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Abstract. We present a deep-neural-network-based single-
site stochastic precipitation generator (SPG), capable of pro-
ducing realistic time series of daily and hourly precipitation.
The neural network outputs a wet-day probability and precip-
itation distributions in the form of a mixture model. The SPG
was tested in four different locations in New Zealand, and we
found it accurately reproduced the precipitation depth, the
autocorrelations seen in the original data, the observed dry-
spell lengths, and the seasonality in precipitation. We present
two versions of the hourly and daily SPGs: (i) a stationary
version of the SPG that assumes that the statistics of the
precipitation are time independent and (ii) a non-stationary
version that captures the secular drift in precipitation statis-
tics resulting from climate change. The latter was developed
to be applicable to climate change impact studies, especially
studies reliant on SPG projections of future precipitation. We
highlight many of the pitfalls associated with the training of
a non-stationary SPG on observations alone and offer an al-
ternative method that replicates the secular drift in precipi-
tation seen in a large-ensemble regional climate model. The
SPG runs several orders of magnitude faster than a typical re-
gional climate model and permits the generation of very large
ensembles of realistic precipitation time series under many
climate change scenarios. These ensembles will also contain
many extreme events not seen in the historical record.

1 Introduction

The effects of climate change are often most acutely felt in
the form of changes in the severity, or in frequency, of ex-
treme precipitation events (EPEs) (van der Wiel and Bin-
tanja, 2021; Li et al., 2021; Lewis et al., 2019).

Modelling expected changes in EPEs is challenging. They
often occur on spatial scales of several kilometres, an or-
der of magnitude smaller than the spatial scales simulated
by regional climate models (RCMs), and perhaps 2 orders
of magnitude smaller than the scales typically simulated by
global climate models (GCMs; Wedi et al., 2020). Further-
more, EPEs are, by definition, rare. As a result, modelling
expected changes in the frequency and severity of EPEs re-
quires dynamical downscaling of GCMs, as well as the gen-
eration of very large ensembles of simulations. State-of-the-
art GCMs are needed to correctly simulate expected changes
in the dynamics underlying the synoptic conditions that lead
to EPEs (Fahad et al., 2020b, a), while dynamical downscal-
ing (Monjo et al., 2016; Castellano and DeGaetano, 2016),
using an RCM, is required to capture scales typical of EPEs.
Very large ensembles (hundreds of members) of simulations
are required to allow sufficiently large populations of EPEs
to derive robust statistics of expected changes in their fre-
quency and their severity. Achieving these two requirements,
at sufficiently high resolution, is prohibitively computation-
ally expensive using currently available GCMs and RCMs.

Stochastic precipitation generators (SPGs) (Ahn, 2020;
lizumi et al., 2012; Wilks, 2010) can be designed and trained
to emulate the precipitation at one or more sites simulated by
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GCMs containing nested regional climate models (RCMs).
SPGs provide less computationally demanding approaches
to generating the large ensembles of simulations required to
adequately represent the statistics of EPEs.

SPGs can be trained on historical observations of daily
or hourly precipitation to learn the statistical characteristics
of the precipitation at that site. However, if the intent is to
develop a non-stationary SPG — one capable of capturing
climate-induced secular changes in the statistical nature of
the precipitation — extracting this climate signal from his-
torical precipitation records is itself challenging. Inhomo-
geneities in those records (Venema et al., 2012; Toreti et al.,
2012; Peterson et al., 1998) resulting from, for example,
changes in instrumentation can hide the underling climate-
induced signal. Further, a rather weak climate signal in the
past makes it difficult to learn the strong signal expected in
the future. To avoid these challenges of measurement series
inhomogeneity and the brevity of historical records, an al-
ternative is to train the SPG on RCM simulations of past
and future precipitation. However, GCMs and their nested
RCMs have well-identified shortcomings in the simulation
of precipitation (Li et al., 2014; Haerter et al., 2015; Piani
et al., 2010). As such, without careful bias correction, the
SPG would learn from biased RCM data, and therefore its
simulations would be biased and it would not produce a real-
istic precipitation distribution.

As alluded to above, the statistics of precipitation, and in
particular the statistics of EPEs, are expected to evolve un-
der climate change. Developing an SPG architecture that is
capable of capturing that non-stationarity, but avoids errant
behaviour when applied outside the limits of the training
data, is a particular challenge. These and other methodolog-
ical choices have been explored in the construction of the
SPGs described in this paper.

SPGs are a subset of the broader class of stochastic
weather generators (SWGs) and, as with SWGs, they come
in two broad types: parametric and non-parametric. Non-
parametric SWGs simply resample the data, while paramet-
ric generators fit distributions to the data (Ailliot et al., 2015)
and then use these distributions to create events outside the
range of the training data. Therefore, while non-parametric
SWGs cannot create an entirely new event outside of their
training data, they can generate a unique sequence of such
events.

Typically, parametric SWGs and SPGs simulate precipita-
tion in two stages. The first stage decides whether precipita-
tion occurs, while the second stage models the precipitation
amount (Richardson, 1981). The material presented here fo-
cuses entirely on precipitation and follows from the class of
SWGs first introduced by Katz (1977), where a gamma dis-
tribution was used to describe the precipitation amount. Be-
cause a single distribution is often insufficient to fully capture
precipitation extremes, a mixture of different distributions
was adopted in Carreau and Vrac (2011), who introduced
a conditional mixture model for precipitation downscaling.
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Imperatives for the work presented herein were to build an
SPG that learns the nature of the statistics of precipitation
from observations alone (and is therefore not subject to the
biases of GCMs or RCMs in training), including the infer-
ence of non-stationarity in the signal, and which only resorts
to auxiliary model simulations where the observation record
is found to be inadequate to capture the non-stationarity. An
additional imperative was to have the non-stationarity de-
scribed by a single annual mean hemispheric covariate time
series that can be quickly and robustly simulated by a sim-
ple climate model for a wide range of future greenhouse gas
emission scenarios. This makes the SPGs reported on below
easily applicable to a wide range of climate impact studies
that benefit from very large ensembles of precipitation pro-
jections.

2 Data

The following data sets were used for training, validating, or
transforming the SPGs presented below. Both daily resolu-
tion and hourly resolution SPGs are presented here. Daily
SPGs benefit from the availability of longer measurement
series being available for their training as, prior to the de-
velopment of automatic weather stations, precipitation data
were typically recorded once each day. However, for many
applications, especially for highly damaging extreme precip-
itation events, the distribution of precipitation over the course
of a day can be important to resolve. As such, hourly reso-
Iution SPGs can have wider utility than daily SPGs. They
suffer, however, from a paucity of data for their training. The
benefits of the SPGs at both daily and hourly resolution are
presented below.

2.1 Daily precipitation observations

Daily weather station precipitation data were obtained from
CLIDB, NIWA’s National Climate Database (https://cliflo.
niwa.co.nz/, last access: 4 July 2023) for four cities in New
Zealand: Auckland, Tauranga, Christchurch, and Dunedin.
Each data point was the cumulative amount of precipitation
measured each day. These four locations were selected as
they represented a range of climatic regimes around New
Zealand and are large population centres. The selected lo-
cations also had time series of hourly and daily precipitation
data sufficiently long to achieve robust training.

In some cases, data from two weather stations were com-
bined in order to generate records of longer duration. When
combining data from two sites, the secondary site’s data were
used only where data were not available from the primary
site. CLIDB details for the six stations used for daily data are
listed in Table 1. Table 2 provides key statistics describing
the data, after combination, for the four cities.

Additional data points were dropped if the data point’s fea-
tures (see Sect. 3.1.1) could not be calculated, due to the fea-
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Table 1. Stations providing daily observations of precipitation. Where more than one station was used to construct the historical record for

the location, the stations appear in priority order.

City Station name Climate network number  Latitude Longitude
Auckland Henderson North A64863 —36.85539  174.62383
Albert Park A64871 —36.853 174.767
Tauranga Tauranga Aero Aws B76624 —37.67068 176.19660
Tauranga Aero B76621 —37.67242 176.19635
Christchurch  Christchurch Gardens  H32561 —43.531 172.619
Dunedin Dunedin, Btl Gardens 150852 —45.860 170.522

Table 2. Key attributes of the combined time series of daily precip-
itation observations.

City Duration  Dates Missing Effective

data  missing data
Auckland 159 years  1863-2022 35% 3.5%
Tauranga 112 years 1910-2022 0.2% 0.7 %
Christchurch 159 years  1863-2022 112 % 11.5%
Dunedin 109 years  1913-2022 4.2 % 8.7 %

Table 3. Stations providing hourly observations of precipitation.
Where more than one station was used to construct the historical
record for the location, the stations appear in priority order.

City Station Name Latitude Longitude
Auckland Auckland Aero —37.00813  174.78873
Tauranga Tauranga Aero Aws  —37.67068  176.19660
Christchurch  Christchurch Aero —43.493 172.537
Dunedin Dunedin Aero —45.929 170.196
Dunedin Aero Aws  —45.92675 170.19684

tures requiring precipitation measurements from days with
missing data. This treatment of missing data was required to
ensure that the neural network (see Sect. 3) saw only valid
data. Specifically, this meant that for 1 d of missing data we
would drop the following 8 d, and thus the effective percent-
age of missing data was greater than the percentage missing
in the source observation time series.

2.2 Hourly precipitation observations

Hourly weather station precipitation data for the same four
cities were obtained from CLIDB (see Table 3). Each data
point was the cumulative amount of precipitation seen in the
hour before the timestamp.

Additional data points were dropped if the data point’s fea-
tures (see Sect. 3.1.2) could not be calculated, due to the fea-
tures requiring precipitation measurements from hours with
missing data. Specifically, this meant that for 1 h of missing
data we would drop the 144 following hours, and thus the ef-
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Table 4. Key attributes of the combined time series of hourly pre-
cipitation observations.

City Duration  Dates Number Missing  Effective
of values data missing

data

Auckland 54 years  1965-2019 395000 19.3% 28.2%
Tauranga 24 years  1995-2019 214000 0.7 % 7.6 %
Christchurch 59 years ~ 1960-2019 519000 0.2% 55%
Dunedin 57 years  1962-2019 441000 12.8% 18.7 %

fective amount of missing data was greater than the amount
missing in the source observation time series. Table 4 lists
the volume of effective missing hourly data for the four loca-
tions.

2.3 Global-scale temperature anomalies

To describe the non-stationarity in the precipitation time se-
ries at each location, we sought a climate change covariate
that would not be subject to small-scale temporal and spa-
tial variability, would be easy to calculate for a range of
greenhouse gas emission scenarios, and would be broadly
applicable. We settled on the annual mean Southern Hemi-
sphere mean surface temperature over land anomaly (here-
after TéH_land). Time series of TS’H_land for a range of differ-
ent Representative Concentration Pathway (RCP) and Shared
Socioeconomic Pathway (SSP) greenhouse gas emissions
scenarios were obtained from the MAGICC simple climate
model (Meinshausen et al., 2009, 2011, 2020). These annual
time series extended from 1765 to 2150 and are anomalies
with respect to 1765.

MAGICC is a probabilistic reduced complexity model,
which was used to produce hemispherical land and ocean
surface temperature time series for selected Shared Socioe-
conomic Pathways (SSPs Riahi et al., 2017). MAGICC ver-
sion 7.5.1 simulations were constrained using a set of histor-
ical assessed ranges representative of the IPCC ARS assess-
ment with some additional updates (Nicholls et al., 2021)
as part of the Reduced Complexity Model Intercomparison
Project, RCMIP. A similar generation of MAGICC7 was
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used in various other studies, including IPCC AR6 WG1 and
WG3 to assess the warming for a given pathway of emis-
sions or concentrations (Meinshausen et al., 2022). From a-
600 member MAGICC ensemble, the ensemble member with
the median equilibrium climate sensitivity was used in this
study, rather than calculating percentiles across the ensem-
ble. This was done to ensure that the results were internally
consistent — such that the hemispherical mean annual mean
surface temperatures were consistent with global mean an-
nual mean surface temperatures.
We use T, and Tgy 1,04 in Sects. 5 and 2.4.

2.4 Regional climate model precipitation simulations

While RCM simulations cannot generate precipitation time
series that are unbiased with respect to historical observa-
tions and are seldom available at an hourly resolution, they
do provide a means of quantifying the non-stationarity in pre-
cipitation, especially if observational records are too short
to reliably extract the secular climate signal. These RCM
simulations can provide a useful validation standard for a
non-stationary SPG. To this end we obtained RCM simula-
tions for the New Zealand region from the weather@home
project (Massey et al., 2015; Black et al., 2016; Rosier et al.,
2015). The weather@home project provides ensembles with
many thousands of members, permitting the calculation of
statistics with a high degree of confidence, even in the ex-
tremes. The resolution of these weather@home simulations
was 0.44°, and the closest land-based grid cell was selected
for each of the stations. Selecting a single weather@home
grid cell may not be best practice when using the precipita-
tion data directly as single grid cells may not be represen-
tative of the location due to, for example, inadequately re-
solved topography or due to the inability of a climate model
to represent weather at this scale. In this study, however,
the raw precipitation data are not used but rather the sen-
sitivities of precipitation to a climate covariate (in this case
TS’Hfland); the field of such sensitivities is expected to be less
spatially variable than the precipitation field itself. Whether
a single cell or several neighbouring cells should be used to
best quantify the sensitivity of precipitation to T¢,; ., fora
given location is beyond the scope of this analysis but will be
a focus of future work.

Three HAPPI (Half a degree Additional warming, Prog-
nosis and Projected Impacts; see https://www.happimip.org/,
last access: 4 July 2023) ensembles were used, represent-
ing climate states of 1.5, 2.0, and 3.0 K above pre-industrial
global mean surface temperatures. There were approximately
2500 members for each ensemble, each 20 months long, of
which we selected the last 12 months. In total, this provided
approximately 7500 years of daily precipitation data for each
location.

The T(,,, Values were converted to T¢y .. using the
MAGICC simulations (see Sect. 2.3). The mean of all Tél obal
entries was found across all scenarios (RCP2.6, RCP4.5,
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Table 5. The annual mean global mean temperature anomalies as-
sociated with each HAPPI simulation, their Southern Hemisphere
land temperature anomaly equivalents, and the number of members
in each HAPPI ensemble.

Téiobal  TSH_lana  Number of ensemble members
15K 1.728K 2543
2.0K 2.277K 2496
3.0K 3.384K 2549

RCP6.0, RCP8.5, SSP119, SSP126, SSP245, SSP370,
SSP434, SSP460, SSP585) and for each year from 1765 to
2150. The mean of all TS/H—land entries was also found across
all scenarios and for each year. The 1.5, 2.0, and 3.0K T/, , .
values were interpolated to TS’Hf]and values; see Table 5.
We then use these TS/Hfland values in Sect. 5, when using
weather@home.

3 Model description

Both the hourly and daily SPG use the same neural network
and were assessed in a similar manner. The key differences
between SPGs were the number of inputs to the neural net-
work. Using a neural network allows for a simpler imple-
mentation, as seasonality and autocorrelation can be learnt
without the need to explicitly account for them. In Sect. 3.6
we compare the neural network to a linear model.

3.1 Input features

For every hourly or daily observation in the data sets, several
features were calculated to serve as predictors for the neu-
ral network. These features were selected, in part, through a
process of trial and error to identify a parsimonious set of fea-
tures that would provide robust predictability of the precipi-
tation in the next time interval. Results from simpler network
architectures informed our choice of the final set of predic-
tors selected. The time span selected for specific features was
based, in part, on the level of autocorrelation calculated from
the precipitation time series; for example, it was found that
there was little autocorrelation beyond 8d (see Figs. 5 and
6). It is very likely that the set of features finally selected is
not the optimal set of features, suggesting scope for future
work to explore a far wider range of possible features. The
features selected were combined with the observed precipi-
tation for the period, effectively giving (X, y) training pairs,
where X was a vector of features and y the observed precip-
itation amount for the period.

3.1.1 Daily features

The following 10 features were calculated for every day of
daily observations in each station data set:

https://doi.org/10.5194/gmd-16-3785-2023
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— average precipitation in the prior 1, 2, 4, and 8 d;

— average proportion of days with precipitation above a
threshold (1 mmd~") in the previous 1, 2, 4, and 8 d;

— an annual cycle of variable phase, expressed as sine and
cosine terms.

3.1.2 Hourly features

The following 16 features were calculated for every hour of
hourly observations in each station data set:

— average precipitation in the prior 1, 3, 8, 24, 48, and
144 h;

— average proportion of hours with rain above a threshold
0.1 mmh_l) over 1, 3, 8, 24, 48, and 144 h;

— an annual cycle and diurnal cycle, each expressed as a
pair of sine and cosine terms.

3.1.3 Preprocessing features

The features were normalized by subtracting their mean and
scaling by their standard deviation before they were fed as
input to the neural network. If any of the prior days or hours
were missing, this data point was removed from the training
data set.

While the precipitation data, y, were scaled by the stan-
dard deviation, the mean was not subtracted as we wanted to
ensure the precipitation remained positive. This scaling was
reversed when producing a synthetic precipitation value (see
Sect. 3.5).

3.2 Neural-network structure

Artificial neural networks (Krose and van der Smagt, 1996)
typically comprise may thousands of neurons, each of which
calculates a weighted sum of all their inputs which is then
transformed using an activation function. The neurons are
arranged into layers: an input layer (with the number of neu-
rons equal to the number of inputs), a number of intermediate
— known as “hidden” — layers, and a final output layer (with
the number of neurons equal to the number of desired out-
puts).

The neural networks underlying the SPGs took the features
(described in Sect. 3.1) as inputs. The outputs of the network
were used to specify parameters of precipitation distribution
functions (described in Sect. 3.3). Several architectures of in-
creasing complexity were developed and tested until a some-
what arbitrarily defined performance target was achieved. A
full exploration of all possible architectural choices and their
associated parameter spaces was not performed; there may
well be superior architectures to that presented here. The re-
sults presented here indicate one possible approach, and we
encourage the community to explore alternative and superior
architectures.
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Figure 1. The neural-network architecture used in the daily and
hourly SPGs. The inset on the right shows the detail of each of the
three primary blocks shown on the left. Note that only the first block
includes the fully connected layer on the identity path (downward
arrow to the left of the block).

The final architecture is described in Fig. 1.

This architecture is based on that used in the construction
of transformers (Wolf et al., 2020) but excluding the self-
attention components. The internal structure of the network
comprises three repeating blocks followed by a fully con-
nected layer. The three hidden layers (“blocks” in Fig. 1) are
each 256 neurons wide. The input received by each block
immediately bifurcates along two different paths. The first,
hereafter the identity path, passes the input directly to a
ResNet (see below), while the second passes the data to a
sandwich of a fully connected layer, a GELU activation func-
tion (Hendrycks and Gimpel, 2016), and then another fully
connected layer. The output of this sandwich is multiplied by
a very small weight, close to zero, and similar to the ReZero
technique introduced by Bachlechner et al. (2021). This mul-
tiplication ensures that after the initialization, the interme-
diate layers of the neural network essentially just replicate
their input, reducing the signal-to-noise ratio and aiding con-
vergence. The output from the multiplication is combined
with the identity path via a ResNet (shown with the + sign
in Fig. 1). ResNets, known as residual neural networks, are
typically arranged in blocks, where the input to a block is
added back to the output of a block, giving an alternative
path (the identity path) for gradients to flow and forcing the
neural-network block to learn a residual on top of the input.
Because they are easier to optimize and allow the training of
deeper neural networks, ResNets are widely used within deep
learning. The output from the ResNet feeds another GELU
activation, and then finally layer normalization is performed.

Geosci. Model Dev., 16, 3785-3808, 2023
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Layer normalization is a technique used to normalize the ac-
tivations of intermediate layers (Ba et al., 2016) which helps
stabilize the learning process and performs some regulation.
As the dimensionality of the input was not 256 (it was be-
tween 10 and 17; see Sects. 3.1 and 5), an extra fully con-
nected layer was inserted on the identity path of the network
to increase the dimensionality to 256. This ensures dimen-
sional compatibility at the concatenation stage (4 sign in
Fig. 1) in the first block. The neural network outputs a collec-
tion of real numbers; in Sect. 3.3 we discuss how these num-
bers are used to model precipitation. The neural networks
underlying the SPGs were implemented using the machine-
learning libraries JAX (Bradbury et al., 2018) and Flax (Heek
et al., 2020). Each neural network comprises approximately
200 000 parameters, although the actual number of parame-
ters differs slightly across SPG simulations, depending on the
number of input features and the number of output values.

3.3 Neural-network outputs: precipitation distribution

For each period (either daily or hourly), the precipitation is
simulated in two stages. The first stage selects whether pre-
cipitation occurs. Then, in the second stage, if precipitation
did occur, the depth of precipitation is determined. The out-
puts from the neural network are used as parameters for both
stages.

The first two network outputs (pg and py,) are used as
parameters to model the probability of precipitation occur-
rence. Softmax, also known as the normalized exponential
function, was applied to these first two parameters to ensure
they represented probabilities (and always summed to 1, thus
pw = 1 — pq). The first parameter, pq, represents the proba-
bility that the period was dry, and the second parameter, py,
represented the probability of a wet period.

If precipitation occurred, another distribution was used to
model the depth of the precipitation. Katz (1977) previously
employed a gamma distribution to model precipitation. We
found that a mixture of two gamma distributions and two
generalized Pareto distributions provided a superior fit as this
combination avoided overfitting while still appropriately cap-
turing the likelihood of extreme precipitation. This is not the
case when using a single gamma distribution which signifi-
cantly underestimates extreme precipitation. Other mixtures
of distributions, including Weibell distributions, were tested.
Mixtures incorporating Weibell distributions tended to gener-
ate excessively large extreme precipitation (unbounded) val-
ues and so were discarded; minimizing the loss was not the
only factor used to select the optimal mix of distributions.

Some parameters learned by the model such as the scale
and shape parameter of the gamma distributions are required
to be positive. To ensure such constraints, they were passed
through elu(x)+1, where elu(x) is the exponential linear unit
function (Clevert et al., 2015). For the generalized Pareto dis-
tribution, the location parameter was set to zero, and both the
shape and scale were forced to be positive. While the shape
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can conceivably be negative for a generalized Pareto distri-
bution, allowing it to be negative led to training instabilities.
This resulted in two parameters being used for each of the
four distributions, with a further four parameters being used
to weight the distributions within the mixture, for a total of 12
parameters used to model the amount of precipitation. Again,
we applied softmax to the weightings of the mixture model
to ensure they summed to one.

Equation (1) shows the log probability density function
used within the loss function (Sect. 3.4). The probability of
a dry period (either day or hour) is given by pq, and py, is
the probability of a wet period, while r is the rain period
threshold, i.e. the threshold under which the period is consid-
ered dry. The rain period threshold was set to 1.0 mmd~! for
the daily data set and 0.1 mmh~! for the hourly data set. A
threshold of 0.1 mmd~—! for the daily data was found to lead
to poor performance in the precipitation extremes. The vari-
able y is the precipitation from the training data set, P; is the
probability density function of distribution i in the mixture
model, and w; is the weighting of the corresponding compo-
nent in the mixture model. In this case, n is set to four, as
there are four distributions in the mixture model. For each
distribution in the mixture, y —r + € is passed to the cor-
responding probability density function. Each distribution is
designed to model positive values. We add r back to the pre-
cipitation depth when sampling (see Sect. 3.5), and we set €
to 108 for numerical stability.

In(pg) ify<r

n(p) + (S (i Pi(y —r +€) ifym=r ()

log_pdf(y) = {
3.4 Training

A single station’s observed precipitation data were used in
every training run. In training the daily SPG, the last 1000
entries (not quite 3 years) were kept aside for validation. In
training the hourly SPG, the last 10 000 entries (slightly more
than a year) were used for validation. A one-step-ahead pre-
diction over the last 1000 or 10 000 observations was used to
calculate the validation loss. The remainder of the data were
used for training. The batch size was set to 256, and therefore
256 samples from the training data set were evaluated every
training step. The mean negative log-likelihood (the negative
mean of Eq. 1 across a batch) was used as the training loss
function, and the model was trained for up to 40 epochs. Al-
though minimizing the negative log-likelihood is equivalent
to maximizing the likelihood, using the log-likelihood results
avoids numerical underflow when dealing with small proba-
bilities as it requires a summation as opposed to a product.
The training process can be thought of as the neural network
trying to produce the parameters for Eq. (1) that maximize
the probability of observing the precipitation in the training
data sets given the corresponding features (Sect. 3.1).

The neural network was optimized using Lookahead
(Zhang et al., 2019), with AdamW (Loshchilov and Hutter,
2017) as the inner optimizers, a weight decay of 0.01, b1 of
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Figure 2. (a) Mean validation loss for the daily SPG, (b) mean training loss for the daily SPG, (¢) mean validation loss for the hourly SPG,
and (d) mean training loss for the hourly SPG. All SPGs were trained for Auckland. The mean of five training runs are shown with 95 %
confidence intervals displayed as shading; the confidence intervals are not always visible as the uncertainties are very small.

0.9, and b2 of 0.999. Lookahead was configured with a slow
weight step of 0.5 and a synchronization period of five steps.
A cosine learning rate scheduler was used, with a maximum
learning rate of 1073 and a minimum learning rate of 10~7,
with a warm-up from 107 to 1073 for the first 300 training
steps. The maximum number of decay training steps, after
which the learning rate would stay at the minimum, was set
to 5000 for training the daily SPG and 50000 for training
the hourly SPG. We used the implementation from the Optax
library (Hessel et al., 2020) to configure our optimizer.

3.5 Generating precipitation time series

To validate the SPGs through comparisons with the observed
station data, precipitation series were generated by the SPGs
over the same time range as the historical data set but without
any gaps. To initiate the simulation, the first 8 d of precipita-
tion for the daily SPG or the first 144 h for the hourly SPG
were extracted from the observations. These were used to
calculate the inputs for the neural network (as per Sect. 3.1),
which then iteratively generates the next day or hour of pre-
cipitation. This next data point is then appended to the pre-
cipitation series. The extended time series is then used to cal-
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culate the input features for the next hour or day, in a sliding
window manner.

Recall that the neural network generates 14 parameters
which are then used to generate the precipitation distribu-
tion (Eq. 2). To generate a precipitation time series, we sam-
ple from this distribution using two random uniform num-
bers, u; and uy. u; is used to sample from the dry-day part
of the distribution. If u; is smaller than pq (the probability
of a dry day — the first parameter from the neural network),
the precipitation is set to zero. If u1 > pgq, the precipitation
depth is sampled from the mixture using u»; i.e. we sample
from the mixture of size n (in this case four) by summing
the quantile function (also known as the percentage point
function), Q;, at u of each mixture and multiplying it by its
corresponding weight (w; ). The mixture model distributions
were constructed as described in Sect. 3.3. Finally, we add
r back to the precipitation as we had previously subtracted
it, as described in Sect. 3.3. Therefore, the daily SPG does
not produce non-zero precipitation below 1 mmd~!, and the
hourly SPG does not produce non-zero precipitation below
0.lmmh~!.

0 ifu; < pq

. (2)
rY (wi Qi(u)

Ypred = .
P ifu; > pq
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Figure 3. Quantile—quantile plots of simulated precipitation produced by the daily SPG against observed precipitation. Orange points indicate

quartiles.

Table 6. Imposed maximum daily and hourly precipitation for the
given locations, for the daily SPG and hourly SPG, respectively.

City Maximum daily ~Maximum hourly
precipitation precipitation

Auckland 250 mm 80 mm

Tauranga 300 mm 80 mm

Christchurch 180 mm 40 mm

Dunedin 220 mm 40 mm

Very rarely, the SPG produces invalid precipitation values or
precipitation values much too high. We used expert judge-
ment to prescribe upper bounds on the maximum daily and
hourly precipitation accumulations for each location (see Ta-
ble 6). If the accumulated precipitation exceeded the bound
for the given location or if the precipitation was invalid, then
the precipitation was sampled from the mixture model again.

3.6 Neural network versus linear model

A common question that arises when creating a neural-
network-based SWG is whether using a neural network ac-
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tually improves the performance of the model. To investigate
this, the neural network within each of the SPGs was replaced
with a single linear layer, including a bias, with everything
else left the same. Despite replacing the neural network with
a single linear layer akin to multiple linear regression, the
problem is still formulated as a non-linear optimization prob-
lem due to the complex distributions used within the mixture
model. Both the linear and neural-network-based SPG were
trained on the hourly and daily Auckland data sets, with five
different random seeds. The results were then averaged.

The mean validation loss and training loss for the daily and
hourly SPGs using the linear model and the neural-network-
based model are shown in Fig. 2. Given the relatively large
volume of data available for training, the mean validation
loss approached the minimum loss within the first epoch. For
the daily SPG, the neural network achieved a minimum aver-
age validation loss of 0.926, while the linear model achieved
a minimum average validation loss of 0.932, showing the
superior performance of the neural-network-based SPG. For
the hourly SPG, the neural network achieved a loss of 0.369
while the linear model achieved a loss of 0.378, again show-
ing the superior performance of the neural-network-based
SPG. The neural network also converges much faster than the

https://doi.org/10.5194/gmd-16-3785-2023
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Figure 4. Quantile—quantile plots of simulated precipitation produced by the hourly SPG against observed precipitation. Orange points

indicate quartiles; these are generally too close to zero to distinguish.

linear model. The mean negative log-likelihood minimizes
within the first few epochs (generally before or at epoch 6
for the daily SPG and epoch 10 for the hourly SPG — de-
pending on which of the five ensemble members are con-
sidered). Thereafter, the neural network begins to slightly
overfit, indicated by the validation loss starting to increase
while the training loss continues to decrease. It is therefore
important to employ early stopping when training the neural
network. Hereafter, we report only results generated by the
neural-network-based SPGs.

4 Stationary SPG quality assessment
4.1 Quantile-quantile comparisons

Quantile—quantile (QQ) plots of SPG-simulated precipitation
against station-observed precipitation provide a measure of
any biases in the magnitude of the precipitation simulated
by the SPG. Ideally, points on the QQ plot should lie on the
y = x line but due to the stochastic nature of the SPGs; some
deviation from this line is to be expected. QQ plots for the
four sites are shown in Fig. 3 for the daily resolution SPG and
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in Fig. 4 for the hourly resolution SPG. For most days, there
is no precipitation — for the cities studied, on average, it is dry
(less than 1.0mmd~") 68 % of the time. For hourly precipi-
tation, it is dry (less than 0.1 mm h~1) 96.9 % of the time. As
a result, the 25th percentile and 50th percentile (equivalent to
the median) are usually zero as shown by the orange dots in
Figs. 3 and 4.

The QQ plots in Figs. 3 and 4 show that the SPGs approx-
imate very well the original distributions of precipitation in-
tensity. The daily SPG overestimates the extremely high pre-
cipitation (> 50 mm d_l) values over Auckland, Tauranga,
and Christchurch by 10 % 14 % but shows little, if any, bias
for Dunedin. For the hourly SPG, at all four sites, there is no
significant bias against the observations.

For both the daily and hourly SPG, it is clear that precip-
itation depths outside the range of the training data can be
simulated.

4.2 Autocorrelation

While the QQ plots are useful for assessing the extent to
which the SPGs can simulate the correct distribution of pre-
cipitation intensity, they are agnostic to the sequence of the

Geosci. Model Dev., 16, 3785-3808, 2023
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Figure 5. Autocorrelation plots for precipitation simulated by the daily SPG and for observed precipitation.

precipitation and provide no assessment as to whether the ca-
dence of precipitation is simulated correctly. To that end, we
first consider the extent to which the SPGs can simulate the
autocorrelation observed in the precipitation time series. Cor-
relation coefficients for the daily SPG for all fours sites for
a range of lags (in days) are shown in Fig. 5. The equivalent
coefficients for the hourly SPG are shown in Fig. 6.

In general, the daily SPG does an excellent job in replicat-
ing the observed autocorrelation and slightly underestimates
the autocorrelation in the hourly SPG. At Auckland, the daily
precipitation observations show low but non-zero levels of
autocorrelation all the way out to about 70-80 d lag (Fig. 5a).
This is likely caused by the strong seasonality in precipita-
tion seen in Auckland (Sect. 5.4). The daily SPG appears to
simulate well that structure in the autocorrelation.

4.3 Dry-spell duration and cadence

Another precipitation cadence attribute which is important
for the SPGs to simulate correctly is the dry-spell length,
i.e. the number of consecutive days where precipitation is
less than 1.0mmd~"!. This is essential if the SPG is to be
used to simulate drought conditions for any location. To that
end, Fig. 7 shows QQ plots of dry-spell length for all four lo-
cations. The daily SPG shows an excellent ability to simulate
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correctly the frequency of dry-spell lengths at all four loca-
tions. The deviations from 1 : 1 correspondence at the longer
dry-spell lengths (the rightmost few data points of the 10000
data points describing the quantiles) most likely result from
the stochastic nature of the SPGs. This suggests that this SPG
could form the basis for drought-based studies if more vari-
ables describing key drought parameters, such as temperature
and solar radiation, were added.

To produce the dry-spell QQ plots for the hourly SPG
shown in Fig. 8, both the station data and the SPG-simulated
data were first resampled to daily frequency prior to calculat-
ing the dry-spell lengths. The hourly SPG also shows strong
skill in simulating dry-spell lengths with perhaps a small un-
derestimation for Tauranga and overestimations at the very
longest dry-spell lengths for Auckland, Christchurch, and
Dunedin.

4.4 Seasonality

To assess whether the SPGs simulate the seasonality of the
precipitation correctly, dry-day seasonality was calculated
as the proportion of days in a given week of the year that
had less than 1.0mmd~! of precipitation. The dry-hour sea-
sonality was calculated similarly but with a threshold of

https://doi.org/10.5194/gmd-16-3785-2023
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Figure 6. Autocorrelation plots for precipitation simulated by the hourly SPG and for the observed precipitation.

0.1 mmh~"'. We focused on dry-day seasonality, as there was
little seasonality in the wet-day precipitation depths.

Auckland displays the strongest seasonality in dry-day
proportions, and the daily SPG simulates this seasonality ex-
tremely well (see Fig. 9a). The dry-hour proportions from
the observations for Auckland (Fig. 10a) showed a weaker,
more noisy signal compared to the daily observations. This
was likely caused by the far shorter hourly observation period
(around half the number of years). The hourly SPG some-
what underestimates the seasonality in the proportion of dry
hours for Auckland (Fig. 10a).

Tauranga also shows a strong daily seasonal cycle in the
proportion of dry days, which was also excellently simulated
by the daily SPG (Fig. 9b). The hourly SPG captures, to some
extent, the weak seasonal cycle in the proportion of dry hours
in Tauranga.

While neither Christchurch (Fig. 9¢) nor Dunedin (Fig. 9d)
shows strong seasonality, the daily SPG simulates their weak
seasonality well.

Christchurch appears to have a more clear seasonality in
the proportion of dry hours (Fig. 10c) that was simulated well
by the hourly SPG, albeit with a small offset. The hourly SPG
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simulates well the lack of seasonality in Dunedin’s propor-
tion of dry hours, although also with a slight offset (Fig. 10d).

4.5 Statistical summary

We generated a large ensemble of daily and hourly SPG sim-
ulations, totalling over 13 000 years of precipitation data, for
each location. To analyse the extremes for the SPG simula-
tions, and given the large volume of data, we did not need to
fit extreme value distributions but rather simply took annual
block maximum and then calculated precipitation depths
(mmd~! and mmh~") for 10-year and 100-year return peri-
ods directly from quantiles of the block maxima (see Tables 7
and 8). For the observations, however, with a single time se-
ries, it was necessary to fit generalized extreme value (GEV)
distributions to the 1-year block maxima (Coles, 2001). The
90 % confidence intervals were calculated using a paramet-
ric bootstrap. Overall, the daily SPG performs adequately in
simulating the extremes. However, there is some overestima-
tion of the extremes at Auckland and Tauranga. The hourly
SPG accurately reproduces the extremes at all locations, ex-
cept for Auckland, for which there is some overestimation.
The middle and upper-bound estimates for the observations
at Tauranga are very likely too high as a result of the ex-
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Table 7. One-day precipitation extremes for 10- and 100-year return periods, calculated from the daily observations and a large ensemble
from the daily SPG. The 90 % confidence bounds for the observation are shown in square brackets.

10-year return period [mm a1

100-year return period [mm d—1

Dunedin SPG 114.89 193.62
Dunedin observations 103.46 [90.54-121.27] 204.78 [149.64-319.96]
Tauranga SPG 203.49 283.84
Tauranga observations 147.40 [134.83-166.72] 227.25 [187.08-307.10]
Christchurch SPG 103.31 163.86
Christchurch observations  74.43 [67.55-82.92] 134.80 [106.91-177.50]
Auckland SPG 156.88 233.51

Auckland observations

106.27 [97.77-116.25]

179.90 [151.17-224.64]

ceptionally short hourly precipitation record available at this
location (only 24 years of data). All the other locations have
a sufficient volume of data to produce reasonable estimates.

Tables 9 and 10 summarize various other statistics for the
daily and hourly precipitation data, respectively. We used
the same large SPG ensemble as above but apply the same
methodology to both the observations and the SPG simula-
tions when calculating these statistics. The wet proportion
represents the percentage of the year when it is raining on

Geosci. Model Dev., 16, 3785-3808, 2023

any given hour or day. We used a threshold of 1.0mmd~" for
the daily precipitation and 0.1 mmh~! for the hourly precip-
itation. Both the wet proportion and the annual precipitation
were first calculated on an annual basis, the means derived,
and the 90 % confidence intervals calculated. The daily SPG
accurately captures the annual precipitation and wet-day pro-
portion. The standard deviation of annual mean precipitation
was also calculated to understand whether the SPG produced
sufficient year-to-year variability, as the SPG has no intrin-
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Figure 8. Quantile—quantile plots for simulated dry-spell lengths produced by the hourly SPG against observed dry-spell lengths. Orange

points indicate quartiles.

Table 8. One-hour precipitation extremes for 10- and 100-year return periods, calculated from the hourly observations and an hourly ensemble
from the daily SPG. The 90 % confidence bounds for the observation are shown in square brackets.

10-year return period [mm h—1

100-year return period [mm h1

31.56

24.40 [17.20-43.55]
75.49

165.94 [54.10-1010.23]

Dunedin SPG 18.81
Dunedin observations 13.95[12.20-16.93]
Tauranga SPG 51.93
Tauranga observations 48.25 [32.85-85.75]
Christchurch SPG 17.21
Christchurch observations  16.59 [14.18-19.56]
Auckland SPG 37.97

Auckland observations

29.42 [27.14-31.97]

29.69
31.03 [21.15-47.44]
67.60
37.36 [31.55-44.32]

sic input features to capture this variability. Table 9 suggests
that the daily SPG largely captures this variability, with only
small underestimation in Auckland and Tauranga. The hourly
SPG, whose statistics are summarized in Table 10, underes-
timates the variability at all locations. This may be largely
due to the SPG underestimating the annual mean precipita-
tion at all locations, except Tauranga. The poor performance
of the hourly SPG, compared to the daily SPG, on the an-
nual precipitation is likely due to a poor estimate of the wet-
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day proportion. Improving how the hourly SPG estimates the
wet-hour probability is a target for future development of our
SPG.

5 Non-stationary extensions

The SPG described in Sect. 3 and whose results are presented
in Sect. 4 is a stationary SPG, i.e. the statistics of the pre-
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Figure 9. Dry-day proportion (proportion of days in a given calendar week of the year with precipitation less than 1 mm dh against the

week number of the year.

Table 9. Precipitation statistics calculated from the daily observations and a large ensemble from the daily SPG. The 90 % confidence

intervals are given for annual precipitation and wet proportion.

Annual mean precipitation  Annual precipitation =~ Wet proportion ~ Skewness  Kurtosis
[mm yr~ 1 SD [mmyr™— 1 [%]

Dunedin SPG 854.31£2.35 162.54 32.07£0.05 8.37 133.22
Dunedin observations 941.91 £27.08 145.38 35.30+0.68 7.44 103.90
Tauranga SPG 1227.35+3.45 239.27 29.14£0.05 8.85 130.57
Tauranga observations 1298.15 +£42.06 264.51 31.55+£0.60 6.37 66.23
Christchurch SPG 685.46£2.13 148.02 23.12+£0.04 7.94 110.71
Christchurch observations 642.30+£21.47 145.31 23.29+0.44 6.47 68.03
Auckland SPG 1224.97 +£2.86 198.30 36.50 £ 0.05 7.80 110.68
Auckland observations 1238.11+£31.29 232.96 38.13+0.47 5.32 46.21

cipitation that it generates are time invariant. As such, the
SPG is insensitive to climate change and will represent the
mean precipitation climate over the period of data on which
it was trained. The purpose of this section is to describe ex-
tensions to the SPG that make it non-stationary and there-
fore amenable to simulating climate-induced changes to the
statistics of the precipitation.

Daily (and hourly) values of T¢;; .. were obtained by re-
peating the annual value for that year and were fed as an ex-
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tra feature to both the daily and hourly SPGs to create daily
and hourly non-stationary SPGs. This resulted in the daily,
non-stationary SPG having 11 input features and the hourly,
non-stationary SPG having 17 input features (see Sect. 3.1.1
and 3.1.2 for a discussion of the other features). Other than
the addition of the new input futures based on TS/H—land’ the
model architecture and training were the same as for the sta-
tionary SPG.

https://doi.org/10.5194/gmd-16-3785-2023



L. J. Bird et al.: Deep-learning-based SPG 3799
(a) Auckland (b) Tauranga
SPG 0.94

0.96 + Observations =
» 0.94 4 £ 0.92 4
3 3>
g g

0.92 4
z £ 0.90 1
5 0.90 5
s s 0.88 4
5 0.88 1 £
o Q.
o o
& 0.86 - & 0.86

0.84 1 SPG

) 0.84 Observations
0 10 20 30 40 50 0 10 20 30 40 50
Week of year Week of year
(c) Christchurch (d) Dunedin
0.97 A
0.96 - SPG

0.96 Observations
v 0.95 n
5 5 0.94 4
o o
< 0.94 4 <
> >
kel kel
%5 0.93 A 5 0.92 4
s s
£ 0.924 £
8 8
o 0.914 2 0.90 A
o o

0.90 4

SPG
0.89 + Observations 0.88
0 10 20 30 40 50 0 10 20 30 40 50

Week of year

Week of year

Figure 10. Dry-hour proportion (proportion of hours in a given calendar week of the year with precipitation less than 0.1 mm h—1 against

the week number of the year.

Table 10. Precipitation statistics calculated from the hourly observations and a large ensemble from the hourly SPG. The 90 % confidence
intervals are given for annual precipitation and wet proportion.

Annual mean precipitation  Annual precipitation ~ Wet proportion ~ Skewness  Kurtosis
[mmyr—!] SD [mmyr— ] [%]

Dunedin SPG 518.98 +£1.33 92.88 7.22+0.01 16.59 554.48
Dunedin observations 659.51 £28.96 118.08 9.43+0.34 11.21 217.06
Tauranga SPG 1403.89 £+ 3.01 210.67 11.34+0.02 17.12 631.89
Tauranga observations 1281.93 +100.86 274.21 9.38+£0.40 18.03 638.00
Christchurch SPG 442.56 £1.26 88.22 5.61£0.01 16.67 534.10
Christchurch observations 620.18 £28.56 131.08 8.06+0.29 13.01 343.84
Auckland SPG 844.54+1.76 123.22 7.52+0.01 20.19 869.11
Auckland observations 1110.32 +41.80 168.56 11.03+0.31 13.59 305.93

A similar set of validation plots, as for the daily and hourly
stationary SPG, were created for the non-stationary SPGs.
Since there were no substantive differences between the sta-
tionary and non-stationary validation plots, they are not in-

cluded here.

https://doi.org/10.5194/gmd-16-3785-2023

5.1 Assessing the validity of the non-stationarity in
precipitation

To quantify the non-stationarity in precipitation in (i) the
SPG simulations, (ii) the weather@home simulations, and
(iii) the observations, we calculated within each year of
data 100 quantiles of precipitation. These were then anal-
ysed independently for the percentage change in precipita-
tion per 1K change in Tgy | 4. This arose from expec-

Geosci. Model Dev., 16, 3785-3808, 2023
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TS/H—I and for the daily SPG across all four sites over the same period

as the historical observations (orange) together with comparable rates derived from the historical observational record (blue) and from
weather@home simulations provided at daily resolution (green). Shading indicates 95 % confidence intervals (note the smaller uncertainties
resulting from the large ensembles available from weather@home). All three data sets are truncated to precipitation above 1.2 mm -l
Because weather@home simulates many days with extremely low precipitation, i.e. below an observable detection limit, there are fewer

percentiles exceeding 1.2mmd™ L

tations of the application of the Clausius—Clapeyron equa-
tion of a 7% change in atmospheric water vapour loading
for every 1K change in temperature. We recognize that the
same sensitivity cannot be expected for precipitation but that
a similar functional dependence (but with different rates)
may be expected. A comparison of rates extracted from SPG
simulations with rates extracted from observations and/or
RCM simulations comprises our assessment of the validity
of the non-stationarity in precipitation simulated by the SPG.
Where this method was applied to the weather@home RCM
simulations containing many ensemble members, the annual
mean ensemble mean was calculated for each calendar year.
To each of these time series we fitted p(T) = poe’ !, where
p(T) is the precipitation at a Tg; |, value of T'; po is the
expected precipitation when Tg, | . is zero, i.e. in 1765;
and r is the rate of change per kelvin. An example of the
fit of this function to the 75th percentile of precipitation ex-

Geosci. Model Dev., 16, 3785-3808, 2023

tracted from the weather @home simulations for Auckland is
shown in Sect. 5.3 and Fig. 14.

5.2 Quality assessment

The rates described in Sect. 5.1 were calculated across all 100
quantiles for both the daily SPG (see Fig. 11) and the hourly
SPG (Fig. 12). The uncertainties on the traces shown in these
figures as well as Fig. 13 were calculated from uncertainties
on the fit of the p(T) = poe’T equation to the data within
each of the 100 quantiles.

For the daily SPG these are compared with equivalent rates
derived from the observations and from the weather@home
simulations. Because the weather@home simulations pro-
vide output only at daily resolution, for the hourly SPG the
derived rates are compared only with observationally deter-
mined rates in Fig. 12.

https://doi.org/10.5194/gmd-16-3785-2023
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Figure 12. As for Fig. 11 but for the hourly SPG. Results for weather@home are not included as hourly precipitation data were not saved

for the weather @home simulations.

The precipitation sensitivities to gy . -, simulated by the
daily SPG are generally not statistically distinguishable from
those derived from the observational record (although the un-
certainties on both are large). They are, however, often sta-
tistically significantly different from those derived from the
weather @home simulations. There are also significant inter-
site differences: consider Auckland and Tauranga, which
are just 150km apart. Auckland shows large positive pre-
cipitation sensitivities to changes in Tgy_,. . while Tau-
ranga shows large negative sensitivities. At both sites the
sensitivities are quite different from those derived from the
weather @home simulations.

For the hourly SPG (Fig. 12), however, there are statisti-
cally significant differences in the precipitation sensitivities
derived from the observational record and simulated by the
SPG. Unlike the precipitation sensitivities derived from daily
station data, the sensitivities derived from the hourly resolu-
tion observational record are never statistically different from
zero at all four sites. This is perhaps not surprising given the
shorter historical record of hourly station observations com-
pared to daily observations and the likelier noisier hourly pre-

https://doi.org/10.5194/gmd-16-3785-2023

cipitation time series. The SPG, however, simulates statisti-
cally significant precipitation sensitivities at all sites except
Dunedin.

Given the results presented in Figs. 11 and 12 and not-
ing the likely inhomogeneities in the historical precipitation
records, e.g. due to changes in instrumentation and standard
observing practices (Venema et al., 2012; Toreti et al., 2012;
Peterson et al., 1998), and the challenges of splicing together
measurement series from multiple nearby locations to rep-
resent a single site, we conclude that extracting the sensi-
tivity of precipitation to a climate signal such as T¢y | 4
is unlikely to be robust for these four stations. It is beyond
the scope of this work to detect and correct for any inho-
mogeneities in the precipitation observational records before
training the SPGs.

Notwithstanding this conclusion and to further explore the
utility of SPGs trained exclusively on historical records, we
generated 10-member ensembles of simulations based on
projections of gy, ., for several RCP and SSP greenhouse
gas emissions scenarios (RCP2.6, RCP4.5, RCP6.0, RCPS.5,
SSP119, SSP126, SSP245, SSP370, SSP434, SSP460,

Geosci. Model Dev., 16, 3785-3808, 2023
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Figure 13. SPG-derived precipitation rates/sensitivities in percent per kelvin (% K™ 1y for each quantile with daily change (per kelvin) versus
quantiles; 95 % confidence intervals shown as filled areas. Only precipitation quantiles with more than 1.2 mm h~! were plotted. We focus
on the projected changes of the difference range of TS/H—I and- The minimum and maximum historical TS/H—] ang Values are also shown for
each station. These plots demonstrate that the daily, non-stationary SPG does not perform as expected when predicting values into the future
(1.7-6 K). Some temperature values for the station data were just below 0 K because there were years that were cooler than the reference

year, due to temperature fluctuations.

Precipitation at Quantile 0.75
For Auckland in Weather@Home
p_zero: 1.12 mm/day, rate: -10.4% per K

Precipitation (mm/day)

1;75 2.‘00 2.‘25 2;50 Z4I75 3.60 3.‘25
T' SH Land (°C)

Figure 14. The ensemble mean, weather @home precipitation at the
75th percentile in Auckland, and the fit used to extract the sen-
sitivity of precipitation to TS/H—land‘ In this case a sensitivity of

—10.4 % K~ is derived, suggesting that, at this percentile, a drying
in Auckland is expected in the future.

Geosci. Model Dev., 16, 3785-3808, 2023

SSP585) for the period 1980 to 2100. Precipitation sensitiv-
ities derived from these ensembles of projections (Fig. 13)
are not only inconsistent themselves over different ranges of
T$H_1ang» including the historical range sensitivities seen in
Fig. 11 (which is unexpected), but also show significant dif-
ferences from the sensitivities derived from observations.

The results shown in Fig. 13 are for the daily SPG,
but those for the hourly SPG (not shown) are not substan-
tively different. This reinforces that projections using a non-
stationary SPG trained only on historical observations are
unlikely to be reliable. To this end, in Sect. 5.3, we discuss
an alternative approach to incorporating non-stationarity into
both the daily and hourly SPGs.

5.3 Post hoc addition of non-stationarity

Here we consider an approach where, given a time series of
hourly precipitation generated by the stationary SPG, a post
hoc correction is applied to encapsulate non-stationarity in

https://doi.org/10.5194/gmd-16-3785-2023
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Figul;e 15. The pPo values, i.e. the precipitation when TS,H—lzmd is
function of percentile.

such a way that the SPG can be used to simulate expected fu-
ture changes in precipitation. First, the three weather@home
ensembles described in Sect. 2.4 were used to establish a
relationship between precipitation and T¢y; ... The hourly
precipitation time series simulated by the SPG were scaled
to ensure that their correlation to TéH_land was the same as
the correlation between the weather@home time series and
TS/H—land at each location. This scaling, detailed further be-
low, was done independently across percentiles to avoid any
potential biases between the weather @home data and the ob-
served precipitation on which the SPG was trained. Each of
the weather@home ensembles is associated with a specific
TS/H_land value (Table 5), and the mean precipitation within
each ensemble, at each location, was analysed to extract the
sensitivity of the precipitation to 7¢ . . Approximately
900 000 daily precipitation values were available for each site
for each of the three values of TéH_land.

An example of the fit of the equation described in Sect. 5.1
to extract this sensitivity is shown in Fig. 14, noting however
that rather than showing the individual quantile values de-
rived for each year across all ensemble members (noting that
each member contributes a year of data), the ensemble mean
is shown for clarity. In practice such fits are made to many
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zero (1765), derived from the weather@home HAPPI ensembles as a

thousands of values at each TS’H_laml value on the x axis of
Fig. 14, and the uncertainty of that fit is what is shown in
Figs. 11 to 13.

Because weather@home precipitation values below
0.1mmd~! were omitted from this analysis as these were
considered to be dry days, this often resulted in these sensi-
tivities not being available below the 50th percentile.

The po values derived from the equation fits within each
percentile are shown in Fig. 15. Plots for all cities were very
similar in shape. They all showed believable values for the
quantile range, from about 0.1 to about 200 mmd~".

The rates/sensitivities of precipitation to Tgy .. (in
% K1) are plotted for each quantile in Fig. 16. While Auck-
land and Tauranga show drying tendencies for all but the
highest percentiles of precipitation, for Christchurch and
Dunedin the weather@home simulations suggest increases
in precipitation across almost all percentiles with increases
in TS/H—land'

To use the results presented in Fig. 16 to add non-
stationarity to the hourly SPG, the time series generated by
the SPG were first summed to daily time series to ensure tem-
poral resolution alignment with the weather @home simula-
tions. These daily resolution SPG time series were then in-
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Figure 16. The sensitivities of precipitation (rates) to changes in T}
from the weather@home simulations at each of the four cities.

dexed by Ty 1and- TéH_1ang @NOMalies were then calculated
with respect to the period over which the hourly SPG was
trained, hereafter referred to as Ax, based on the assump-
tion the neural network’s output was aligned with the aver-
age Tgy_j.nq Value it saw during training. Each value in any
daily SPG precipitation time series is then also indexed by
its associated quantile. The associated rate for that quantile
(Fig. 16) was then used to calculate a scaling for the precip-
itation as 1 + % = " (27X — " AX \where x; is the
T{y_1ang Mean over the training period and x3 is the Tgy |
value for the specified day in the non-stationary time series.
The application of this scaling to the absolute hourly precipi-
tation generated the non-stationary hourly precipitation. The
utility of this post hoc approach is assessed in Sect. 5.4 be-
low.

5.4 Post hoc addition results

An ensemble of hourly stationary SPG simulations, to which
the post hoc non-stationarity correction described above was
applied, were analysed for their sensitivity to T¢y .. In to-
tal 110 ensembles were generated over the time period from
1980 to 2100, using the stationary hourly SPG for each lo-
cation, which is of course invariant to TS’H_land and there-
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SH—land> 1 percent per kelvin (% K~1) and for each percentile, extracted

fore the year. For each of the RCP and SSP greenhouse
gas emissions scenarios (RCP2.6, RCP4.5, RCP6.0, RCPS.5,
SSP119, SSP126, SSP245, SSP370, SSP434, SSP460,
SSP585), 10 of the ensembles were transformed using the
post hoc non-stationary correction with the corresponding
values of Tgy_ 1.4 from the scenario over the time period
1980 to 2100. These sensitivities of the transformed simula-
tions are compared to those derived from the weather @home
simulations in Fig. 17. The agreement between the sen-
sitivities is very good, though this is not too surprising
given that the post hoc transformations applied to the SPG
hourly precipitation values were themselves derived from the
weather @home simulations as described in Sect. 5.3. The
agreement is not perfect since the multipliers, derived from
daily precipitation, are applied to hourly values. These post
hoc-corrected simulations show similar validation results to
the stationary simulations presented in Sect. 4 (not shown).

6 Discussion and conclusions
We have demonstrated the utility of a deep-neural-network-

based mixture model as the basis for a single-site stochastic
precipitation generator (SPG). Stationary versions of a daily
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Figure 17. Rate of change of precipitation (% K1) by quantile for the post hoc-corrected SPG and the weather@home data set.

and hourly resolution SPG were shown to generate precipi-
tation time series that matched several key attributes derived
from observed precipitation time series including the prob-
ability density of precipitation depth, the seasonal cycle in
precipitation, the auto-correlation in precipitation, and the
dry-period frequency.

Furthermore, it was shown that a neural network is capa-
ble of learning the non-stationarity in the precipitation from
data, provided the climate signal in the data is strong and that
the data are free of any inhomogeneities. Unfortunately, ob-
servational records are unlikely to meet these prerequisites
such that attempting to learn the non-stationarity from obser-
vational records and projecting that non-stationarity outside
of the training domain is likely to lead to unreliable projec-
tions of expected future changes in precipitation. To ame-
liorate such deficiencies in our non-stationary SPGs a post
hoc correction was developed using sensitivities of precipi-
tation to TS/]_Flamd derived from weather@home simulations
(a regional climate model) to create daily and hourly non-
stationary SPGs suitable for projecting expected changes in
precipitation into the future.

https://doi.org/10.5194/gmd-16-3785-2023

While the SPGs presented here are significantly compu-
tationally faster (by many orders of magnitude) than typical
regional climate models (RCMs), they should not be seen as
universal alternatives to climate models — the SPG simula-
tions of expected changes in precipitation over the near fu-
ture (next 2-3 decades) are likely to be robust as the climate
of the next few decades is unlikely to be significantly dif-
ferent from that of the last century on which the SPGs were
trained. Non-linearities in the climate system, absent in the
historical record on which the SPGs were trained, may be
adequately simulated by RCMs which encapsulate much of
our understanding of the physics of the climate system but
are very unlikely to be well simulated by the SPGs since the
SPGs had no opportunity to learn of these non-linearities.
We also emphasize that the SPGs presented here are single-
site SPGs, and simulated precipitation time series from two
nearby sites will lack the temporal correlation observed in re-
ality and simulated by RCMs; i.e. the spatial morphology of
precipitation fields cannot be simulated by these SPGs. That
said, these SPGs have several advantages over RCMs, the
main being their ability to generate very large ensembles of
simulations for a wide range of future greenhouse gas emis-
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sions scenarios, including simulating events that were not
seen in the training data set. This would include many rare
but extreme precipitation events sufficient to describe poten-
tial changes in their frequency or severity with a statistical
robustness that would not be achievable with a small ensem-
ble of RCM simulations. Our intention is to use these SPGs
to simulate hourly precipitation time series with the SPGs,
for the next few decades, with a view to quantifying the im-
pacts of expected changes in the frequency and severity of
extreme precipitation events at selected single sites.

Code availability. The latest version of the code is available on
GitHub, under http://github.com/bodekerscientific/SPG (last ac-
cess: 4 July 2023), and the v1.0 release used within this paper can
be found on Zenodo, https://doi.org/10.5281/zenodo.6801733 (Bird
and Walker, 2022).

Data availability. The station data used to train the SPG are avail-
able from CliFlo, https://cliflo.niwa.co.nz/ (last access: 4 July 2023;
The National Climate Database, 2023); due to licence restrictions
we cannot directly provide these station data. The MAGICC global
and hemispheric annual mean temperature anomalies are located
with the code.
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