Articles | Volume 16, issue 13
https://doi.org/10.5194/gmd-16-3785-2023
https://doi.org/10.5194/gmd-16-3785-2023
Model description paper
 | 
11 Jul 2023
Model description paper |  | 11 Jul 2023

Deep learning for stochastic precipitation generation – deep SPG v1.0

Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier

Related authors

The MAPM (Mapping Air Pollution eMissions) method for inferring particulate matter emissions maps at city scale from in situ concentration measurements: description and demonstration of capability
Brian Nathan, Stefanie Kremser, Sara Mikaloff-Fletcher, Greg Bodeker, Leroy Bird, Ethan Dale, Dongqi Lin, Gustavo Olivares, and Elizabeth Somervell
Atmos. Chem. Phys., 21, 14089–14108, https://doi.org/10.5194/acp-21-14089-2021,https://doi.org/10.5194/acp-21-14089-2021, 2021
Short summary
The winter 2019 air pollution (PM2.5) measurement campaign in Christchurch, New Zealand
Ethan R. Dale, Stefanie Kremser, Jordis S. Tradowsky, Greg E. Bodeker, Leroy J. Bird, Gustavo Olivares, Guy Coulson, Elizabeth Somervell, Woodrow Pattinson, Jonathan Barte, Jan-Niklas Schmidt, Nariefa Abrahim, Adrian J. McDonald, and Peter Kuma
Earth Syst. Sci. Data, 13, 2053–2075, https://doi.org/10.5194/essd-13-2053-2021,https://doi.org/10.5194/essd-13-2053-2021, 2021
Short summary
WRF4PALM v1.0: a mesoscale dynamical driver for the microscale PALM model system 6.0
Dongqi Lin, Basit Khan, Marwan Katurji, Leroy Bird, Ricardo Faria, and Laura E. Revell
Geosci. Model Dev., 14, 2503–2524, https://doi.org/10.5194/gmd-14-2503-2021,https://doi.org/10.5194/gmd-14-2503-2021, 2021
Short summary
Simplified SAGE II ozone data usage rules
Stefanie Kremser, Larry W. Thomason, and Leroy J. Bird
Earth Syst. Sci. Data, 12, 1419–1435, https://doi.org/10.5194/essd-12-1419-2020,https://doi.org/10.5194/essd-12-1419-2020, 2020
Short summary
The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry–climate model
Laura E. Revell, Stefanie Kremser, Sean Hartery, Mike Harvey, Jane P. Mulcahy, Jonny Williams, Olaf Morgenstern, Adrian J. McDonald, Vidya Varma, Leroy Bird, and Alex Schuddeboom
Atmos. Chem. Phys., 19, 15447–15466, https://doi.org/10.5194/acp-19-15447-2019,https://doi.org/10.5194/acp-19-15447-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024,https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary

Cited articles

Ahn, K.-H.: Coupled annual and daily multivariate and multisite stochastic weather generator to preserve low-and high-frequency variability to assess climate vulnerability, J. Hydrol., 581, 124443, https://doi.org/10.1016/j.jhydrol.2019.124443, 2020. a
Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather generators: an overview of weather type models, Journal de la Société Française de Statistique, 156, 101–113, 2015. a
Ba, J. L., Kiros, J. R., and Hinton, G. E.: Layer normalization, arXiv preprint arXiv:1607.06450, 2016. a
Bachlechner, T., Majumder, B. P., Mao, H., Cottrell, G., and McAuley, J.: Rezero is all you need: Fast convergence at large depth, in: Uncertainty in Artificial Intelligence, 1352–1361, PMLR, 2021. a
Bird, L. and Walker, M.: bodekerscientific/SPG: Release version 1.0 (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.6801733, 2022. a
Download
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.