm and coefficients. This product
is termed ChlRrs in this paper and is technically more com-
parable to the real-world satellite product than the model’s
actual Chl at the surface (Chlmod; see the further discussion
in Dutkiewicz et al., 2018). Any pixels with invalid data in
the satellite product after downscaling to the model grid are
masked in the corresponding model output.
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2.3 Satellite-derived chlorophyll

The model is compared to satellite-derived Chl products
originally at 4 km resolution from version 4.2 of the Ocean
Colour Climate Change Initiative (Mélin et al., 2017;
Sathyendranath et al., 2019, 2020; OC-CCI). This is a
blended Chl product, where data from the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS), Aqua Moderate Resolu-
tion Imaging Spectroradiometer (MODIS-Aqua), Medium
Resolution Imaging Spectrometer (MERIS), and Suomi Na-
tional Polar-orbiting Partnership Visible Infrared Imaging
Radiometer Suite (NPP-VIIRS) products are merged into a
unified product. SeaWiFS operated from September 1997
until December 2010 and MERIS from March 2002 to
May 2012. MODIS-Aqua was launched in May 2002 and
VIIRS in October 2011; the latter two sensors are still op-
erational as of December 2021. Data from the different in-
struments are merged after band-shifting normalized remote
sensing reflectance (Rrs) to the spectral bands of SeaWiFS
and correcting for intersensor biases. Atmospheric correction
is performed using Polymer v3.5 (Steinmetz et al., 2011) for
MERIS and MODIS-A and NASA’s SeaDAS 7.3 for SeaW-
iFS and VIIRS. All individual grid cells are classified opti-
cally using a fuzzy-logic approach (Moore et al., 2009, 2012;
Jackson et al., 2017), and a combination of the best Chl algo-
rithms for each class is used along with class membership at
each pixel to generate Chl at each pixel. The spatial mapping
follows NASA’s protocol for level-3 processing by consid-
ering a 4 km bin as valid if there is at least a single 1 km
valid pixel in that bin from at least one sensor and taking
the mean if more than one valid observation is available. The
resulting time series for the period between 1997 and 2019
is designed to be internally consistent (all radiometric prod-
ucts are band-shifted to a common set of bands correspond-
ing to SeaWiFS) and stable (corrected for intersensor bias
Sathyendranath et al., 2019). The resulting daily 4 km OC-
CCI product is downscaled to the Darwin-CBIOMES-0 grid
using bucket resampling from the satpy resampling package
(Raspaud et al., 2019) in Python. We henceforth denote the
Chl product from OC-CCI as Chlsat in the study.

2.4 In situ data

The satellite-derived and simulated Chl concentrations are
matched with ∼ 80 000 in situ Chl observations for compar-
ison. The in situ Chl data set is based on a global compila-
tion developed to evaluate the quality of ocean color satellite
data records and to evaluate ocean color products from OC-
CCI (Valente et al., 2019a). The observations were acquired
from several sources. The data set spans the period from
1997 to 2018, and variables include spectral remote sensing
reflectances, concentrations of Chl, spectral inherent optical
properties, spectral diffuse attenuation coefficients, and total
suspended matter. Different methodologies have been imple-
mented for the homogenization, quality control, and merg-

ing of all data. Observations close in time and space are av-
eraged, and some data were eliminated after failing quality
control. To be consistent with satellite-derived Chl values,
which are derived from the light emerging from the upper
layer of the ocean, all observations in the top 10 m (replicates
at the same depth or measurements at multiple depths) were
averaged. Data points are discarded if the coefficient of vari-
ation among observations is more than 50 %. The compiled
in situ data set is publicly available (Valente et al., 2019b).
The resulting data product is referenced to here as Chlobs.

2.5 Statistical analysis

While the objective of this study is to assess different contin-
uous probability distributions of Chl, we perform all statis-
tical analyses by converting the distributions to discrete his-
tograms, where the data are divided into equally sized bins
on a log scale. The reason for using a log scale is that Chl
concentrations can be assumed to follow a lognormal distri-
bution at a variety of spatial and temporal scales (Campbell,
1995), and this transformation allows for better characteri-
zations at low concentrations. We use the same set of 100
equally sized bins from−6.9 (ln0.001) to 4.61 (ln100) for all
data sources and in all calculations. The histograms are gen-
erated by binning daily interpolated Chl from both the satel-
lite (derived Chl from OC-CCI) and Darwin-CBIOMES-0
output by month and Longhurst province for the period 1998
to 2007. The in situ data set has very few, if any, observa-
tions in several provinces and is only used for comparisons
on global or biome scales. Percentiles, medians, standard de-
viations (SDs), and other statistics are all calculated from the
resulting histograms using specifically developed code.

2.5.1 Earth mover’s distances

We leverage Earth mover’s distance (Rubner et al., 2000;
EMD) to quantify the difference between different distribu-
tions. EMD, also known as the Wasserstein metric in math-
ematics (Vaserstein, 1969) and Mallows’ distance in statis-
tics (Levina and Bickel, 2001), is a popular optimal transport
method (Monge, 1781) for measuring the distance between
two probability distributions and is widely used in image
processing (Frogner et al., 2015) and scientific applications
(Orlova et al., 2016). The distance is based on imagining a
mound of dirt shaped like the first distribution and consid-
ering how much effort would be required to transform it to
the second distribution’s shape. Given a distance metric in
this space (in this case, the absolute difference in log Chl), it
is possible to calculate the minimum redistribution of mass
needed to transform one probability distribution to the other.
EMD measures the total sum of such an optimally planned
transfer of mass. Rather than focusing on the distance be-
tween any particular aspect of the distributions, such as their
means or variances, EMD provides a more comprehensive
measure of the distance. For computation, the original log
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Chl measurements in each province are transformed into his-
tograms using the earlier-mentioned bin definitions. We use
the Python package PyEMD (Pele and Werman, 2008, 2009;
Mayner et al., 2015) to calculate EMDs between the his-
tograms. All reported EMDs have the natural log of Chl as
the unit.

3 Results

3.1 Taylor diagrams

Taylor diagrams (Taylor, 2001) based on different spatial
and temporal aggregations of satellite and model chlorophyll
concentrations reveal different model bias patterns at differ-
ent scales of averaging (Fig. 2). These diagrams are polar
representations of pairwise statistics between Chlsat, Chlmod,
and ChlRrs, with the correlation coefficient as the angle and
the SD of Chlmod or ChlRrs normalized to Chlsat as the radius.
Each individual data point represents the SD and correlation
for a specific Longhurst province, different colors denote dif-
ferent basins, and different marker shapes denote different
biomes. Figure 2a–b shows the resulting diagram based on
daily match-ups for individual grid cells in the model ver-
sus satellite data reprojected to the model grid. Each sym-
bol shows the point-by-point statistics within a Longhurst
province. We find the correlation to generally be quite low
(R = 0–0.5) for all Longhurst provinces, and the model SD
is 0.5 to 1.8 times Chlsat. This skill metric could be highly
affected by small mismatches and lags in time and space be-
tween the model and satellite data. We utilize the assumption
that a given Longhurst province is controlled by a specific
combination of physical, chemical, and biological process by
averaging ChlRrs, Chlsat, and Chlsat over all grid cells in each
province for each day and presenting the resulting data set
as Taylor diagram (as seen in Fig. 2c–d). Some Longhurst
provinces show a better correlation (R > 0.8), whereas oth-
ers have a negative correlation between satellite-derived Chl
and model output. Model SD scaled to satellite data also
shows more variability between provinces when compared
with individual grid cells. While aggregating the data over
Longhurst provinces dampens random spatial errors, tempo-
ral fluctuations at the daily scale are still present. In Fig. 2e–f,
we show a Taylor diagram using monthly time series instead
of the daily time series used for Fig. 2c–d and find a much
clearer separation between the Longhurst provinces. Some
provinces are highly correlated, while others are showing
negative correlations. The latter patterns could be explained
by the more aggregated data sets having less random noise,
which lets systematic mismatches be more visible and thus
detected by the Taylor diagram. We find that Chlmod points
generally have a slightly more pronounced spread and hence
more variability in the misfit than ChlRrs.

3.2 Global distributions

Global distributions of Chlobs, Chlsat, Chlmod, and ChlRrs
show that distributions of satellite-derived Chl and in situ ob-
servations are very similar, but Darwin-CBIOMES-0-based
Chl shows a systematic bias (Fig. 3). Histograms of Chlobs
and Chlsat are shown in Fig. 3a and b. Only data pairs for
which both Chlobs and Chlsat have valid values are used
(35 174 match-ups out of 80 524 observations). We find the in
situ and satellite data sets to have similar distributions with-
out any significant biases in Chlsat. Note that some of the Chl
algorithms contributing to the final Chlsat product would have
been tuned, using a small subset of the in situ database, and
corresponding in situ or satellite-derived Rrs (other than the
OC-CCI products). Similarly, the algorithm used to provide
ChlRrs from the Darwin-CBIOMES-0 output (O’Reilly et al.,
1998) would have used a subset of the in situ data set along
with measuredRrs values to calibrate the algorithm. But none
of the observations in the in situ data sets has been used to
tune either the OC-CCI products or the Darwin-CBIOMES-0
outputs.

Whereas Chlobs closely follows a lognormal distribution,
Chlsat shows some divergence from the expected distribution.
The pronounced secondary peak at about 5 mg m−3 is related
to coastal provinces, and the broader peak at 0.5 mg m−3 rep-
resents values from the subtropical gyres. In Fig. 3b, Chlsat
has thinner tails than Chlobs, and the distribution is more cen-
tered around the median. This pattern is consistent with our
expectations, since Chlsat has a coarser resolution (4 km) than
Chlobs (the volume of each sample). One can expect a spa-
tially aggregated measurement to have fewer extreme values.
Panels c and d in Fig. 3 are analogous to panels a and b but
with Chlmod and ChlRrs included. Here, the collocation be-
tween all four sources is required, which results in 20 935
match-ups. The differences in the distributions of Chlobs and
Chlsat in Fig. 3c and d compared with Fig. 3a and b occurs
from the shorter time span of the Darwin-CBIOMES-0 con-
figuration (1998–2006) compared with the OC-CCI time do-
main (1998–2020) and from the masking out of near-coastal
locations. The model grid also has a coarser resolution (≈ 1◦)
than the satellite product. The four-way match-up (Fig. 3c
and d) allows us to compare the different data sources in
a reasonably objective way by considering both seasonal
variability and data density. We find that the global distri-
butions of Chlmod and ChlRrs are nearly identical to each
other but significantly different from both Chlobs and Chlsat.
It is clear that Darwin-CBIOMES-0 systematically gener-
ates lower Chl concentrations than either the satellite-derived
product or in situ observations do. It is somewhat nonintu-
itive that the model has similar or longer tails than Chlobs or
Chlsat, especially considering the model’s coarser spatial res-
olution and the earlier comparison between satellite and in
situ Chl. EMDs calculated for Chlobs vs. Chlsat, ChlRrs, and
Chlmod, respectively (Table 1), confirm these findings with
much larger (and similar) distances for ChlRrs and Chlmod
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Figure 2. Taylor diagrams based on comparisons between satellite-derived OC-CCI Chl (Chlsat) and Chl concentrations from the Darwin-
CBIOMES-0 configuration (ChlRrs). Each point represents a Longhurst province. The model standard deviation is normalized to satellite
data (thick dashed line). Different colors denote different basins, so that cyan is the Arctic Ocean, red is the Atlantic Ocean, blue is the Indian
Ocean, green is the Pacific Ocean, and black is the Southern Ocean. Different marker shapes denote different biomes, so that the triangle is
the coastal, the plus sign is polar, the circle is trades, and the square is westerlies. (a) Point-by-point comparison between Chlsat and Chlmod,
where daily match-ups and each grid cell in the model and satellite products are used. Panel (b) is the same as panel (a) but for Chlsat and
ChlRrs. (c) Daily match-ups between Chlsat and Chlmod, but all data falling within a Longhurst region are averaged to one value for each
day for each Longhurst region. Panel (d) is the same as panel (c) but for Chlsat and ChlRrs. (e) The daily time series in panel (a) are further
aggregated to monthly averages for match-ups between Chlsat and Chlmod. Panel (f) is the same as panel (e) but for Chlsat and ChlRrs.

than Chlsat. These dissimilar EMDs are the combined result
of differences in medians, SD, and skewness between the
model and observations.

While the distributions of Chlmod and ChlRrs are close to
identical, there is much more variability between the two
properties when compared on a point-by-point basis. Fig-
ure 4, panel a, shows a 2D histogram of Chlmod and ChlRrs
sampled from the model at the same time and grid cell. While
most values fall close to the 1 : 1 line, there is a large spread.
The 95 % confidence interval of the residual is about 2 orders
of magnitude. These results show the importance of diagnos-
ing the model using a metric that is comparable to Chlsat. Any

divergence from the 1 : 1 line in Fig. 4 a could incorrectly be
interpreted as model misfit.

3.3 Distributions in different biomes

As the global distributions show only general biases between
Darwin-CBIOMES-0, in situ, and satellite-derived Chl, we
divide the data into biomes based on Longhurst (2007) to
better understand the misfits. Conclusions about model per-
formance will be different if the shift in the probability dis-
tributions is caused by errors which are global or limited to
specific regions of the ocean. First, we compare EMDs calcu-
lated using ChlRrs and Chlmod for each month and province,
as shown in Fig. 4b. We find that Chl distributions from
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Figure 3. Distributions of in situ (Chlobs), satellite-derived (Chlsat),
and modeled (Chlmod) chlorophyll (Chl) and Chl derived from sim-
ulated remote sensing reflectances in the Darwin-CBIOMES-0 con-
figuration (ChlRrs). All data sets are matched in time and loca-
tion, and only complete match-ups are used. Shadings show the
1 %–99 %, 10 %–90 %, and ±1σ percentiles in the respective dis-
tributions. (a) The respective histograms of Chlobs (orange line)
and Chlsat (blue line). (b) The corresponding cumulative distribu-
tion. Panels (c) and (d) are analogous to panels (a)–(b) but with
Chlmod (green lines) and ChlRrs (red lines). Note that the data sets
for Chlobs and Chlsat differ between panels (a)–(b) and panels (c)–
(d) due to the smaller coverage in the temporal range of Darwin-
CBIOMES-0.

the Longhurst provinces in the westerlies biome are similar,
but provinces in the trades biome and, particularly, the polar
biome show larger EMDs between Chlsat and Chlmod than
Chlsat and ChlRrs. Provinces in the coastal biome are omitted
here and in the further analysis since Darwin-CBIOMES-0 is
not developed to resolve coastal processes.

Figure 5 shows cumulative distributions, analogous to
Fig. 3d, for the polar (3741 matches), westerlies (1240
matches), trades (3328 matches), and coastal (12 418
matches) biomes. Mismatches are different for the different
biomes, with Chlsat generally following Chlobs more closely
than the model does. The general trend of Chlsat having less
variance than Chlobs and both Chlmod and ChlRrs having a
negative bias is also evident. Chlmod has a much wider dis-
tribution in the polar biome than Chlsat or ChlRrs, especially
for low concentrations. All distributions show close similar-
ities in the westerlies biome, suggesting that the model has
relatively high skill with respect to simulating phytoplankton
biomass (for which Chl acts as a proxy) in this biome. The
largest mismatch between the model and observations is in
the coastal biome; this is something which is to be expected

Table 1. Earth mover’s distances comparing distributions of in situ
(Chlobs), satellite-derived (Chlsat), and modeled (Chlmod) chloro-
phyll (Chl) and Chl derived from simulated remote sensing re-
flectances in the Darwin-CBIOMES-0 configuration (ChlRrs). See
Fig. 1 for the extent of each biome.

Domain Chlobs vs. Chlsat Chlobs vs. ChlRrs Chlobs vs. Chlmod

Global 0.10 0.45 0.47
Polar 0.19 0.27 0.27
Westerlies 0.07 0.20 0.20
Trades 0.08 0.82 0.84
Coastal 0.35 0.57 0.58

when considering the spatial resolution of the model. This
biome is also where Chlsat shows the largest inconsistencies
compared to Chlobs. Coastal areas tend to have more com-
plex case II waters, where Chl algorithms are more affected
by colored dissolved organic matter (CDOM) or total sus-
pended matter (TSM; Morel and Prieur, 1977; Lee and Hu,
2006).

3.4 Individual Longhurst provinces

We extend the study to individual Longhurst provinces to
further explore differences between the model and satellite-
derived observations. The limited geographical and seasonal
coverage of in situ data limits our ability to include Chlobs,
so we therefore focus on comparing Chlsat with Chlmod and
ChlRrs in the following section, while conceding the limita-
tions of the approach. Chlsat, for example, probably underes-
timates the variance in Chlobs but is at the same time more
representative of the reduced variance within large model
grids. We exclude coastal provinces from the analyses, since
the model is not expected to have as much skill near land or in
shallow waters, due to the relatively coarse vertical and hor-
izontal grid resolution discussed earlier and the challenges
with satellite retrieval of Chl in coastal waters. We still find
interesting patterns when comparing Chl distributions in in-
dividual open-ocean Longhurst provinces.

Individual histograms for Longhurst provinces in the po-
lar biome often show stark differences between Darwin-
CBIOMES-0 and OC-CCI, as seen in Fig. 6. The very low
Chl concentrations seen in the polar biome (Fig. 5) for the
Chlmod distribution primarily occur in the boreal polar, Arc-
tic, and subarctic sections of the Atlantic Ocean (Fig. 6). The
Arctic section of the Pacific Ocean shows a small bias to-
wards low values as well but is much less extreme. Chl con-
centrations are biased low in Darwin-CBIOMES-0 close to
the Antarctic continent (austral polar province) but biased
high towards the Antarctic Circumpolar Current (Antarctic
province). This pattern could suggest a meridional misalign-
ment of physical processes that drive Chl variability in the
Antarctic Ocean. Since the comparisons are carried out only
for match-up data where satellite and model data are avail-
able, the differences observed here cannot be explained as
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Figure 4. (a) Point-by-point comparisons of satellite-derived (Chlsat) and modeled (Chlmod) chlorophyll. Colors denote the number of data
points in that bin. (b) Earth mover’s distances for each province and month calculated using Chlsat and either Chlmod or Chl derived from
simulated remote sensing reflectances in the Darwin-CBIOMES-0 configuration (ChlRrs). Purple denotes the polar biome, red the westerlies
biome, and blue the trades biome. The coastal biome is omitted as per the description in the main text.

Figure 5. Distributions of in situ (Chlobs), satellite-derived (Chlsat),
and modeled (Chlmod) chlorophyll (Chl) and Chl derived from sim-
ulated remote sensing reflectances in the Darwin-CBIOMES-0 con-
figuration (ChlRrs) for each of Longhurst’s biomes. All data sets
are matched by time and location, and only match-ups in which
data from all four sources are present are used. Shadings show
the 1 %–99 %, 10 %-90 %, and ±1σ percentiles in the respective
distributions. (a) Cumulative distributions for match-ups located
in provinces in the polar biome, as defined by Longhurst (2007).
(b) Analogous distributions for data in the westerlies biome, (c) data
for the trades biome, and (d) data for provinces in the coastal biome.

a consequence of the poor sampling of the polar biome by
satellites due to adverse viewing conditions, especially in
winter (Jönsson et al., 2020b).

Whereas Fig. 5 shows a strong correspondence be-
tween Chlsat and ChlRrs in the westerlies biome, we find
a more complicated picture in the individual Longhurst
provinces within this biome (Fig. 7). In most provinces,
Chlsat and ChlRrs have similar medians, but the tails are of-
ten significantly different. Chl concentrations in the Darwin-
CBIOMES-0 configuration are biased towards high values in
most provinces in the Pacific Ocean and the Southern Ocean.
ChlRrs also tends to have a bimodal distribution in contrast to
the expected lognormal distribution of Chlsat. There is also a
clear negative bias in ChlRrs in the Mediterranean Sea, which
may indicate that the model resolution is too coarse to re-
solve all the hydrodynamics in this small but very complex
sea.

Longhurst provinces in the trades biome generally show
similar distribution widths and shapes of Chlsat and ChlRrs,
aside from biases in the medians (Fig. 8). The main outliers
are the northern tropical gyre in the Atlantic Ocean and the
archipelagic deep basin in the Pacific Ocean, where ChlRrs
has a rectangular or weakly bimodal distribution. The west-
ern warm pool and south gyre in the Pacific Ocean also stand
out as the only two provinces where Chlsat has a bimodal
distribution and ChlRrs does not.

3.5 Monthly distributions

By extending the analysis to monthly distributions for each
Longhurst province, we can identify the temporal differences
between OC-CCI and Darwin-CBIOMES-0. The large num-
ber of resulting probability distributions is challenging to
present, and we only show a few interesting examples here.
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Figure 6. Distribution of satellite-derived (Chlsat – blue) and modeled (ChlRrs – red; Chlmod – green) chlorophyll for different Longhurst
provinces in the polar biome. Red values are the Earth mover’s distances (EMDs) between the Chlsat and ChlRrs distributions, and green
values are the EMDs between the Chlsat and Chlmod distributions.

Figure 7. Distribution of satellite-derived (Chlsat – blue) and modeled (ChlRrs – red; Chlmod – green) chlorophyll for different Longhurst
provinces in the westerlies biome. The east Africa coastal province is included, as it contains the Agulhas current. Red values are the Earth
mover’s distances (EMDs) between the Chlsat and ChlRrs distributions, and green values are the EMDs between the Chlsat and Chlmod
distributions.

Figures for all provinces are provided with the associated
data sets described in the acknowledgements. Figure 9 shows
the graphical representations of probability distributions for
some representative provinces in the North Atlantic Ocean,
generated by aggregating daily Chlsat, ChlRrs, and Chlmod

by climatological month. The largest intra-annual differences
are found in provinces in the polar biome, as exemplified by
the Atlantic Arctic province (Fig. 9a), where Chlmod shows
much lower concentrations and much more variability than
either Chlsat or ChlRrs during the winter and spring months.
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Figure 8. Distribution of satellite-derived (Chlsat – blue) and modeled (ChlRrs – red; Chlmod – green) chlorophyll for different Longhurst
provinces in the trade winds biome. Red values are the Earth mover’s distances (EMDs) between the Chlsat and ChlRrs distributions, and
green values are the EMDs between the Chlsat and Chlmod distributions.

All three data products have similar distributions and pro-
gressively smaller variability during the summer. But Chlsat
shows both a significant drop in concentrations and an in-
crease in variability in November, and this is not seen in
ChlRrs or in Chlmod.

The Gulf Stream province, our chosen example for the
westerlies biome, has a distinct seasonal progression, with
elevated Chl concentrations during the spring bloom and low
values in the summer (Fig. 9b). Both ChlRrs and Chmod gen-
erally compare well with ChlRrs but with a negative bias dur-
ing summer. The model products also tend to have a more
stretched out distribution for low values. The good agreement
in the seasonal cycle somewhat hides the misfits between the
model and satellite observations for individual months.

The two provinces representing the trades biome (the
western tropical Atlantic province and the Caribbean
province) both show a weak seasonal cycle but very different
misfits. The western tropical Atlantic province (Fig. 9c) has
a notable similarity in the medians between the different data
sources, with the exception that the 99 % percentile for Chlsat
is much higher than ChlRrs or Chlmod during spring and sum-
mer. This pattern could be interpreted such that processes
generating rare bloom events during that time of the year
are missing in the Darwin-CBIOMES-0 configuration. The
probability distributions of Chlsat in the Caribbean province

(Fig. 9d) are notably different from ChlRrs and Chlmod, with
both much higher medians and higher 99 % percentiles. This
pattern is not unique to the province and can be seen, for ex-
ample, in the North Atlantic tropical gyre province as well
(data not shown). The asymmetric shape of the probability
distributions of Chlsat with a high positive skewness is sur-
prising and deserves closer examination in a future study.

3.6 Global and seasonal patterns of Earth mover’s
distances

The calculated EMD distances between Chlsat and Chlmod
or ChlRrs, respectively, for all province–month combinations
(partly presented in Fig. 9) are shown as maps in Fig. 10 for
two selected months – January and July – using color inten-
sity to depict the EMDs between the two probability density
functions for that province–month pair. Here, EMDs provide
aggregated information about how different, for example,
mean biases, SD, and skewness are in the respective distribu-
tions. The global patterns in EMD, when comparing Chlsat
with Chlmod or ChlRrs, are quite similar, while the magni-
tudes are slightly different. This pattern is most pronounced
in polar regions.

The ability of EMDs to provide aggregated information
about differences between distributions has the consequence
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Figure 9. Monthly distributions of satellite-derived (Chlsat – blue), model-derived Rrs (ChlRrs – red), and simulated Chl (Chlmod – green).
Shadings show the 1 %–99 %, 10 %–90 %, and ±1σ percentiles in the respective distributions. Vertical black lines denote the medians. (a) A
representation of the polar biome’s Atlantic subarctic province, (b) the westerlies biome’s Gulf Stream province, (c) the trades biome’s
western tropical Atlantic province, and (d) the trades biome’s Caribbean province. Note that data are not available for January and December
due to ice cover and adverse satellite viewing conditions in panel (a). Red values are the EMDs between the Chlsat and ChlRrs distributions,
and green values are the EMDs between the Chlsat and Chlmod distributions.

that high EMDs can occur for different reasons. To investi-
gate this, we focus our attention on the six province–month
pairs with highest EMDs and compare the two Chl distri-
butions as overlaid probability histograms (blue and green
lines in Fig. 11). In each of the panels in Fig. 11, the two
data sources have visibly different Chl distributions, and it is
clear that a large amount of probability mass needs to move
for the two data sources to match. Out of the six, the Atlantic
Arctic province in March is of particular interest, with the
two distributions of Chl having similar means values, while
the EMD is very large. This discrepancy is due to a consid-

erable difference in the second or higher moments between
the two distributions – the green distribution (Chlmod) has a
much higher spread than the blue one (Chlsat). This demon-
strates how EMDs can be an effective scalar measure for
summarizing the full distributional difference between two
data sources.

4 Discussion

We combined satellite-derived Chl from OC-CCI with in situ
observations and model output from the Darwin-CBIOMES-
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Figure 10. Map of Earth mover’s distances between Chlsat and Chlmod (a, b) or Chlmod (a, b) for different Longhurst provinces in January
(a, c) or July (b, d). The dark gray coloring represents areas where data are not available.

Figure 11. Distributions of satellite-derived (Chlsat – blue) and modeled Chl (Chlmod – green) in the top six province–month pairs in terms
of Earth mover’s distances (EMDs). The vertical dashed lines mark the mean of each distribution. There appears to be a clear distributional
difference between the two data sources in each case – a large amount of probability mass would have to be transported from one distribution
to another to make the two equivalent. Also notable is that the EMD can be large while the mean difference is small; this highlights how the
EMD is a richer measure of the distributional difference.
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0 configuration to investigate three new approaches for com-
paring biogeochemical models and observations. The meant
the use of Chl proxies analogous to satellite-derived prop-
erties instead of directly diagnosed Chl in the model, the
utility of Earth mover’s distances (EMDs) as a metric for
quantifying differences between distributions, and probabil-
ity distributions instead of point-by-point comparisons. The
first approach has already been presented and evaluated in
Dutkiewicz et al. (2018, 2019) as a general tool, and we will
focus on its use in the context of comparing distributions.

The main differences between ChlRrs and Chlmod occur
on regional scales (Figs. 3–8), particularly in the polar and
trades biomes, and these differences generally even out when
aggregated over full biomes or globally (Figs. 3–5; Table 1).
The differences seen in the polar biome puts earlier results by
Jonsson et al. (2015), who argued that the ecosystem models
underestimate winter phytoplankton biomass in the Southern
Ocean, in a new light. It is possible that the use of ChlRrs
and Chlsat as a proxy for phytoplankton biomass is biased in
these regions on an inability to detect the low concentrations
predicted by the models, which is something that must be
further explored with in situ observations. While this issue
might seem irrelevant due to the low Chl concentrations, it
has large potential effects on the skill with respect to simu-
lating the seasonal progression of polar ecosystems. Order-
of-magnitude errors in regions with seasonally low Chl con-
centrations and large annual variability can be critical when
the growth is exponential, thus potentially requiring unreal-
istically high growth rates (Hague and Vichi, 2018).

ChlRrs is, however, not necessarily a more truthful di-
agnostic than Chlmod; it is only closer to Chlsat and quite
possibly inherits biases from satellite-derived proxies. An-
other motivation for using ChlRrs as the property of compar-
ison is that Chlmod is poorly defined, since the conversion
from a depth-resolved field to a 2D concentration might be
performed differently between different models. Our results
show that comparisons between Chlmod and Chlsat are gen-
erally sufficient if ChlRrs is not available (which is normally
the case), as long as these caveats are considered. Figures 6–
9 can provide guidance with respect to which regions require
the application of caution.

EMDs provide a systematic and quantitative way to assess
how the distribution of Chl differs between OC-CCI and the
Darwin-CBIOMES-0 configuration. One major application
is the ability to compare the likeliness between different dis-
tributions in an integrated fashion, as the maps presented in
Fig. 10 show. We find that the biggest differences between
ChlRrs and Chlmod occur in the polar biome during winter.
This pattern is supported by the scatter of EMDs shown in
Fig. 4b, where provinces in the polar and trades biomes tend
to have larger EMDs for Chlmod than ChlRrs when compared
to Chlsat.

When comparing the probability distributions between
the Darwin-CBIOMES-0 configuration, OC-CCI satellite-
derived Chl product, and in situ observations of Chl, we find

many similarities and also important differences. Compar-
isons between Chlsat and Chlobs (Figs. 3 and 5) show an in-
teresting pattern, where OC-CCI diverges from the expected
lognormal distribution with a smaller variance than the set
of observations. This difference could be explained by OC-
CCI being based on satellite products with overpasses close
to noon, thus limiting the ability to resolve the diurnal cycle,
and 4 km sized pixels that aggregate the variability at smaller
scales. Chlobs data, on the other hand, are sampled at any
time over the course of a day and generally represent a water
volume of less than 1 m3. A small water volume has a higher
chance of having outliers due to patchiness, while a distri-
bution of satellite-derived Chl observations is more clustered
around the population mean as a result of averaging many
small patches over a larger area. This difference is expected
by the law of large numbers. It should also be noted that some
of the mismatches between Darwin-CBIOMES-0 and the ob-
servations might be partly explained by the unevenness in
the temporal and spatial coverage of observations. By only
including satellite-derived and modeled Chl concentrations,
we are able to minimize potential problems with the temporal
and spatial representativeness of in situ observations, since
Chlsat is interpolated to the grid of Darwin-CBIOMES-0 and
only pixels with valid data in both data sources are used.

While the distributions of Chl in a direct match-up be-
tween Chlobs and Chlsat vs. ChlRrs and Chlmod suggest that
the model underestimates Chl significantly, regional compar-
isons provide a more nuanced picture. Data from the west-
erlies biome have, for example, almost identical distribu-
tions. The largest discrepancies are found in coastal areas
and the provinces in the polar biome, both of which are noto-
riously challenging to model due to complex hydrology and
large seasonal variability in forcings (light, freshwater run-
off from land, nutrient input, etc.). Provinces in the trades
biome generally show less variability in the seasonal aver-
age but larger differences in the high and low extreme val-
ues. These patterns are evident both in the EMD maps seen
in Fig. 10 and in the individual histograms seen in Figs. 6–
8. Eastern boundary upwelling systems show large discrep-
ancies between ChlRrs and Chlsat. This is to be expected,
since these areas are characterized by complex interactions
between physical and biological processes over short spa-
tial scales. Other studies have also found that the dominat-
ing timescales of variability in these regions are very short,
which most global biogeochemical models are not developed
to resolve (Jönsson et al., 2023).

Model Chl had long tails with low values in the provinces
in the polar biome that might be connected to the Darwin-
CBIOMES-0 configuration overestimating respiration during
winter or possibly exaggerating mixing (see Jonsson et al.,
2015). The tendency of bimodality in PDFs from data gen-
erated by Darwin-CBIOMES-0 in the provinces in the polar
biome suggests that the model shows different distinct states
in the phytoplankton community. It is not clear if this pat-
tern is due to the formulation and/or parameterization of the
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ecosystem model or due to problems with the high-latitude
retrieval of Chl by polar-orbiting satellites at the beginning
and end of the growing season (Jönsson et al., 2020a). In
any case, our combined use of Longhurst provinces, distri-
butions, and EMDs has allowed us to pose the differences
between the models and observations in a way that can be
directly analyzed and tested.

The tendency for bimodal distributions in PDFs gener-
ated by the Darwin-CBIOMES-0 configuration also occurs in
Longhurst provinces in the westerlies biome. Here, the differ-
ences between satellite-derived and modeled Chl is less clear,
with some provinces having extremely similar distributional
shapes and others mainly having different variances. The
province with the biggest differences is the Mediterranean
Sea, a result that is not surprising, especially when consider-
ing the complex hydrology and distinct ecosystem dynamics
there. Longhurst provinces in the trades biome show gener-
ally good fits between the model and OC-CCI. Provinces in
this biome showed a general pattern in which the model and
satellite-derived Chl distributions had similar shapes but with
an offset relative to each other. The biggest differences in
the trades biome are found in the Caribbean and the adjacent
north tropical gyre. Both provinces show significantly lower
Chl concentrations in Darwin-CBIOMES-0 and tend to be
skewed towards low values with longer tails.

Dividing the different data sets into monthly distribu-
tions allowed us to further diagnose possible differences be-
tween OC-CCI and the Darwin-CBIOMES-0 configuration.
We found that provinces in the polar biome tended to show
the largest discrepancies during winter and spring, a pattern
that is consistent with results given by Jonsson et al. (2015).
It is also notable that these provinces and seasons occurred
where and when simulated Chl in Darwin-CBIOMES-0 dif-
fered the most fromRrs-derived Chl in the model. These mis-
fits can be due to a number of factors, such as inadequate
model inputs, forcings, model inputs, forcings, parameteriza-
tions, numerical schemes, problems arising from bio-optical
constraints due to extreme light conditions, unresolved phys-
ical processes, or a combination of these. Two specific causes
suggested by Jonsson et al. (2015) are a meridional misalign-
ment of the physical processes that drive Chl variability in
the Antarctic Ocean or a lack of small-scale variability in the
mixed layer dynamics. The latter explanation is supported by
comparing the distributions of mixed layer depths from Argo
floats and two CMIP5 class climate models with a 1◦ spatial
resolution, showing that shallow mixed layers are observed
even during the winter in the Southern Ocean. These short-
lived events could generate small phytoplankton blooms that
keep the total biomass from decreasing to the low concen-
trations seen in the models (Jonsson et al., 2015). The dif-
ference in polar phytoplankton biomass between models and
satellite-derived products is an area in need of more research.

We believe that the skill of biogeochemical models to gen-
erate realistic distributions of properties are as important as,
if not more important than, the skill to predict a property at

a specific time an location or the long-term averages. The
recent focus on regional heat waves (Oliver et al., 2021)
and other extreme events have highlighted that rare physi-
cal conditions and consequent biological responses can have
an outstanding influence on ocean health. It has also been
suggested that the frequency of rare events might be as im-
portant as long-term averages for understanding changes in
marine ecosystems (Jönsson and Salisbury, 2016).

5 Conclusions

In this study, we have shown that using probability distribu-
tions of Chl provides a comprehensive approach to compare
biogeochemical models with in situ data and satellite-derived
fields. Direct point-by-point comparisons can be prone to
overestimating errors due to small temporal lags or dis-
placements in space, while the ability of a model to gen-
erate a probability distribution function that matches well
with the observed data suggests that physical and biologi-
cal processes are resolved reasonably well. We also found
that Longhurst provinces act as a good classification sys-
tem to use when generating the probability distributions,
since they are defined to minimize within-region variability
by separating areas that are controlled by different physic-
ochemical processes from one another. Finally, EMDs pro-
vided a powerful approach to quantifying the difference be-
tween distributions in an objective way. The combined use of
PDFs, Longhurst provinces, and EMDs allowed us to iden-
tify Longhurst provinces such as the polar oceans and tropi-
cal North Atlantic Ocean, which need specific attention, and
areas where the model already shows a lot of skill. It is clear
that model versus data comparisons and skill assessments
need to be conducted in such a way that one can start to ad-
dress the specific processes and conditions that lead to dis-
crepancies.

Code and data availability. Example code for the pro-
cessing and analysis can be found in the code repos-
itory https://doi.org/10.5281/zenodo.6683849 (Jönsson,
2022). Data used in the study can be accessed at
https://doi.org/10.5285/D62F7F801CB54C749D20E736D4A1039F
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