Articles | Volume 16, issue 15
https://doi.org/10.5194/gmd-16-4367-2023
https://doi.org/10.5194/gmd-16-4367-2023
Development and technical paper
 | 
01 Aug 2023
Development and technical paper |  | 01 Aug 2023

GPU-HADVPPM V1.0: a high-efficiency parallel GPU design of the piecewise parabolic method (PPM) for horizontal advection in an air quality model (CAMx V6.10)

Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang

Related authors

GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024,https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Application of regional meteorology and air quality models based on the microprocessor without interlocked piped stages (MIPS) and LoongArch CPU platforms
Zehua Bai, Qizhong Wu, Kai Cao, Yiming Sun, and Huaqiong Cheng
Geosci. Model Dev., 17, 4383–4399, https://doi.org/10.5194/gmd-17-4383-2024,https://doi.org/10.5194/gmd-17-4383-2024, 2024
Short summary

Related subject area

Atmospheric sciences
Atmospheric moisture tracking with WAM2layers v3
Peter Kalverla, Imme Benedict, Chris Weijenborg, and Ruud J. van der Ent
Geosci. Model Dev., 18, 4335–4352, https://doi.org/10.5194/gmd-18-4335-2025,https://doi.org/10.5194/gmd-18-4335-2025, 2025
Short summary
A new set of indicators for model evaluation complementing FAIRMODE's modelling quality objective (MQO)
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, and Enrico Pisoni
Geosci. Model Dev., 18, 4231–4245, https://doi.org/10.5194/gmd-18-4231-2025,https://doi.org/10.5194/gmd-18-4231-2025, 2025
Short summary
Impact of multiple radar wind profiler data assimilation on convective-scale short-term rainfall forecasts: OSSE studies over the Beijing–Tianjin–Hebei region
Juan Zhao, Jianping Guo, and Xiaohui Zheng
Geosci. Model Dev., 18, 4075–4101, https://doi.org/10.5194/gmd-18-4075-2025,https://doi.org/10.5194/gmd-18-4075-2025, 2025
Short summary
New submodel for emissions from Explosive Volcanic ERuptions (EVER v1.1) within the Modular Earth Submodel System (MESSy, version 2.55.1)
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
Geosci. Model Dev., 18, 3985–4007, https://doi.org/10.5194/gmd-18-3985-2025,https://doi.org/10.5194/gmd-18-3985-2025, 2025
Short summary
Quantifying the oscillatory evolution of simulated boundary-layer cloud fields using Gaussian process regression
Gunho Loren Oh and Philip H. Austin
Geosci. Model Dev., 18, 3921–3940, https://doi.org/10.5194/gmd-18-3921-2025,https://doi.org/10.5194/gmd-18-3921-2025, 2025
Short summary

Cited articles

Bleichrodt, F., Bisseling, R. H., and Dijkstra, H. A.: Accelerating a barotropic ocean model using a GPU, Ocean Model., 41, 16–21, https://doi.org/10.1016/j.ocemod.2011.10.001, 2012. 
Cao, K., Wu, Q., Wang, L., Wang, N., Cheng, H., Tang, X., Li, D., and Wang, L.: The dataset of the manuscript “GPU-HADVPPM V1.0: high-efficient parallel GPU design of the Piecewise Parabolic Method (PPM) for horizontal advection in air quality model (CAMx V6.10)”, Zenodo [data set], https://doi.org/10.5281/zenodo.7765218, 2023. 
Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174–201, https://doi.org/10.1016/0021-9991(84)90143-8, 1984. 
ENVIRON: User Guide for Comprehensive Air Quality Model with Extensions Version 6.1, https://camx-wp.azurewebsites.net/Files/CAMxUsersGuide_v6.10.pdf (last access: 19 December 2022), 2014. 
ENVIRON: CAMx version 6.1, ENVIRON [code], available at: https://camx-wp.azurewebsites.net/download/source/, last access: 24 March 2023. 
Download
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Share