Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2899-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2899-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Various ways of using empirical orthogonal functions for climate model evaluation
Rasmus E. Benestad
CORRESPONDING AUTHOR
The Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, Norway
Abdelkader Mezghani
The Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, Norway
Julia Lutz
The Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, Norway
Andreas Dobler
The Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, Norway
Kajsa M. Parding
The Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, Norway
Oskar A. Landgren
The Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, Norway
Related authors
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025, https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Short summary
We present a new method to calculate the chance of heavy downpour and the maximum rainfall expected over a 25-year period. It is designed to analyse global climate models' reproduction of past and future climates. For the Nordic countries, it projects a wetter climate in the future with increased intensity but not necessarily more wet days. The analysis also shows that rainfall intensity is sensitive to future greenhouse gas emissions, while the number of wet days appears to be less affected.
Rasmus E. Benestad
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-176, https://doi.org/10.5194/gmd-2021-176, 2021
Revised manuscript not accepted
Short summary
Short summary
A Norwegian approach for deriving regional climate information through downscaling is presented. It is unique and involves a different set to techniques compared to the wider community but give more robust results. We estimate the statistical properties of daily temperature and precipitation and the results are based on large sets of simulations with global climate models.
Hannah Vickers, Priscilla Mooney, and Oskar Landgren
EGUsphere, https://doi.org/10.5194/egusphere-2025-2099, https://doi.org/10.5194/egusphere-2025-2099, 2025
Short summary
Short summary
Rain-on-snow (ROS) events are becoming a common feature in winter in Svalbard due to climate warming. Understanding how ROS events are changing and how they will change in the coming decades is crucial to minimise their impacts. Using atmospheric reanalyses and climate projections we found contrasting trends between coastal and inland areas, and that the most dramatic future changes in ROS will occur in glaciated areas which will have considerable consequences for Svalbards hydrology.
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025, https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Short summary
We compared hourly and daily extreme precipitation across Norway from HARMONIE Climate models at convection-permitting 3 km (HCLIM3) and 12 km (HCLIM12) resolutions. HCLIM3 more accurately captures the extremes in most regions and seasons (except in summer). Its advantages are more pronounced for hourly extremes than for daily extremes. The results highlight the value of convection-permitting models in improving extreme-precipitation predictions and in helping the local society brace for extreme weather.
Johannes Max Müller, Oskar Andreas Landgren, and Dörthe Handorf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1373, https://doi.org/10.5194/egusphere-2025-1373, 2025
Short summary
Short summary
Weather and climate is determined by large-scale air pressure patterns, which can be grouped into a small number of representative patterns. We use two different statistical methods and data from 20 climate models to detect significant changes in a future scenario of strong warming. We focus on the summer season as this is important for both human activities and natural ecosystems. We find an increase in high pressure above Europe and low pressure above the Arctic ocean.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025, https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Short summary
We present a new method to calculate the chance of heavy downpour and the maximum rainfall expected over a 25-year period. It is designed to analyse global climate models' reproduction of past and future climates. For the Nordic countries, it projects a wetter climate in the future with increased intensity but not necessarily more wet days. The analysis also shows that rainfall intensity is sensitive to future greenhouse gas emissions, while the number of wet days appears to be less affected.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023, https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Short summary
Intensity–duration–frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, for example, for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations, which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
M. Bazlur Rashid, Syed Shahadat Hossain, M. Abdul Mannan, Kajsa M. Parding, Hans Olav Hygen, Rasmus E. Benestad, and Abdelkader Mezghani
Adv. Sci. Res., 18, 99–114, https://doi.org/10.5194/asr-18-99-2021, https://doi.org/10.5194/asr-18-99-2021, 2021
Short summary
Short summary
This study presents estimates of the maximum temperature in Bangladesh for the 21st century for the pre-monsoon season (March–May), the hottest season in Bangladesh. The maximum temperature is important as indicator of the frequency and severity of heatwaves. Several emission scenarios were considered assuming different developments in the emission of greenhouse gases. Results show that there will likely be a heating of at least 1 to 2 degrees Celsius.
Rasmus E. Benestad
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-176, https://doi.org/10.5194/gmd-2021-176, 2021
Revised manuscript not accepted
Short summary
Short summary
A Norwegian approach for deriving regional climate information through downscaling is presented. It is unique and involves a different set to techniques compared to the wider community but give more robust results. We estimate the statistical properties of daily temperature and precipitation and the results are based on large sets of simulations with global climate models.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Cited articles
Ambaum, M. H. P., Hoskins, B. J., and Stephenson, D. B.: Arctic Oscillation or North Atlantic Oscillation?, J. Climate, 14, 3495–3507, https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2, 2001. a
Becker, R. A., Chambers, J. M., and Wilks, A. R.: The new S language: a programming environment for data analysis and graphics, Wadsworth & Brooks/Cole computer science series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, Calif., ISBN 9780534091927, 9780534091934, 053409192X, 0534091938; OCLC Number (WorldCat
Unique Identifier): 17677647, 1988. a
Benestad, R.: Common EOFs for model evaluation, Figshare [data set], https://doi.org/10.6084/M9.FIGSHARE.21641756.V3, 2022. a, b, c, d
Benestad, R.: Common EOFs for evaluation of geophysical data and global climate models, Youtube [video], https://youtu.be/32mtHHAoq6k, last
access: 25 May 2023a. a
Benestad, R.: A brief presentation of common EOFs in R-studio, Youtube [video], https://youtu.be/E01hthVL9pY, last access: 25 May 2023b. a
Benestad, R., Sillmann, J., Thorarinsdottir, T. L., Guttorp, P., Mesquita, M. d. S., Tye, M. R., Uotila, P., Maule, C. F., Thejll, P., Drews, M., and Parding, K. M.: New vigour involving statisticians to overcome ensemble fatigue, Nat. Clim. Change, 7, 697–703, https://doi.org/10.1038/nclimate3393, 2017. a
Benestad, R., Caron, L.-P., Parding, K., Iturbide, M., Gutierrez Llorente, J. M., Mezghani, A., and Doblas-Reyes, F. J.: Using statistical downscaling to assess skill of decadal predictions, Tellus A, 71, 1652882, https://doi.org/10.1080/16000870.2019.1652882, 2019a. a, b
Benestad, R. E.: A comparison between two empirical downscaling strategies, Int. J. Climatol., 21, 1645–1668, dOI 10.1002/joc.703, 2001. a
Benestad, R. E.: clim.pact-V.1.0, KLIMA 04/03, met, P.O. Box 43 Blindern, 0313 Oslo, Norway, https://www.met.no (last access: 25 May 2023), 2003. a
Benestad, R. E.: A Norwegian Approach to Downscaling, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-176, 2021. a, b
Benestad, R. E., Sutton, R. T., Allen, M., and Anderson, D. L. T.: Interaction between Intraseasonal Kelvin waves and Tropical Instability waves in the Tropical Pacific, Geophys. Res. Lett., 28, 2041–2044, https://doi.org/10.1029/2000GL012563, 2001. a
Benestad, R. E., Hanssen-Bauer, I., and Førland, E. J.: Empirically downscaled temperature scenarios for Svalbard, Atmos. Sci. Lett., 3, 71–93, 2002. a
Benestad, R. E., Mezghani, A., and Parding, K. M.: esd V1.0, Zenodo [code], https://doi.org/10.5281/zenodo.29385, 2015. a, b
Benestad, R. E., Parding, K. M., Isaksen, K., and Mezghani, A.: Climate change and projections for the Barents region: what is expected to change and what will stay the same?, Environ. Res. Lett., 11, 054017, https://doi.org/10.1088/1748-9326/11/5/054017, 2016. a, b
Benestad, R. E., van Oort, B., Justino, F., Stordal, F., Parding, K. M., Mezghani, A., Erlandsen, H. B., Sillmann, J., and Pereira-Flores, M. E.: Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures, Adv. Stat. Clim. Meteorol. Oceanogr., 4, 37–52, https://doi.org/10.5194/ascmo-4-37-2018, 2018. a
Benestad, R. E., Parding, K. M., Erlandsen, H. B., and Mezghani, A.: A simple equation to study changes in rainfall statistics, Environ. Res. Lett., 14, 084017, https://doi.org/10.1088/1748-9326/ab2bb2, 2019b. a
Boé, J.: Interdependency in Multimodel Climate Projections: Component Replication and Result Similarity, Geophys. Res. Lett., 45, 2771–2779, https://doi.org/10.1002/2017GL076829, 2018. a
Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., and Phan, H. A.: Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis, IEEE Signal Processing Magazine, 32, 145–163, https://doi.org/10.1109/MSP.2013.2297439, 2015. a
Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the role of natural variability in future North American climate, Nat. Clim. Change, 2, 775–779, https://doi.org/10.1038/nclimate1562, 2012. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P., Debeire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Koldunov, N., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B., Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP, Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, 2020. a, b
Flury, B. N.: Common Principal Components in k Groups, J. Am. Stat. A., 79, 892–898, https://doi.org/10.1080/01621459.1984.10477108, 1984. a
Flury, B. N. and Gautschi, W.: An Algorithm for Simultaneous Orthogonal Transformation of Several Positive Definite Symmetric Matrices to Nearly Diagonal Form, SIAM Journal on Scientific and Statistical Computing, 7, 169–184, https://doi.org/10.1137/0907013, 1986. a, b
Frankignoul, C., Février, S., Sennéchael, N., Verbeek, J., and Braconno, P.: An intercomparison between four tropical ocean models Thermocline variability, Tellus A, 47, 351, https://doi.org/10.3402/tellusa.v47i3.11522, 1995. a
Hannachi, A.: Patterns identification and data mining in weather and climate, Springer, Cham, oCLC: 1328009409, 2022. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Huth, R. and Beranová, R.: How to Recognize a True Mode of Atmospheric Circulation Variability, Earth Space Sci., 8, e2020EA001275, https://doi.org/10.1029/2020EA001275, 2021. a
Joliffe, I. T.: Principal Component Analysis, Springer Series in Statistics, Springer, https://doi.org/10.1007/b98835, 1986. a
Lauer, A., Bock, L., Hassler, B., Schröder, M., and Stengel, M.: Cloud Climatologies from Global Climate Models – A Comparison of CMIP5 and CMIP6 Models with Satellite Data, J. Climate, 36, 1–53, https://doi.org/10.1175/JCLI-D-22-0181.1, 2022. a
Lorenz, E.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963. a
Lorenz, E. N.: Empirical Orthogonal Functions and Statistical Weather Prediction, Sci. rep. 1, Department of Meteorology, MIT, USA, Cambridge, Massachusetts, https://eapsweb.mit.edu/sites/default/files/Empirical_Orthogonal_Functions_1956.pdf (last access: 25 May 2023), 1956.
a
Meehl, G. A., Covey, C., McAvaney, B., Latif, M., and Stouffer, R. J.: Overview of the Coupled Model intercomparison project, B. Am. Meteorol. Soc., 86, 89–93, 2005. a
Navarra, A. and Simoncini, V.: A guide to empirical orthogonal functions for climate data analysis, Springer, Dordrecht, New York, oCLC: ocn462919781, 2010. a
Parding, K. M., Dobler, A., McSweeney, C. F., Landgren, O. A., Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., Räty, O., Viktor, E., El Zohbi, J., Christensen, O. B., and Loukos, H.: GCMeval – An interactive tool for evaluation and selection of climate model ensembles, Climate Services, 18, 100167, https://doi.org/10.1016/j.cliser.2020.100167, 2020. a
Philander, S.: El Niño, La Niña, and the Southern Oscillation, Academic Press, N.Y., ISBN 9780080570983, 1989. a
Phillips, A. S., Deser, C., and Fasullo, J.: Evaluating Modes of Variability in Climate Models, Eos, Transactions American Geophysical Union, 95, 453–455, https://doi.org/10.1002/2014EO490002, 2014. a
Preisendorfer, R. W.: Principal Component Analysis in Meteorology and Oceanology, Elsevier Science Press, Amsterdam, ISBN-10 0444430148,
ISBN-13 978-0444430144, 1988. a
Sanderson, B. M., Knutti, R., and Caldwell, P.: A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble, J. Climate, 28, 5171–5194, https://doi.org/10.1175/JCLI-D-14-00362.1, 2015. a
Sengupta, S. K. and Boyle, J. S.: Statistical Intercomparison of Global Climate Models: A Common Principal Component Approach, Tech. Rep. 13, PCMDI, Lawrence Livermore National Laboratory, California, USA, https://pcmdi.llnl.gov/report/ab13.html (last access: 25 May 2023), 1993. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., Schlund, M., Adeniyi, K., Andela, B., Arnone, E., Berg, P., Caron, L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, C. W., Paçal, A., Pérez-Zanón, N., Predoi, V., Sandstad, M., Sillmann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, J., and Eyring, V.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP, Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021, 2021. a, b
Short summary
A mathematical method known as common EOFs is not widely used within the climate research community, but it offers innovative ways of evaluating climate models. We show how common EOFs can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say that they represent a kind of machine learning (ML) for dealing with big data.
A mathematical method known as common EOFs is not widely used within the climate research...