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Abstract. With semiconductor technology gradually ap-
proaching its physical and thermal limits, graphics process-
ing units (GPUs) are becoming an attractive solution for
many scientific applications due to their high performance.
This paper presents an application of GPU accelerators in an
air quality model. We demonstrate an approach that runs a
piecewise parabolic method (PPM) solver of horizontal ad-
vection (HADVPPM) for the air quality model CAMx on
GPU clusters. Specifically, we first convert the HADVPPM
to a new Compute Unified Device Architecture C (CUDA C)
code to make it computable on the GPU (GPU-HADVPPM).
Then, a series of optimization measures are taken, includ-
ing reducing the CPU–GPU communication frequency, in-
creasing the data size computation on the GPU, optimiz-
ing the GPU memory access, and using thread and block
indices to improve the overall computing performance of
the CAMx model coupled with GPU-HADVPPM (named
the CAMx-CUDA model). Finally, a heterogeneous, hybrid
programming paradigm is presented and utilized with GPU-
HADVPPM on the GPU clusters with a message passing in-
terface (MPI) and CUDA. The offline experimental results
show that running GPU-HADVPPM on one NVIDIA Tesla
K40m and an NVIDIA Tesla V100 GPU can achieve up to a
845.4× and 1113.6× acceleration. By implementing a series
of optimization schemes, the CAMx-CUDA model results

in a 29.0× and 128.4× improvement in computational effi-
ciency by using a GPU accelerator card on a K40m and V100
cluster, respectively. In terms of the single-module computa-
tional efficiency of GPU-HADVPPM, it can achieve 1.3×
and 18.8× speedup on an NVIDIA Tesla K40m GPU and
NVIDIA Tesla V100 GPU, respectively. The multi-GPU ac-
celeration algorithm enables a 4.5× speedup with eight CPU
cores and eight GPU accelerators on a V100 cluster.

1 Introduction

Since the introduction of personal computers in the late
1980s, the computer and mobile device industry has created
a flourishing worldwide market (Bleichrodt et al., 2012).
In recent years, improvements in central processing unit
(CPU) performance have been limited by its heat dissipa-
tion, and the applicability of Moore’s law has flattened.
A common trend in high-performance computing today
is the utilization of hardware accelerators, which execute
codes rich in data parallelism, to form high-performance
heterogeneous systems. GPUs are widely used as ac-
celerators due to their high peak performances. In the
top 10 supercomputing list released in December 2022
(https://www.top500.org/lists/top500/list/2022/11/, last
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access: 19 December 2022), there were seven heteroge-
neous supercomputing platforms built with CPU processors
and GPU accelerators, of which the top one, Frontier at
the Oak Ridge National Laboratory, uses AMD’s third-
generation EPYC CPU and AMD’s Instinct MI250X
GPU, and its computing performance has reached ex-
ascale levels (1018 calculations per second) for the first
time (https://www.amd.com/en/press-releases/2022-05-30-
world-s-first-exascale-supercomputer-powered-amd-epyc-
processors-and-amd, last access: 19 December 2022). Such
a powerful computing performance of the heterogeneous
system not only injects new vitality into high-performance
computing but also generates new solutions for improving
the performance of geoscience numerical models.

The GPU has proven successful in weather models such as
the Non-Hydrostatic Icosahedral Model (NIM; Govett et al.,
2017), Global and Regional Assimilation and Prediction Sys-
tem (GRAPES; Xiao et al., 2022), and Weather Research and
Forecasting model (WRF; Huang et al., 2011; Huang et al.,
2012; Mielikainen et al., 2012a; Mielikainen et al., 2012b,
2013a, b; Price et al., 2014; Huang et al., 2015); ocean mod-
els such as the LASG/IAP Climate System Ocean Model (LI-
COM; Jiang et al., 2019; P. Wang et al., 2021) and Prince-
ton Ocean Model (POM; Xu et al., 2015); and the earth sys-
tem model of the Chinese Academy of Sciences (CAS-ESM;
Wang et al., 2016; Y. Wang et al., 2021).

Govett et al. (2017) used open accelerator (OpenACC)
directives to port the dynamics of NIM to the GPU and
achieved a 2.5× acceleration. Additionally, using OpenACC
directives, Xiao et al. (2022) ported the PRM (piecewise ra-
tional method) scalar advection scheme in GRAPES to the
GPU, achieving up to 3.51× faster results than 32 CPU
cores. In terms of the most widely used WRF, several param-
eterization schemes, such as the RRTMG_LW scheme (Price
et al., 2014), five-layer thermal diffusion scheme (Huang et
al., 2015), Eta Ferrier cloud microphysics scheme (Huang
et al., 2012), Goddard short-wave scheme (Mielikainen et
al., 2012a), Kessler cloud microphysics scheme (Mielikainen
et al., 2013b), SBU-YLIN scheme (Mielikainen et al.,
2012b), WMS5 scheme (Huang et al., 2011), and WMS6
scheme (Mielikainen et al., 2013a), have been ported het-
erogeneously using Compute Unified Device Architecture
C (CUDA C) and achieved 37× to 896× acceleration re-
sults. LICOM has conducted heterogeneous porting using
OpenACC (Jiang et al., 2019) and used heterogeneous-
computing interface for portability C (HIP C) technologies
and achieved up to a 6.6× and 42× acceleration, respec-
tively (P. Wang et al., 2021). For the Princeton ocean model,
Xu et al. (2015) used CUDA C to conduct heterogeneous
porting and optimization, and the performance of POM.pgu
v1.0 on four GPUs is comparable to that on the 408 standard
Intel Xeon X5670 CPU cores. In terms of climate system
models, Wang et al. (2016) and Y. Wang et al. (2021) used
CUDA Fortran and CUDA C to conduct heterogeneous port-
ing of the RRTMG_SW and RRTMG_LW schemes of the

atmospheric component model of the CAS-ESM earth sys-
tem model and achieved a 38.88× and 77.78× acceleration,
respectively.

Programming a GPU accelerator can be a difficult and
error-prone process that requires specially designed pro-
gramming methods. There are three widely used methods
for porting programs to GPUs, as described above. The first
method uses the OpenACC directive (https://www.openacc.
org/, last access: 19 December 2022), which provides a set
of high-level directives that enable C/C++ and Fortran pro-
grammers to utilize accelerators. The second method uses
CUDA Fortran. CUDA Fortran is a software compiler that
was co-developed by the Portland Group (PGI) and NVIDIA
and is a tool chain for building performance-optimized GPU-
accelerated Fortran applications targeting the NVIDIA GPU
platform (https://developer.nvidia.com/cuda-fortran, last ac-
cess: 19 December 2022). Using CUDA C involves rewriting
the entire program using the standard C programming lan-
guage and low-level CUDA subroutines (https://developer.
nvidia.com/cuda-toolkit, last access: 19 December 2022) to
support the NVIDIA GPU accelerator. Compared to the other
two technologies, the CUDA C porting scheme is the most
complex, but it has the highest computational performance
(Mielikainen et al., 2012b; Wahib and Maruyama, 2013; Xu
et al., 2015).

Air quality models are critical for understanding how the
chemistry and composition of the atmosphere may change
throughout the 21st century, as well as for preparing adap-
tive responses or developing mitigation strategies. Because
air quality models need to take into account the complex
physico-chemical processes that occur in the atmosphere of
anthropogenic and natural emissions, simulations are com-
putationally expensive. Compared to other geoscientific nu-
merical models, few studies have conducted a heterogeneous
porting of air quality models. In this study, the CUDA C
scheme, implemented in this paper, was used to conduct a
hotspot module porting of CAMx to improve the computa-
tion efficiency.

2 The CAMx model and experiments

2.1 Model description

The CAMx model is a state-of-the-art air quality model de-
veloped by Ramboll Environ (https://www.camx.com/, last
access: 19 December 2022). CAMx version 6.10 (CAMx
V6.10; ENVIRON, 2014) is chosen in this study; it simulates
the emission, dispersion, chemical reaction, and removal of
pollutants by marching the Eulerian continuity equation for-
ward in time for each chemical species on a system of nested
three-dimensional grids. The Eulerian continuity equation is
expressed mathematically in terrain-following height coordi-
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nates as Eq. (1):
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The first term on the right-hand side represents horizon-
tal advection. In numerical methods, the horizontal advec-
tion equation (described in Eq. 2) is performed using the
area-preserving flux-form advection solver of the piecewise
parabolic method (PPM) of Colella and Woodward (1984) as
implemented by Odman and Ingram (1996). The PPM hor-
izontal advection solution (HADVPPM) was incorporated
into the CAMx model because it provides higher-order ac-
curacy with minimal numerical diffusion.

In the Fortran code implementation of the HADVPPM
scheme, the CAMx main program calls the emistrns pro-
gram, which mainly performs physical processes such as
emission, diffusion, advection, and dry/wet deposition of
pollutants. Then, the horizontal advection program is in-
voked by the emistrns program to solve the horizontal ad-
vection equation by using the HADVPPM scheme.

2.2 Benchmark performance experiments

The first porting step is to test the performance of the
CAMx benchmark version and identify the model’s
hotspots. On the Intel x86 CPU platform, we launch
two processes concurrently to run the CAMx and take
advantage of the Intel Trace Analyzer and Collector
(ITAC; https://www.intel.com/content/www/us/en/docs/
trace-analyzer-collector/get-started-guide/2021-4/overview.
html, last access: 19 December 2022) and the Intel VTune
Profiler (VTune; https://www.intel.com/content/www/us/
en/develop/documentation/vtune-help/top.html, last access:
19 December 2022) performance analysis tools to collect
performance information during the CAMx operation.

The general message passing interface (MPI) performance
can be reported by the ITAC tool, and MPI load balance
information, computation, and communication profiling of
each process are shown in Fig. 1a. During the running pro-
cess of the CAMx model, Process 0 (P0) spends 99.6 % of
the time on the MPI_Barrier function and only 0.4 % of the
time on computation, while Process 1 (P1) spends 99.8 % of
its time computing and only 0.2 % of its time receiving mes-
sages from P0. It is apparent that the parallel design of the
CAMx model adopts the primary/secondary mode, and P0
is responsible for inputting and outputting the data and call-
ing the MPI_Barrier function to synchronize the process, so
there is a lot of MPI waiting time. The other processes are
responsible for computation.

The VTune tool detects each module’s runtime and the
most time-consuming functions on P1. As shown in Fig. 1b,

the top four time-consuming modules are chemistry, dif-
fusion, horizontal advection, and vertical advection in the
CAMx model. In the above four modules, the top five most
time-consuming programs are the ebirate, hadvppm, tridiag,
diffus, and ebisolv programs, and the total runtime of P1 is
325.1 s. The top one’s and top two’s most time-consuming
programs take 49.4 and 35.6 s, respectively.

By consideration, the hadvppm program was selected to
conduct heterogeneous porting for several reasons. First, the
advection module is one of the air quality model’s compul-
sory modules and is mainly used to simulate the transport
process of air pollutants; additionally it is also a hotspot mod-
ule detected by the Intel VTune tool. The typical air quality
models, CAMx, CMAQ, and NAQPMS, include advection
modules and use the exact PPM advection solver. The het-
erogeneous version developed in this study can be directly
applied to the above models. Furthermore, the weather model
(e.g. WRF) also contains an advection module, so this study’s
heterogeneous porting method and experience can be used
for reference. Therefore, a GPU acceleration version of the
HADVPPM scheme, namely, GPU-HADVPPM, was built to
improve the CAMx performance.

2.3 Porting scheme introduction

The CAMx model coupled with GPU-HADVPPM (CAMx-
CUDA) heterogeneous scheme is shown in Fig. 2. The sec-
ond time-consuming hadvppm program in the CAMx model
was selected to implement heterogeneous porting. To map
the hadvppm program to the GPU, the Fortran code was
converted to standard C code. Then, the CUDA program-
ming language, which was tailor-made for NVIDIA, was
added to convert the standard C code into CUDA C for data-
parallel execution on the GPU, as GPU-HADVPPM. It pre-
pared the input data for GPU-HADVPPM by constructing
random numbers and tested its offline performance on the
GPU platform.

After coupling GPU-HADVPPM to the CAMx model, the
advection module code was optimized according to the char-
acteristics of the GPU architecture to improve the overall
computational efficiency on the CPU–GPU heterogeneous
platform. Then, the multi-CPU core and multi-GPU card ac-
celeration algorithm was adopted to improve the parallel ex-
tensibility of heterogeneous computing. Finally, the coupling
performance test was implemented after verifying the differ-
ent CAMx model simulation results.

2.4 Hardware components and software environment
of the testing system

The experiments are conducted on two GPU clusters, K40m
and V100. The hardware components and software environ-
ment of the two clusters are listed in Table 1. The K40m
cluster is equipped with two 2.5 GHz 16-core Intel Xeon E5-
2682 v4 CPU processors and one NVIDIA Tesla K40m GPU
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Figure 1. The computation performance of the modules in the CAMx model. (a) Computation and communication profiling of P0 and P1.
(b) Overhead proportions of P1. The top four most time-consuming modules are chemistry, diffusion, horizontal advection, and vertical
advection.

Figure 2. Heterogeneous porting scheme of the CAMx-CUDA model.

card on each node. The NVIDIA Tesla K40m GPU has 2880
CUDA cores with 12 GB of memory. The V100 cluster con-
tains two 2.7 GHz 24-core Intel Xeon Platinum 8168 proces-
sors and eight NVIDIA Tesla V100 GPU cards with 5120
CUDA cores and 16 GB of memory on each card.

For Fortran and standard C programming, Intel Toolkit
(including compiler and MPI library) version 2021.4.0 and
version 2019.1.144 are employed for compiling on an Intel
Xeon E4-2682 v4 CPU and Intel Xeon Platinum 8168 CPU,
respectively. Then, CUDA version 10.2 and version 10.0 are
employed on an NVIDIA Tesla K40m GPU and NVIDIA
Tesla V100 GPU. CUDA (NVIDIA, 2020) is an extension of
the C programming language that offers direct programming
of the GPUs. In CUDA programming, a kernel is actually a
subroutine that can be executed on the GPU. The underlying
code in the kernel is divided into a series of threads, each with
a unique “ID” number that simultaneously processes differ-

ent data through a single-instruction multiple-thread (SIMT)
parallel mode. These threads are grouped into equal-sized
thread blocks, which are organized into a grid.

3 Porting and optimization of the CAMx advection
module on a heterogeneous platform

3.1 Mapping the HADVPPM scheme to the GPU

3.1.1 Manual code translation from Fortran to
standard C

As the CAMx V6.10 code was written in Fortran 90, we
rewrote the hadvppm program from Fortran to CUDA C. As
an intermediate conversion step, we refactor the original For-
tran code using standard C. During the refactoring, some of
the considerations, listed in Table 2, are as follows:

Geosci. Model Dev., 16, 4367–4383, 2023 https://doi.org/10.5194/gmd-16-4367-2023
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Table 1. Configurations of GPU cluster.

Hardware components

CPU GPU

K40m cluster Intel Xeon E5-2682 v4 CPU @2.5 GHz,
16 cores

NVIDIA Tesla K40m, 2880 CUDA
cores, 12 GB memory

V100 cluster Intel Xeon Platinum 8168 CPU @2.7 GHz,
24 cores

NVIDIA Tesla V100, 5120 CUDA
cores, 16 GB memory

Software environment

Compiler and MPI Programming model

K40m cluster Intel-2021.4.0 CUDA-10.2

V100 cluster Intel-2019.1.144 CUDA-10.0

1. The subroutine name refactored with standard C must
be followed by an underscore identifier, which can only
be recognized when Fortran calls.

2. In the Fortran language, the parameters are transferred
by a memory address by default. In the case of mixed
programming in Fortran and standard C, the parameters
transferred by Fortran are processed by the pointer in
standard C.

3. Variable precision types defined in standard C must be
strictly consistent with those in Fortran.

4. Some built-in functions in Fortran are not available in
standard C and need to be defined in the standard C
macro definitions.

5. For multi-dimensional arrays, Fortran and standard C
follow a column-major and row-major order and in-
memory read and write, respectively.

6. Array subscripts in Fortran and standard C are indexed
from any integer and 0, respectively.

3.1.2 Converting standard C code into CUDA C

After refactoring the Fortran code of the hadvppm program
with standard C, CUDA was used to convert the C code into
CUDA C to make it computable on the GPU. A standard C
program using CUDA extensions distributes a large number
of copies of the kernel functions into available multiproces-
sors and executes them simultaneously on the GPU.

Figure 3 shows the GPU-HADVPPM implementation pro-
cess. As mentioned in Sect. 2.1, the xyadvec program calls
the hadvppm program to solve the horizontal advection func-
tion. Since the rewritten CUDA program cannot be called
directly by the Fortran program (xyadvec.f), we add an in-
termediate subroutine (hadvppm.c) as an interface to transfer
the parameters and data required for GPU computing from

the xyadvec Fortran program to the hadvppm_kernel CUDA
C program.

A CUDA program automatically uses numerous threads
on the GPU to execute kernel functions. Therefore, the had-
vppm_kernel CUDA C program first calculates the number
of parallel threads according to the array dimension. Then,
the GPU memory is allocated, and the parameters and data
are copied from the CPU to the GPU. As the CUDA pro-
gram launches a large number of parallel threads to execute
kernel functions simultaneously, the computation results will
be copied from the GPU back to the CPU. Finally, the GPU
memory is released, and the data computed on the GPU are
returned to the xyadvec program via the hadvppm C pro-
gram.

3.2 Coupling and optimization of the GPU-HADVPPM
scheme on a single GPU

After the hadvppm program was rewritten with standard C
and CUDA, the implementation process of the HADVPPM
scheme was loaded from the CPU to the GPU. Then, we cou-
pled GPU-HADVPPM to the CAMx model. For ease of de-
scription, we will refer to this original heterogeneous version
of CAMx as CAMx-CUDA V1.0. In CAMx-CUDA V1.0,
four external loops are nested when the hadvppm C pro-
gram is called by the xyadvec program. This will result in
widespread data transfers from the CPU to the GPU over the
peripheral component interconnect express (PCIe) bus within
a time step, making the computation of CAMx-CUDA V1.0
inefficient.

Therefore, we optimize the xyadvec Fortran program to
significantly reduce the frequency of data transmission be-
tween the CPU and GPU, increase the amount of data com-
putation on the GPU, and improve the total computing effi-
ciency of the CAMx on the CPU–GPU heterogeneous plat-
forms. In the original CAMx-CUDA V1.0, four external
loops outside the hadvppm C program and several one-
dimensional arrays are computed before calling the hadvppm
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Table 2. Some considerations during Fortran to C refactoring.

Fortran code C code

Function name subroutine hadvppm() void hadvppm()

Parameter passing hadvppm(nn, dt,dx, con,vel,
area,areav, flxarr,mynn)

hadvppm(int *nn, float *dt,
float *dx, float *con, float *vel,
float *area, float *areav,
float *flxarr, int *mynn)

Variable precision real(kind=8) x double x

Built-in functions max #define Max(a, b)
((a)>(b)?(a):(b))

Memory read and write for
multi-dimensional array

Column-major Row-major

Array subscript index Starting from any integer Starting from 0

Figure 3. The calling and computation process of GPU-HADVPPM on the CPU–GPU heterogeneous platform.

C program. Then, the CPU will frequently launch the GPU
and transfer data to it within a time step. When the code op-
timization is completed, the three- or four-dimensional ar-
rays required for a GPU computation within a time step will
be sorted before calling the hadvppm C program, and then
the CPU will package and transfer the arrays to the GPU in
batches. An example of the xyadvec Fortran program opti-
mization is shown in Fig. S1.

The details of the four different versions are shown in Ta-
ble 3. In CAMx-CUDA V1.0, the Fortran code of the HAD-
VPPM scheme was rewritten using standard C and CUDA,

and the xyadvec program was not optimized. The dimensions
of the c1d variable array transmitted to the GPU in the x
and y directions are 157 and 145 in this case, respectively. In
CAMx-CUDA V1.1 and CAMx-CUDA V1.2, the c1d vari-
able transmitted from the CPU to GPU is expanded to two
(approximately 23 000 numbers) and four dimensions (ap-
proximately 27.4×106 numbers) by optimizing the xyadvec
Fortran program and hadvppm_kernel CUDA C program, re-
spectively.

The order in which the data are accessed in GPU memory
affects the computational efficiency of the code. In CAMx-
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CUDA V1.3 of Table 4, we further optimized the order in
which the data are accessed in GPU memory based on the
order in which they are stored in memory and eliminated the
unnecessary assignment loops that were added due to the dif-
ference in memory read order between Fortran and C.

As described in Sect. 2.4, a thread is the basic unit of
parallelism in CUDA programming. The thread structure is
organized into a three-level hierarchy. The highest level is
a grid, which consists of three-dimensional thread blocks.
The second level is a block, which also consists of three-
dimensional threads. The built-in CUDA variable threadIdx.x
determines a unique thread ID number inside a thread block.
Similarly, the built-in variables blockIdx.x and blockIdx.y de-
termine which block to execute on, and the size of the block
is determined by using the built-in variable blockdim.x. For
the two-dimensional horizontal grid points, many threads and
blocks can be organized so that each CUDA thread computes
the results for different spatial positions simultaneously.

In the original version of the CAMx-CUDA
model before version 1.4, the loops for the three-
dimensional spatial grid points (i,j,k) were replaced
by index computations using only the thread index
(i = threadIdx.x+ blockIdx.x*blockDim.x) to simultane-
ously compute the grid point in the x or y directions.
To take full advantage of the thousands of threads
in the GPU, we implement thread and block indices
(i = threadIdx.x+ blockIdx.x*blockDim.x; j= blockIdx.y) to
simultaneously compute all the horizontal grid points (i,j )
in CAMx-CUDA V1.4. This is permitted because there are
no interactions among the horizontal grid points.

3.3 MPI + CUDA acceleration algorithm of
CAMx-CUDA on multiple GPUs

Generally, super-large clusters have thousands of compute
nodes. The current CAMx V6.10, implemented by adopting
MPI communication technology, typically runs on dozens of
compute nodes. Once GPU-HADVPPM is coupled into the
CAMx, it also has to run on multiple compute nodes that are
equipped with one or more GPUs on each node. To make full
use of multicore and multi-GPU supercomputers and further
improve the overall computational performance of CAMx-
CUDA, we adopt a parallel architecture with an MPI and
CUDA (MPI+CUDA) hybrid paradigm; that is, the collab-
orative computing strategy of multiple CPU cores and multi-
ple GPU cards is adopted during the operation of the CAMx-
CUDA model. Adopting this strategy, GPU-HADVPPM can
run on multiple GPUs, and the Fortran code of the other mod-
ules in the CAMx-CUDA model can run on multiple CPU
cores.

As shown in Fig. 4, after the simulated region is subdi-
vided by MPI, a CPU core is responsible for the computa-
tion of a subregion. To improve the total computational per-
formance of the CAMx-CUDA model, we further used the
NVIDIA CUDA library to obtain the number of GPUs per

node and then used the MPI process ID and remainder func-
tion to determine the GPU ID to be launched by each node.
Finally, we used the NVIDIA CUDA library, cudaSetDevice,
to configure a GPU card for each CPU core.

According to the benchmark performance experiments,
the parallel design of CAMx adopts the primary/secondary
mode, and P0 is responsible for inputting and outputting data.
If two processes (P0 and P1) are launched, only the P1 and
its configured GPU participate in integration.

4 Experimental results

The validation and evaluation of porting the HADVPPM
scheme from the CPU to the GPU platform were conducted
using offline and coupling performance experiments. First,
we validated the results between the different CAMx ver-
sions, and then the offline performance of GPU-HADVPPM
on a single GPU was tested by offline experiments. Finally,
coupling performance experiments illustrate its potential in
three dimensions with varying chemical regimes. In Sect. 4.2
and 4.4, the CAMx versions of the HADVPPM scheme writ-
ten in Fortran, standard C, and CUDA C are named F, C, and
CUDA C, respectively.

4.1 Experimental setup

The test case is a 48 h simulation covering Beijing, Tianjin,
and part of the Hebei Province region. The horizontal resolu-
tion is 3 km with 145× 157 grid boxes. The model adopted
14 vertical layers. The simulation started at 12:00 UTC on
1 November 2020 and ended at 12:00 UTC on 3 Novem-
ber 2020. The meteorological fields driving the CAMx model
were provided by the Weather Research and Forecasting
(WRF; Skamarock et al., 2008) model. The Sparse Ma-
trix Operator Kernel Emissions (SMOKE; Houyoux and
Vukovich, 1999) version 2.4 model is used to provide grid-
ded emission data for the CAMx model. The emission in-
ventories (Sun et al., 2022) include the regional emissions in
East Asia that were obtained from the Transport and Chem-
ical Evolution over the Pacific (TRACE-P; Streets et al.,
2003, 2006) project, 30 min (approximately 55.6 km at mid-
latitude) spatial resolution Intercontinental Chemical Trans-
port Experiment Phase B (INTEX-B; Zhang et al., 2009), and
the updated regional emission inventories in northern China.
The physical and chemical numerical methods selected dur-
ing the CAMx model integration are listed in Table S2.

4.2 Error analysis

The hourly concentrations of different CAMx simulations
(Fortran, C, and CUDA C versions) are compared to verify
the usefulness of the CUDA C version of CAMx for numer-
ical precision for scientific usage. Here, we chose six major
species, i.e. SO2, O3, NO2, CO, H2O2, and PSO4, after 48 h
of integration to verify the results. Due to the differences in
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Table 3. The details of different CAMx-CUDA versions during optimization.

Version Major revisions Amount of data
computation on GPU

CAMx-CUDA V1.0 The Fortran code of the HADVPPM subroutine
was rewritten using standard C and CUDA, and
xyadvec.f was not optimized.

157 and 145 in the x direction and y
direction for the c1d variable, respec-
tively.

CAMx-CUDA V1.1 Optimize xyadec.f and hadvppm_kernel.cu to
expand the dimension of the array transmit-
ted to the GPU from one-dimensional to two-
dimensional.

157× 145,
approximately 23 000 numbers
for the c2d variable.

CAMx-CUDA V1.2 Based on CAMx-CUDA V1.1, the dimension
of the array transmitted to the GPU is extended
from two to four dimensions.

157× 145× 14× 86,
approximately 27.4× 106 numbers
for the c4d variable.

CAMx-CUDA V1.3 Based on CAMx-CUDA V1.2, the order of
GPU memory access is optimized and unnec-
essary assignment loops are eliminated.

157× 145× 14× 86,
approximately 27.4× 106 numbers
for the c4d variable.

CAMx-CUDA V1.4 Based on CAMx-CUDA V1.3,
using thread and block indices
(i = threadIdx.x+ blockIdx.x*blockDim.x;
j = blockIdx.y).

157× 145× 14× 86,
approximately 27.4× 106 numbers
for the c4d variable.

Figure 4. An example of parallel architecture with an MPI+CUDA hybrid paradigm on multiple GPUs.

programming languages and hardware, the simulation results
are affected during the porting process. Figures 5 to 7 present
the spatial distributions of SO2, O3, NO2, CO, H2O2, and
PSO4, as well as the absolute errors (AEs) of their concen-
trations from different CAMx versions. The species’ spatial
patterns of the three CAMx versions are visually very simi-
lar. Between the Fortran and C versions, especially, the AEs
in all the grid boxes are in the range of ±0.01 ppbV (parts
per billion by volume; the unit of PSO4 is µg m−3). During
the porting process, the primary error comes from convert-
ing standard C to CUDA C, and the main reason is related
to the hardware difference between the CPU and GPU. Due

to the slight difference in data operation and accuracy be-
tween the CPU and GPU (NVIDIA, 2023), the concentration
variable of the hadvppm program appears to have minimal
negative values (approximately −10−4 to −10−9) when in-
tegrated on the GPU. To allow the program to continue run-
ning, we forcibly replace these negative values with 10−9.
It is because these negative values are replaced by positive
values that the simulation results are biased. In general, for
SO2, O3, NO2, H2O2, and PSO4, the AEs in the majority of
the grid boxes are in the range of±0.8 ppbV or±0.8 µg m−3

between the standard C and CUDA C versions; for CO, be-
cause its background concentration is higher, the AEs of the
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standard C and CUDA C versions are outside that range, and
they fall into the range of −8 and 8 ppbV in some grid boxes
and show more obvious AEs than the other species.

Figure 8 shows the boxplot of the AEs and relative er-
rors (REs) in all the grid boxes for the six species during
the porting process. As described above, the AEs and REs
introduced by Fortran to the standard C code refactoring
process are significantly small, and the primary error comes
from converting standard C to CUDA C. Statistically, the av-
erage AEs (REs) of SO2, O3, NO2, CO, H2O2, and PSO4
were −0.0009 ppbV (−0.01 %), 0.0004 ppbV (−0.004 %),
0.0005 ppbV (0.008 %), 0.03 ppbV (0.01 %), and 2.1×
10−5 ppbV (−0.01 %) and 0.0002 µg m−3 (0.0023 %), re-
spectively, between the Fortran and CUDA C versions. In
terms of the time series, the regionally averaged time se-
ries of the three versions are almost consistent (as shown
in Fig. S2), and the maximum AEs for the above six
species are 0.001, 0.005, 0.002, 0.03, and 0.0001 ppbV and
0.0002 µg m−3, respectively, between the Fortran and CUDA
C versions.

Figure 9 presents the regionally averaged time series and
the AEs of SO2, O3, NO2, CO, H2O2, and PSO4. The time
series between the different versions is almost consistent,
and the maximum AEs for the above six species are 0.001,
0.005, 0.002, 0.03, and 0.0001 ppbV and 0.0002 µg m−3, re-
spectively, between the Fortran and CUDA C versions.

It is difficult to verify the scientific applicability of the
results from the CUDA C version because the program-
ming language and hardware are different between the For-
tran and CUDA C versions. Here, we used the evaluation
method of P. Wang et al. (2021) to compute the root mean
square errors (RMSEs) of SO2, O3, NO2, CO, H2O2, and
PSO4 between the Fortran and CUDA C versions, which
are 0.0007, 0.001, 0.0002, 0.0005, and 0.00003 ppbV and
0.0004 µg m−3, respectively, much smaller than the spa-
tial variation in the whole region, which is 7.0 ppbV (ap-
proximately 0.004 %), 9.7 ppbV (approximately 0.003 %),
7.4 ppbV (approximately 0.003 %), 142.2 ppbV (approxi-
mately 0.006 %), and 0.2 ppbV (approximately 0.015 %)
and 1.7 µg m−3 (approximately 0.004 %). The bias between
CUDA C and the Fortran version of the above six species is
negligible compared with their own spatial changes, and the
results of the CUDA C version are generally acceptable for
research purposes.

4.3 Offline performance comparison of
GPU-HADVPPM

As described in Sect. 4.2, we validate that the CAMx model
result of the CUDA C version is generally acceptable for
scientific research. We tested the offline performance of the
HADVPPM and GPU-HADVPPM schemes on one CPU
core and one GPU card. There are seven variables input into
the HADVPPM program, which are nn, dt, dx, con, vel, area,
and areav, and their specific meanings are shown in Table S1.

First, we use the random_number function in Fortran to
create random single-precision floating-point numbers of dif-
ferent sizes for the above seven variables and then transmit
these random numbers to the hadvppm Fortran program and
hadvppm_kernel CUDA C program for computation. Finally,
we test the offline performance of the HADVPPM and GPU-
HADVPPM on the CPU and GPU platforms. During the of-
fline performance experiments, we used two different CPUs
and GPUs described in Sect. 2.4, and the experimental results
are shown in Fig. 9.

On the CPU platform, the wall time of the hadvppm For-
tran program does not change significantly when the data
size is less than 1000. With the increase in the data size,
its wall time increases linearly. When the data size reaches
107, the wall times of the hadvppm Fortran program on the
Intel Xeon E5-2682 v4 and Intel Platinum 8168 CPU plat-
forms are 1737.3 and 1319.0 ms, respectively. On the GPU
platform, the reconstructed and extended CUDA C program
implements parallel computation of multiple grid points by
executing a large number of kernel function copies, so the
computational efficiency of the hadvppm_kernel CUDA C
code on it is significantly improved. In the size of 107 random
numbers, the hadvppm_kernel CUDA C program takes only
12.1 and 1.6 ms to complete the computation on the NVIDIA
Tesla K40m GPU and NVIDIA Tesla V100 GPU.

Figure 9b shows the speedup of HADVPPM and GPU-
HADVPPM on the CPU platform and GPU platform under
different data sizes. When mapping the HADVPPM scheme
to the GPU, the computational efficiency under different data
sizes is not only significantly improved, but the larger the
data size is, the more obvious the acceleration effect of GPU-
HADVPPM. For example, in the size of 107 random num-
bers, GPU-HADVPPM achieved a 1113.6× and 845.4× ac-
celeration on the NVIDIA Tesla V100 GPU compared to
the Intel Xeon E5-2682 v4 and Intel Platinum 8168 CPU,
respectively. Although the K40m GPU’s single-card com-
puting performance is slightly lower than that of the V100
GPU, GPU-HADVPPM can also achieve up to a 143.3× and
108.8× acceleration.

As described in Sect. 3.2, the thread is the most basic
GPU unit for parallel computing. Each dimension of the
three-dimensional block can contain a maximum number of
threads of 1024, 1024, and 64. Each dimension of the three-
dimensional grid can contain a maximum number of blocks
of 231

− 1, 65 535, and 65 535. It is theoretically possible to
distribute a large number of copies of kernel functions into
tens of billions of threads for parallel computing without ex-
ceeding the GPU memory. In the offline performance exper-
iments, the GPU achieved up to 10× 106 threads of parallel
computing, while the CPU could only use serial cyclic com-
putation. Therefore, GPU-HADVPPM achieves a maximum
acceleration of approximately 1100×without I/O (input/out-
put). In addition to this study, the GPU-based SBU-YLIN
scheme in the WRF model can achieve a 896× acceleration
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Figure 5. SO2 and O3 concentrations outputted by the CAMx model for the Fortran, standard C, and CUDA C versions. Panels (a) and (g)
are from the Fortran versions. Panels (b) and (h) are from the standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels
(d) and (j) are the output concentration differences in the Fortran and standard C versions. Panels (e) and (k) are the output concentration
differences in the standard C and CUDA C versions. Panels (f) and (l) are the output concentration differences in the Fortran and CUDA C
versions.
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Figure 6. NO2 and CO concentrations outputted by the CAMx model for the Fortran, standard C, and CUDA C versions. Panels (a) and (g)
are from the Fortran versions. Panels (b) and (h) are from the standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels
(d) and (j) are the output concentration differences in the Fortran and standard C versions. Panels (e) and (k) are the output concentration
differences in the standard C and CUDA C versions. Panels (f) and (l) are the output concentration differences in the Fortran and CUDA C
versions.
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Figure 7. H2O2 and PSO4 concentrations outputted by the CAMx model for the Fortran, standard C, and CUDA C versions. Panels (a) and
(g) are from the Fortran versions. Panels (b) and (h) are from the standard C versions. Panels (c) and (i) are from the CUDA C versions.
Panels (d) and (j) are the output concentration differences in Fortran and standard C versions. Panels (e) and (k) are the output concentration
differences in the standard C and CUDA C versions. Panels (f) and (l) are the output concentration differences in the Fortran and CUDA C
versions.
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Figure 8. The distributions of absolute errors and relative errors for SO2, O3, NO2, CO, H2O2, and PSO4 in all of the grid boxes after 48 h
of integration.

compared to the Fortran implementation running on the CPU
(Mielikainen et al., 2012b).

4.4 Coupling performance comparison of
GPU-HADVPPM with different GPU
configurations

4.4.1 CAMx-CUDA on a single GPU

The offline performance results show that the larger the
data size is, the more obvious the acceleration effect of the
GPU-HADVPPM scheme. After coupling GPU-HADVPPM
to CAMx without changing the advection module algorithm,
the overall computational efficiency of the CAMx-CUDA
model is extremely low, and it takes approximately 621 min
to complete a 1 h integration on the V100 cluster. Therefore,
according to the optimization scheme in Sect. 3.2, by opti-
mizing the algorithm of the xyadvec Fortran program, we
gradually increase the size of the data transmitted and reduce
the data transmission frequency between the CPU and GPU.
When the data transmission frequency between the CPU and
GPU is reduced to 1 within one time step, we further opti-
mize the GPU memory access order on the GPU card, elim-
inate unnecessary assignment loops before kernel functions
are launched, and use the thread and block indices.

Table 4 lists the total elapsed time for different versions
of the CAMx-CUDA model during the optimization, as de-
scribed in Sect. 3.2. Since the xyadvec program in CAMx-
CUDA V1.0 is not optimized, it is extremely computation-
ally inefficient when starting two CPU processes and config-
uring a GPU card for P1. On the K40m and V100 clusters,

it takes 10 829 and 37 237 s, respectively, to complete a 1 h
simulation.

By optimizing the algorithm of the xyadvec Fortran pro-
gram and hadvppm_kernel CUDA C program, the data trans-
mission frequency between the CPU and GPU was de-
creased, and the overall computing efficiency was improved
after GPU-HADVPPM was coupled to the CAMx-CUDA
model. In CAMx-CUDA V1.2, the data transmission fre-
quency between CPU–GPU within one time step is reduced
to 1; the elapsed time on the two heterogeneous clusters is
1207 and 548 s, respectively; and the speedup is 9.0× and
68.0× compared to CAMx-CUDA V1.0.

The GPU memory access order can directly affect the
overall GPU-HADVPPM computational efficiency on the
GPU. In CAMx-CUDA V1.3, we optimized the memory ac-
cess order of the hadvppm_kernel CUDA C program on the
GPU and eliminated the unnecessary assignment loops be-
fore the kernel functions were launched, which further im-
proved the CAMx-CUDA model’s computational efficiency,
resulting in 12.7× and 94.8× speedups.

Using thread and block indices to simultaneously compute
the horizontal grid points can greatly improve the compu-
tational efficiency of GPU-HADVPPM and thus reduce the
overall elapsed time of the CAMx-CUDA model. CAMx-
CUDA V1.4 further reduces the elapsed time by 378 and
103 s on the K40m cluster and V100 cluster, respectively,
compared with CAMx-CUDA V1.3 and achieves up to a
29.0× and 128.4× speedup compared with CAMx-CUDA
V1.0.

In terms of the single-module computational efficiency
of HADVPPM and GPU-HADVPPM, we further tested the
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Figure 9. The offline performance of the HADVPPM and GPU-HADVPPM schemes on the CPU and GPU. The unit of the wall times for
the offline performance experiments is in milliseconds (ms).

Table 4. Total elapsed time for different versions of CAMx-CUDA during the optimization. The unit of elapsed time for experiments is in
seconds (s).

Versions K40m cluster V100 cluster

Elapsed time Speedup Elapsed time Speedup

CAMx-CUDA V1.0 10 829 1.0 37 237 1.0
CAMx-CUDA V1.1 1403 7.7 1082 34.4
CAMx-CUDA V1.2 1207 9.0 548 68.0
CAMx-CUDA V1.3 751 12.7 393 94.8
CAMx-CUDA V1.4 373 29.0 290 128.4

computational performance of the Fortran version of HAD-
VPPM on the CPU, C version of HADVPPM on the CPU,
and the CUDA C version of GPU-HADVPPM in CAMx-
CUDA V1.4 (GPU-HADVPPM V1.4) on the GPU using sys-
tem_clock functions in the Fortran language and cudaEvent_t
in CUDA programming. The specific results are shown in
Fig. 10. On the K40m cluster, it takes 37.7 and 51.4 s to
launch the Intel Xeon E5-2682 v4 CPU to run the Fortran
and C version HADVPPM, respectively, and the C version
is 26.7 % slower than the Fortran version. After the CUDA
technology was used to convert the C code into CUDA C,
the CUDA C version took 29.6 s to launch an NVIDIA Tesla
K40m GPU to run GPU-HADVPPM V1.4, with a 1.3× and
1.7× acceleration. On the V100 cluster, the Fortran, C, and
CUDA C versions are computationally more efficient than
those on the K40m cluster. It takes 30.1 and 45.2 s to launch
the Intel Xeon Platinum 8168 CPU to run the Fortran and C
version HADVPPM and 1.6 s to run GPU-HADVPPM V1.4
using an NVIDIA V100 GPU. The computational efficiency
of the CUDA C version is 18.8× and 28.3× higher than the
Fortran and C versions, respectively.

Figure 10. The elapsed time of the Fortran version HADVPPM on
the CPU, the C version HADVPPM on the CPU, and the CUDA C
version GPU-HADVPPM V1.4 on the GPU. The unit is in seconds
(s).
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Figure 11. The total elapsed time and speedup of CAMx-CUDA V1.3 and V1.4 on multiple GPUs. The unit of elapsed time for experiments
is seconds (s).

4.4.2 CAMx-CUDA on multiple GPUs

To make full use of the multicore and multi-GPU super-
computers in the heterogeneous cluster, the MPI+CUDA
acceleration algorithm was implemented to improve the to-
tal computational performance of the CAMx-CUDA model.
Two different compile flags were implemented in this study
before comparing the computational efficiency of CAMx-
CUDA V1.3 and V1.4 on multiple GPUs, namely, -mieee-
fp and -fp-model precise. The -mieee-fp compile flag comes
from the Makefile of the official CAMx version, which uses
the IEEE standard to compare the floating-point numbers. Its
computational accuracy is higher, but the efficiency is slower.
The -fp-model precise compile flag controls the balance be-
tween the precision and efficiency of the floating-point cal-
culations, and it can force the compiler to use the vectoriza-
tion of some calculations under value safety. The experimen-
tal results show that the -fp-model precise compile flag is
41.4 % faster than -mieee-fp, and the AEs of the simulation
results are less than ±0.05 ppbV (Fig. S3). Therefore, the
-fp-model precise compile flag is implemented when com-
paring the computational efficiency of CAMx-CUDA V1.3
and V1.4 on multiple GPU cards. Figure 11 shows the total
elapsed time and speedup of CAMx-CUDA V1.3 and V1.4
on the V100 cluster. The total elapsed time decreases as the
number of CPU cores and GPU cards increases. When start-
ing eight CPU cores and eight GPU cards, the speedup of
CAMx-CUDA V1.4 is increased from 3.9× to 4.5× com-
pared with V1.3, and the computational efficiency is in-
creased by 35.0 %.

5 Conclusions and discussion

GPU accelerators are playing an increasingly important role
in high-performance computing. In this study, a GPU accel-
eration version of the PPM solver (GPU-HADVPPM) of hor-
izontal advection for an air quality model was developed,
which runs on GPU accelerators using the standard C pro-
gramming language and CUDA technology. The offline per-
formance results showed that the K40m and V100 GPU can
achieve up to a 845.4× and 1113.6× speedup, respectively,
and the larger the data input to the GPU, the more obvious
the acceleration effect. After coupling GPU-HADVPPM to
the CAMx model, a series of optimization measures were
taken, including reducing the CPU–GPU communication fre-
quency, increasing the data computation size on the GPU, op-
timizing the GPU memory access order, and using thread and
block indices to improve the overall computing performance
of the CAMx-CUDA model. Using a single GPU card, the
optimized CAMx-CUDA V1.4 model improved the comput-
ing efficiency by 29.0× and 128.4× on the K40m cluster and
the V100 cluster, respectively. In terms of the single-module
computational efficiency of GPU-HADVPPM, it achieved a
1.3× and 18.8× speedup on an NVIDIA Tesla K40m GPU
and NVIDIA Tesla V100 GPU, respectively. To make full use
of the multicore and multi-GPU supercomputers and further
improve the total computational performance of the CAMx-
CUDA model, a parallel architecture with an MPI+CUDA
hybrid paradigm was presented. After implementing the ac-
celeration algorithm, the total elapsed time decreased as
the number of CPU cores and GPU cards increased, and it
achieved up to a 4.5× speedup when launching eight CPU
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cores and eight GPU cards compared with two CPU cores
and two GPU cards.

However, the current approach has some limitations,
which are as follows:

1. We currently implement thread and block co-indexing
to compute horizontal grid points in parallel. Given the
CAMx model three-dimensional grid computing char-
acteristics, in the future, three-dimensional thread and
block co-indexing will be considered to compute three-
dimensional grid points in parallel.

2. The communication bandwidth of data transfer is one of
the main issues restricting the computing performance
of the CUDA C codes on the GPUs. This restriction
holds true not only for GPU-HADVPPM but also for the
WRF module (Mielikainen et al., 2012b, 2013b; Huang
et al., 2013). In this study, the data transmission effi-
ciency between the CPU and GPU is improved only by
reducing the communication frequency. In the future,
more technologies, such as pinned memory (Wang et
al., 2016), will be considered to resolve the communi-
cation bottleneck between the CPUs and GPUs.

3. To further improve the overall computational efficiency
of the CAMx model, the heterogeneous porting scheme
proposed in this study will be considered to conduct the
heterogeneous porting of other CAMx modules in the
future.
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