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Abstract. We present a framework for evaluating multi-
model ensembles based on common empirical orthogonal
functions (common EOFs) that emphasize salient features
connected to spatio-temporal covariance structures embed-
ded in large climate data volumes. This framework enables
the extraction of the most pronounced spatial patterns of co-
herent variability within the joint dataset and provides a set
of weights for each model in terms of the principal com-
ponents which refer to exactly the same set of spatial pat-
terns of covariance. In other words, common EOFs provide
a means for extracting information from large volumes of
data. Moreover, they can provide an objective basis for eval-
uation that can be used to accentuate ensembles more than
traditional methods for evaluation, which tend to focus on
individual models. Our demonstration of the capability of
common EOFs reveals a statistically significant improvement
of the sixth generation of the World Climate Research Pro-
gramme (WCRP) Climate Model Intercomparison Project
(CMIP6) simulations in comparison to the previous genera-
tion (CMIP5) in terms of their ability to reproduce the mean
seasonal cycle in air surface temperature, precipitation, and
mean sea level pressure over the Nordic countries. The lead-
ing common EOF principal component for annually or sea-
sonally aggregated temperature, precipitation, and pressure
statistics suggests that their simulated interannual variability
is generally consistent with that seen in the ERA5 reanalysis.
We also demonstrate how common EOFs can be used to anal-
yse whether CMIP ensembles reproduce the observed histor-
ical trends over the historical period 1959–2021, and the re-
sults suggest that the trend statistics provided by both CMIP5
RCP4.5 and CMIP6 SSP245 are consistent with observed
trends. An interesting finding is also that the leading com-
mon EOF principal component for annually or seasonally ag-

gregated statistics seems to be approximately normally dis-
tributed, which is useful information about the multi-model
ensemble data.

1 Introduction

The question of how to evaluate climate models is often
complicated by large volumes of data. In many cases, it is
the salient information about the meteorological phenomena,
conditions, and states that they are designed to reproduce that
we want to assess rather than details in individual grid boxes
that are subject to surface parameterization and numerical al-
gorithms associated with discrete mathematics, approxima-
tions, and statistical fluctuations. The climate models are ex-
pected to have an intrinsic minimum skilful scale that arises
from discrete mathematics, approximations, and parameteri-
zation (Benestad et al., 2008). Furthermore, they are typically
used to study trends and variability but are not expected to
be directly synchronized or correlated in time with the par-
ticular timing of chaotic meteorological phenomena playing
out in Earth’s climate (Lorenz, 1963), such as the El Niño
Southern Oscillation (Philander, 1989) or volcanic eruptions.
Hence, one approach for evaluating them may relate to the
spatio-temporal covariance structure embedded in the sim-
ulated output. An emphasis on the spatio-temporal covari-
ance can also make use of the redundancy in the data and
reduce the degrees of freedom in the data and hence mini-
mize the required data volume needed for describing the out-
put. Empirical orthogonal functions (henceforth EOFs) rep-
resent a mathematical technique that identifies the spatio-
temporal covariance structure based on linear algebra and
eigenfunctions (Lorenz, 1956; Preisendorfer, 1988; Wilks,
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2006; Navarra and Simoncini, 2010; Joliffe, 1986; Hannachi,
2022). Their function may also be considered to be a way of
reorganizing the information embedded within a data object
X according to the decomposition

X= U3VT , (1)

where information associated with salient covariance struc-
tures is moved to the top of the list. In this case, we dis-
tinguish between the concepts of data (merely a large set
of numbers) and information (what the data represent or its
statistical or mathematical properties). The matrix X con-
tains a joint dataset and is X= [X1,X2, · · ·Xn], and the prin-
cipal components in the matrix denoted by symbol V can
be expressed as V= [V1,V2, · · ·Vn]. The first segments X1
and V1 typically hold data from a reanalysis, and the oth-
ers contain data from climate models. Moreover, the com-
ponents of an EOF analysis have useful mathematical prop-
erties, where UTU= VTV= I is an identity matrix and 3

is a diagonal matrix related to the eigenvalues. The tech-
nique may be regarded as a form of machine learning (ML)
where EOFs are based on eigenfunctions and eigenvectors
for which their mathematical properties simplify the analysis
of the data (Wilks, 2006).

Flury (1984), Flury and Gautschi (1986), Sengupta and
Boyle (1993, 1998), and Barnett (1999) proposed a variant
of EOFs that they described as common empirical orthog-
onal functions (henceforth common EOFs) for model inter-
comparison. The common EOFs are mathematically identi-
cal to ordinary EOFs but involve two or more datasets com-
bined on a common grid along the time axis. Hence, one seg-
ment of the time axis may represent reanalysis data, whereas
another segment may contain climate model data that have
been interpolated onto the same grid as the reanalysis. Keep-
ing track of which time segment represents which dataset
(in this case a reanalysis or a particular climate model) is
essential for common EOFs to make sense. Benestad et al.
(2008) described common EOFs and discussed their appli-
cation in climate research, and common EOFs have been
useful as a framework for empirical–statistical downscaling
(Benestad et al., 2001), motivated by Barnett (1999). Ben-
estad et al. (2017, 2019a) also provided demonstrations of
how common EOFs can be applied to analyse ensembles of
decadal forecasts. However, a general literature search with
Google Scholar, the assessment reports of the Intergovern-
mental Panel on Climate Change (IPCC), and the documen-
tation behind the ESMValTool (Eyring et al., 2020; Weigel
et al., 2021) suggests that common EOFs are not widely used
in the climate research community. The impression of a mod-
est interest in common EOFs was also expressed in Benestad
(2021) and is supported by the following quote from Han-
nachi et al. (2022): “To the best of our knowledge only two
studies considered common EOFs, which go back more than
two decades (Frankignoul et al., 1995; Sengupta and Boyle,
1998), which were based on the original Flury and Gautschi
(1986) (FG86)’s algorithm”. However, we also know of a

few additional cases where common EOFs were employed,
e.g. those cited above, that were overlooked by Hannachi
et al. (2022). A Google Scholar search for “common princi-
pal component analysis” (1680 hits, 1 December 2022) nev-
ertheless suggests that common EOFs are discussed in sci-
entific journals belonging to scientific disciplines other than
climate science, such as statistics, biometrics, biology geol-
ogy, and neuro-computing.

To demonstrate the merit of common EOFs, we present
some examples of how they can be used to evaluate climate
models in the context of large multi-model ensembles of
global climate models (GCMs). One of our objectives was to
evaluate GCM data that are used as predictors for empirical–
statistical downscaling (ESD) over northern Europe, and we
picked this as an example to demonstrate their utility and
merit. While Hannachi et al. (2022) used common EOFs to
compare individual models, we present an approach where
they are used to compare different ensembles, such as CMIP5
RCP4.5 and CMIP6 SSP245, and to assess whether they pro-
vide a statistical representation that has a similar statistical
population (Wilks, 2006, e.g. p. 72) as the reanalysis. In this
case, they provided a framework in which we applied stan-
dard hypothesis testing and statistical tests.

2 Data & method

Hannachi et al. (2022) provide a description of the mathe-
matics behind common EOFs, which is also relevant for our
analysis, but here we present a slightly different approach for
applying common EOFs for the purpose of climate model
evaluation and for assessing different model ensembles. Our
method bears both similarities and differences to previous
applications of common EOFs. In our case, we applied EOFs
to one variable from different sources stacked in the space
direction, as in Barnett (1999), which is similar to a tensor
decomposition where the space–time matrices of the individ-
ual projections are stacked along a third (model) direction
(Cichocki et al., 2015). Our approach with data stacked from
different models along the time direction had a similar func-
tion as a third model dimension because spatio-temporal co-
variance matrices only involve time and space. It is also pos-
sible to stack data along the space axis as the multi-variate
EOFs described in Sanderson et al. (2015), where all monthly
values of any one projection were stacked in the space di-
rection instead of the time direction; however, this is only
meaningful if the data are expected to contain synchronous
temporal variations. Another example of using such mixed-
field EOFs is found in Benestad et al. (2002), who combined
standardized surface air temperature and mean sea level pres-
sure and used EOFs of these combined fields as predictors in
empirical–statistical downscaling. The different CMIP runs
are not expected to be synchronized, as the regional varia-
tions are both pronounced and of a chaotic–stochastic nature.
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We used singular value decomposition (SVD) (Becker
et al., 1988) on a joint data matrix (multiple datasets stacked
along the temporal axis) rather than the step-wise algorithm
for a set of covariance matrices described by Hannachi et al.
(2022). Hence, we obtained identical spatial maps and eigen-
values for all models in the joint data matrix but different sta-
tistical properties (e.g. amplitude and mean) for the different
segments of the principal components that represented dif-
ferent models. Both these variants have been referred to as
common EOFs, and for the lack of a better term, we will use
the term common EOFs for the analytical framework pre-
sented herein. In our case, we used the approach described in
Benestad et al. (2019a), where common EOFs were used to
represent an ensemble of decadal forecasts based on a single
GCM. More specifically, we used common EOFs to illustrate
how well GCMs reproduce the mean annual cycle in terms
of the spatio-temporal covariance structure compared to the
ERA5 reanalysis (Hersbach et al., 2020). We also present an-
other example where we used common EOFs to assess how
well the GCMs simulate the interannual variability in terms
of the annual mean surface air temperature, precipitation, and
mean sea level pressure. A third way of applying EOFs in
model evaluation is as a framework for comparing trends
simulated by different GCMs, where they highlight salient
features in the trend structure. In all these cases, we used
common EOFs to evaluate both CMIP5 (Meehl et al., 2005;
Taylor et al., 2012) and CMIP6 (Eyring et al., 2016) ensem-
bles in a joint analysis. One complication was the varying
number of simulations carried out with one model set-up, as
some GCMs produced numerous simulations in the CMIP
ensembles, whereas others only produced a few. To make
the evaluation as objective as possible, we only selected one
simulation from each GCM, filtering the data based on the
ensemble member label (r1i1p1 for CMIP5, r1i1p1f1 for
CMIP6), using runs that spanned the period 1850–2100, and
only the emission scenarios RCP4.5 and SSP245 (in this
case, we only used data for the period in common with the
ERA5 reanalysis, specifically 1959–2021). We also repeated
the analysis on slightly different spatial domains to assess
the robustness of our results. In this evaluation, we computed
common EOFs for a joint dataset of 35 CMIP5 RCP4.5 runs
and 40 CMIP6 SSP245 runs (75 runs in total for surface air
temperature (TAS), but not all of these were available for
monthly precipitation (PR) and sea level pressure (PSL)). To
cope with the vast amount of data, each model run was rep-
resented in terms of monthly mean seasonal cycle (12 calen-
dar months each) and also annually or seasonally aggregated
statistics (63 spatial maps for each run, 1 for each year in the
period 1959–2021). In this case, the term aggregated statis-
tics refers to the mean estimate for TAS and PSL and the sum
for PR (total precipitation over the year or season).

Common EOFs can be used to evaluate individual GCMs
against the ERA5 reanalysis through the estimation of the
difference in the mean x, standard deviation σ , and lag-1 au-
tocorrelation r1 estimated for the different segments of the

principal components (PCs) representing different datasets
(5.1 in the Supplementary data of Benestad et al., 2016).
Here, we evaluated how well the models are able to repro-
duce the mean seasonal cycle in the TAS, monthly PR totals,
and the mean sea level pressure (PSL) over a region spanning
the Nordic countries (55–72◦ N, 5◦W–45◦ E). We repeated
the same analysis in four other domains to assess the robust-
ness of our results, and those findings can be found in the
Supplement, available from Figshare (Benestad, 2022). The
model performance was gauged by taking the root-mean-
square error (RMSE) of the leading principal component that
accounts for most of the variance, using ERA5 as a refer-
ence. We also applied common EOFs to the annual and sea-
sonal mean TAS, annual and seasonal total PR, and annual
and seasonal mean PSL to diagnose their interannual vari-
ability and how well it was reproduced in the CMIP ensem-
bles. Moreover, we applied the analysis separately to the full
year (January–December) and each of the four seasons: win-
ter (DJF), spring (MAM), summer (JJA), and autumn (SON).
The skill metric of the models’ reproduction of the inter-
annual variation in the said annually or seasonally aggre-
gated statistics involved rank statistics and the assumption
that any rank is equally probable if the weights of the PC rep-
resenting the ERA5 reanalysis belongs to the same statistical
population as the ensemble of GCMs. We used a two-sided
Kolmogorov–Smirnov test (Wilks, 2006) to compare the em-
pirical distribution of the rank statistics against a uniform
distribution representing the case for which all ranks have
the same probability. We also used Monte Carlo simulations
to represent a perfect case as a reference for the rank anal-
ysis of the annual and seasonal means. In these simulations,
we used the same number of years and a statistical sample
with the same size as the ensemble in question and picked a
fixed realization as a surrogate for the reanalysis and the rest
to represent the ensemble. In these Monte Carlo simulations,
the reanalysis and ensemble belonged to the same statistical
population by design.

Finally, we made a data matrix with columns consisting
of spatial maps (the 2D matrix orientation of the data was
reordered into a 1D vector) with linear trend estimates over
1959–2021, with one column for each GCM in the respective
CMIP multi-model ensemble, in addition to a corresponding
map with trend estimates derived from the ERA5 reanalysis.
The EOFs of this joint data matrix were used to assess the
differences in reproducing the main aspects of the historical
trends among the GCMs and reanalysis.

The analysis presented here was carried out using
the R package esd, version 1.10.15 (Benestad et al.,
2015), within the R environment, version 4.2.2 (R Core
Team, 2023). Essential data and R code (an R mark-
down script and its output in PDF format) used for
these computations are available in the Supplement and
as free open-source material from Figshare in order to
enhance the transparency and reproducibility of these re-
sults: https://figshare.com/articles/dataset/Common_EOFs_
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for_model_evaluation/21641756 (last access: 23 May 2023).
The Figshare repository can be cited as Benestad (2022) and
is archived as a combination of the R markdown script, the
PDF file (Supplement for this paper), and a set of R binary
data files stored as separate files for the respective RCP45
and SSP245 scenarios and for the three different parameters
TAS, PR, and PSL. The data files contain 72–75 different
GCM runs in addition to ERA5, and the total data volume
of all these files is 1.9 GB. While the processing of the data
stored in this repository was carried out on powerful Linux
servers and the job for all combinations of seasons and re-
gions took roughly 22 h to complete, the R code provided
was run on a 64 bit HP Elitebook 850 G8 laptop with Ubuntu
18.04.6 LTS with 32 Gb memory.

It is possible to test the common EOF framework for cases
with bad data to see how the results turn out for when the
ensemble does not reproduce the properties of the reference.
In this case, we simulated such a case by replacing the ERA5
TAS with ERA5 PR, keeping the ensemble, as it were (TAS),
so that the reference and ensemble consisted of different
types of variables (Supplement). The mismatch could be seen
in the amplitude of the PCs representing the reference and en-
semble, as well as in the leading EOFs representing a lower
fraction of the variance. The EOFs were dominated by the en-
semble, and in general, it may be necessary to include several
PCs in the evaluation when the leading EOFs do not account
for most of the variance. It is also important to keep in mind
that the PCs’ variance fractions may depend on the spatial
domain covered by the data grid.

2.1 Results

2.1.1 Evaluation of the simulated mean seasonal cycle

Figure 1 presents the leading common EOF for the mean
seasonal cycle in the surface air temperature (TAS) over the
Nordic countries. The spatial map (panel a) shows the struc-
ture of the most dominant covariance pattern of the seasonal
cycle, and the eigenvalues (panel b) suggest that this mode
dominates the seasonal behaviour completely. Both pattern
and eigenvalues were estimated from the joint dataset that in-
volved ERA5, the CMIP5 RCP4.5 ensemble, and the CMIP6
SSP245 ensemble. The spatial patterns (U in Eq. 1 shown in
Fig. 1a) and the eigenvalues (3 in Eq. 1 presented in Fig. 1b)
are common for all models, and only the corresponding prin-
cipal components (PCs, represented by the matrix V in Eq. 1)
in panel c of Fig. 1 show the differences between the re-
analysis and the GCMs from the CMIP5 and CMIP6 en-
sembles. These differences are visible as scattered brown and
green curves. It is important to keep in mind that individual
EOFs may not necessarily be associated with a clear physi-
cal meaning, especially the higher-order ones, as the differ-
ent modes are designed to be orthogonal to each other (Am-
baum et al., 2001; Huth and Beranová, 2021). However, they
are useful mathematical concepts that enable more-efficient

work with large data volumes and make it easier to extract
salient information from data, but sometimes, they may nev-
ertheless provide insights into physical phenomena within
the analysed domain. In our analysis, they ensured a set of
indices for all GCMs which were related to a common co-
variance structure within the joint dataset, and we used them
to evaluate the mean seasonal cycle estimated over the pe-
riod 1959–2021. Our evaluation was based on the root-mean-
square error (RMSE) between the leading PC representing
the corresponding mean seasonal cycle in TAS from ERA5
and the joint set of 75 GCMs from both CMIP5 RCP4.5
(35 members) and CMIP6 SSP245 GCMs (40 members).
The results of this evaluation are presented in Table 1, and
a Wilcoxon rank sum (also known as Mann–Whitney) test
(Wilks, 2006) was applied to the two sets of RMSE scores
representing CMIP5 and CMIP6 respectively. Our results in-
dicated that the CMIP6 simulations had a better score, and
the difference with CMIP5 was statistically significant at the
5 % confidence level. Hence, the CMIP6 models were more
skilful at reproducing the mean seasonal cycle in TAS in the
Nordic region. The difference in skill is also visible in panel
c of Fig. 1, which shows that the curves for CMIP5 (brown)
were less tightly clustered around ERA5 (black) than those
for CMIP6 (green). The leading mode accounted for 96 % of
the variance, which suggests that all GCMs produced a sea-
sonal cycle with a similar spatial covariance structure (panel
a, Fig. 1).

We repeated the evaluation of the climate models’ ability
to reproduce the mean seasonal cycle in PR (Fig. 2 and Ta-
ble 2) and PSL (Fig. 3 and Table 3). The number of available
CMIP results for PR was slightly different to that of TAS at
the time of the analysis, and our ensembles consisted of 33
members from CMIP5 RCP4.5 and 37 from CMIP6 SSP245.
The exact ensemble size was not critical for our demonstra-
tion, as our objective was to demonstrate the utility and merit
of common EOFs for model evaluation. The eigenvalues for
PR indicated that the leading mode accounted for a lower
portion of the variance (71 %) than TAS, which may be due
to variations in their ability to capture the typical spatial pat-
terns in PR associated with different seasons. The greatest
seasonal variations in PR can be seen near the west coast
of Norway (panel a of Fig. 2). The leading mode for PSL,
on the other hand, accounted for 86 % of the variance, and
most GCMs reproduced a mean seasonal cycle that involved
a northwest–southeast PSL gradient. The common EOFs for
PSL were applied to 35 members from CMIP5 RCP4.5 and
37 from CMIP6 SSP245. The RMSE scores for PR and PSL
are reported in Tables 2–3, and a Wilcoxon rank sum test in-
dicated that the CMIP6 simulations constituted an improve-
ment over those from the CMIP5 in terms of reproducing the
mean seasonal cycle using the ERA5 reanalysis as a refer-
ence (statistically significant at the 5 % level).
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Figure 1. Common EOFs which present the covariance structure for model simulations of the annual mean cycle in TAS. Panel (a) presents
the spatial covariance structure of the leading mode, (b) indicates the variance associated with 20 leading modes, and (c) shows the leading
PC for the multi-model ensemble. The black curve represents the ERA5 reanalysis, whereas the red curves represent CMIP5, and the green
curves represent CMIP6.

Table 1. GCMs ranked according to their RMSE score for their TAS mean seasonal cycle common-EOF results. A Wilcoxon rank sum test
with continuity correction data gave W = 533.5, p value= 0.03892 for the alternative hypothesis that the true location shift is less than 0.
See the Supplement for details behind the calculations.

NorESM2-MM.ssp245.r1i1p1f1 0.136 NorESM1-M.rcp45.r1i1p1_1 0.145 TaiESM1.ssp245.r1i1p1f1 0.145
MRI-ESM2-0.ssp245.r1i1p1f1 0.149 AWI-CM-1-1-MR.ssp245.r1i1p1f1 0.153 CNRM-ESM2-1.ssp245.r1i1p1f2 0.153
NorESM1-ME.rcp45.r1i1p1_1 0.154 CNRM-CM6-1-HR.ssp245.r1i1p1f2 0.156 NorESM2-LM.ssp245.r1i1p1f1 0.156
EC-EARTH.rcp45.r1i1p1_1 0.159 CNRM-CM6-1.ssp245.r1i1p1f2 0.161 E3SM-1-1.ssp245.r1i1p1f1 0.161
FIO-ESM-2-0.ssp245.r1i1p1f1 0.163 CESM2-WACCM.ssp245.r1i1p1f1 0.164 EC-Earth3-CC.ssp245.r1i1p1f1 0.165
GISS-E2-1-H.ssp245.r1i1p1f2 0.168 GFDL-CM3.rcp45.r1i1p1_1 0.169 KIOST-ESM.ssp245.r1i1p1f1 0.17
BNU-ESM.rcp45.r1i1p1_1 0.171 GISS-E2-1-G.ssp245.r1i1p1f2 0.172 EC-Earth3-Veg.ssp245.r1i1p1f1 0.173
MCM-UA-1-0.ssp245.r1i1p1f2 0.173 MIROC-ESM-CHEM.rcp45.r1i1p1_1 0.175 MPI-ESM-MR.rcp45.r1i1p1_1 0.176
CAMS-CSM1-0.ssp245.r1i1p1f1 0.176 CESM1-BGC.rcp45.r1i1p1_1 0.18 ACCESS1.3.rcp45.r1i1p1_1 0.185
CESM1-CAM5.rcp45.r1i1p1_1 0.185 GFDL-ESM2G.rcp45.r1i1p1_1 0.185 FGOALS-f3-L.ssp245.r1i1p1f1 0.185
CCSM4.rcp45.r1i1p1_1 0.186 MIROC-ESM.rcp45.r1i1p1_1 0.186 CNRM-CM5.rcp45.r1i1p1_1 0.188
MPI-ESM-LR.rcp45.r1i1p1_1 0.188 ACCESS-ESM1-5.ssp245.r1i1p1f1 0.19 IITM-ESM.ssp245.r1i1p1f1 0.19
ACCESS1-0.rcp45.r1i1p1_1 0.192 EC-Earth3-Veg-LR.ssp245.r1i1p1f1 0.192 FIO-ESM.rcp45.r1i1p1_1 0.193
GISS-E2-H.rcp45.r1i1p1_1 0.193 CIESM.ssp245.r1i1p1f1 0.197 IPSL-CM6A-LR.ssp245.r1i1p1f1 0.197
MIROC-ES2L.ssp245.r1i1p1f2 0.197 GISS-E2-H-CC.rcp45.r1i1p1_1 0.198 CanESM5.ssp245.r1i1p1f1 0.198
UKESM1-0-LL.ssp245.r1i1p1f2 0.198 GISS-E2-R.rcp45.r1i1p1_1 0.199 ACCESS-CM2.ssp245.r1i1p1f1 0.199
EC-Earth3.ssp245.r1i1p1f1 0.199 CMCC-CMS.rcp45.r1i1p1_1 0.2 GISS-E2-R-CC.rcp45.r1i1p1_1 0.2
GFDL-ESM2M.rcp45.r1i1p1_1 0.201 IPSL-CM5A-MR.rcp45.r1i1p1_1 0.201 MPI-ESM1-2-LR.ssp245.r1i1p1f1 0.202
MIROC6.ssp245.r1i1p1f1 0.203 CMCC-CM2-SR5.ssp245.r1i1p1f1 0.206 IPSL-CM5A-LR.rcp45.r1i1p1_1 0.207
MIROC5.rcp45.r1i1p1_1 0.209 FGOALS-g3.ssp245.r1i1p1f1 0.21 INM-CM4-8.ssp245.r1i1p1f1 0.211
MRI-CGCM3.rcp45.r1i1p1_1 0.216 CMCC-ESM2.ssp245.r1i1p1f1 0.216 bcc-csm1-1.rcp45.r1i1p1_1 0.219
HadGEM3-GC31-LL.ssp245.r1i1p1f3 0.22 INM-CM5-0.ssp245.r1i1p1f1 0.221 FGOALS.g2.rcp45_r1 0.227
IPSL-CM5B-LR.rcp45.r1i1p1_1 0.23 NESM3.ssp245.r1i1p1f1 0.232 BCC-CSM2-MR.ssp245.r1i1p1f1 0.234
HadGEM2-CC.rcp45.r1i1p1_1 0.237 HadGEM2-ES.rcp45.r1i1p1_1 0.237 KACE-1-0-G.ssp245.r1i1p1f1 0.237
bcc-csm1-1-m.rcp45.r1i1p1_1 0.243 CSIRO-Mk3-6-0.rcp45.r1i1p1_1 0.271 CanESM2.rcp45.r1i1p1_1 0.278
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Table 2. GCMs ranked according to their RMSE score for their PR mean seasonal cycle common-EOF results. A Wilcoxon rank sum test
with continuity correction data returnedW = 303.5, p value= 0.0001545 for the alternative hypothesis that the true location shift is less than
0.

CNRM-CM6-1-HR.ssp245.r1i1p1f2 0.137 EC-Earth3.ssp245.r1i1p1f1 0.139 EC-Earth3-CC.ssp245.r1i1p1f1 0.142
MRI-ESM2-0.ssp245.r1i1p1f1 0.143 CMCC-ESM2.ssp245.r1i1p1f1 0.144 CMCC-CM2-SR5.ssp245.r1i1p1f1 0.149
EC-Earth3-Veg.ssp245.r1i1p1f1 0.153 EC-Earth3-Veg-LR.ssp245.r1i1p1f1 0.158 EC-EARTH.rcp45.r1i1p1_1 0.164
IPSL-CM6A-LR.ssp245.r1i1p1f1 0.165 CNRM-CM6-1.ssp245.r1i1p1f2 0.166 MPI-ESM-LR.rcp45.r1i1p1_1 0.167
KIOST-ESM.ssp245.r1i1p1f1 0.167 UKESM1-0-LL.ssp245.r1i1p1f2 0.168 AWI-CM-1-1-MR.ssp245.r1i1p1f1 0.17
NorESM2-MM.ssp245.r1i1p1f1 0.17 HadGEM3-GC31-LL.ssp245.r1i1p1f3 0.171 CNRM-ESM2-1.ssp245.r1i1p1f2 0.173
GFDL-ESM2G.rcp45.r1i1p1_1 0.174 MIROC6.ssp245.r1i1p1f1 0.178 MPI-ESM-MR.rcp45.r1i1p1_1 0.179
CESM2-WACCM.ssp245.r1i1p1f1 0.179 MRI-CGCM3.rcp45.r1i1p1_1 0.18 FIO-ESM-2-0.ssp245.r1i1p1f1 0.18
CESM1-BGC.rcp45.r1i1p1_1 0.181 CESM1-CAM5.rcp45.r1i1p1_1 0.181 CMCC-CMS.rcp45.r1i1p1_1 0.181
CIESM.ssp245.r1i1p1f1 0.181 CCSM4.rcp45.r1i1p1_1 0.182 GFDL-CM3.rcp45.r1i1p1_1 0.182
NorESM1-ME.rcp45.r1i1p1_1 0.182 GISS-E2-H-CC.rcp45.r1i1p1_1 0.183 NorESM1-M.rcp45.r1i1p1_1 0.183
INM-CM5-0.ssp245.r1i1p1f1 0.184 NorESM2-LM.ssp245.r1i1p1f1 0.184 MCM-UA-1-0.ssp245.r1i1p1f2 0.185
TaiESM1.ssp245.r1i1p1f1 0.186 GISS-E2-1-G.ssp245.r1i1p1f2 0.187 ACCESS-CM2.ssp245.r1i1p1f1 0.188
MPI-ESM1-2-LR.ssp245.r1i1p1f1 0.188 ACCESS1-0.rcp45.r1i1p1_1 0.189 HadGEM2-ES.rcp45.r1i1p1_1 0.189
BCC-CSM2-MR.ssp245.r1i1p1f1 0.189 CAMS-CSM1-0.ssp245.r1i1p1f1 0.189 E3SM-1-1.ssp245.r1i1p1f1 0.189
NESM3.ssp245.r1i1p1f1 0.19 INM-CM4-8.ssp245.r1i1p1f1 0.191 CNRM-CM5.rcp45.r1i1p1_1 0.192
GISS-E2-R.rcp45.r1i1p1_1 0.192 CanESM5.ssp245.r1i1p1f1 0.192 FGOALS.g2.rcp45_r1 0.193
KACE-1-0-G.ssp245.r1i1p1f1 0.194 bcc-csm1-1-m.rcp45.r1i1p1_1 0.196 HadGEM2-CC.rcp45.r1i1p1_1 0.196
bcc-csm1-1.rcp45.r1i1p1_1 0.197 CSIRO-Mk3-6-0.rcp45.r1i1p1_1 0.199 GFDL-ESM2M.rcp45.r1i1p1_1 0.199
FGOALS-f3-L.ssp245.r1i1p1f1 0.199 GISS-E2-R-CC.rcp45.r1i1p1_1 0.2 MIROC-ESM-CHEM.rcp45.r1i1p1_1 0.201
MIROC-ESM.rcp45.r1i1p1_1 0.202 ACCESS-ESM1-5.ssp245.r1i1p1f1 0.202 MIROC5.rcp45.r1i1p1_1 0.203
ACCESS1.3.rcp45.r1i1p1_1 0.206 MIROC-ES2L.ssp245.r1i1p1f2 0.209 IPSL-CM5A-MR.rcp45.r1i1p1_1 0.212
IPSL-CM5A-LR.rcp45.r1i1p1_1 0.22 CanESM2.rcp45.r1i1p1_1 0.224 FIO-ESM.rcp45.r1i1p1_1 0.232
BNU-ESM.rcp45.r1i1p1_1 0.24

Table 3. GCMs ranked according to their RMSE score for their PSL mean seasonal cycle common-EOF results. A Wilcoxon rank sum test
with continuity correction data gave W = 296, p value = 3.8× 10−5 for the alternative hypothesis that the true location shift is less than 0.

UKESM1-0-LL.ssp245.r1i1p1f2 0.15 EC-Earth3-CC.ssp245.r1i1p1f1 0.152 CNRM-ESM2-1.ssp245.r1i1p1f2 0.153
HadGEM3-GC31-LL.ssp245.r1i1p1f3 0.153 MRI-ESM2-0.ssp245.r1i1p1f1 0.157 CNRM-CM6-1.ssp245.r1i1p1f2 0.158
EC-EARTH.rcp45.r1i1p1_1 0.16 CAMS-CSM1-0.ssp245.r1i1p1f1 0.165 ACCESS-CM2.ssp245.r1i1p1f1 0.171
CNRM-CM6-1-HR.ssp245.r1i1p1f2 0.173 TaiESM1.ssp245.r1i1p1f1 0.173 CESM2-WACCM.ssp245.r1i1p1f1 0.174
EC-Earth3.ssp245.r1i1p1f1 0.174 CNRM-CM5.rcp45.r1i1p1_1 0.175 NorESM2-MM.ssp245.r1i1p1f1 0.175
EC-Earth3-Veg-LR.ssp245.r1i1p1f1 0.176 FIO-ESM-2-0.ssp245.r1i1p1f1 0.178 CMCC-CMS.rcp45.r1i1p1_1 0.179
AWI-CM-1-1-MR.ssp245.r1i1p1f1 0.179 KIOST-ESM.ssp245.r1i1p1f1 0.179 EC-Earth3-Veg.ssp245.r1i1p1f1 0.181
MPI-ESM-MR.rcp45.r1i1p1_1 0.182 BCC-CSM2-MR.ssp245.r1i1p1f1 0.184 CIESM.ssp245.r1i1p1f1 0.184
FGOALS-f3-L.ssp245.r1i1p1f1 0.186 MPI-ESM-LR.rcp45.r1i1p1_1 0.187 ACCESS-ESM1-5.ssp245.r1i1p1f1 0.188
INM-CM4-8.ssp245.r1i1p1f1 0.188 ACCESS1-0.rcp45.r1i1p1_1 0.189 CESM1-CAM5.rcp45.r1i1p1_1 0.189
NorESM1-M.rcp45.r1i1p1_1 0.189 GISS-E2-H-CC.rcp45.r1i1p1_1 0.19 NorESM1-ME.rcp45.r1i1p1_1 0.19
KACE-1-0-G.ssp245.r1i1p1f1 0.19 MIROC-ESM-CHEM.rcp45.r1i1p1_1 0.191 CCSM4.rcp45.r1i1p1_1 0.193
IPSL-CM6A-LR.ssp245.r1i1p1f1 0.193 GFDL-CM3.rcp45.r1i1p1_1 0.194 GISS-E2-H.rcp45.r1i1p1_1 0.194
INM-CM5-0.ssp245.r1i1p1f1 0.196 GISS-E2-1-G.ssp245.r1i1p1f2 0.197 CESM1-BGC.rcp45.r1i1p1_1 0.199
IITM-ESM.ssp245.r1i1p1f1 0.199 GFDL-ESM2G.rcp45.r1i1p1_1 0.2 CanESM5.ssp245.r1i1p1f1 0.2
CMCC-CM2-SR5.ssp245.r1i1p1f1 0.2 NorESM2-LM.ssp245.r1i1p1f1 0.2 IPSL-CM5A-MR.rcp45.r1i1p1_1 0.201
MIROC-ESM.rcp45.r1i1p1_1 0.201 MPI-ESM1-2-LR.ssp245.r1i1p1f1 0.201 CMCC-ESM2.ssp245.r1i1p1f1 0.203
IPSL-CM5A-LR.rcp45.r1i1p1_1 0.204 GISS-E2-R.rcp45.r1i1p1_1 0.207 GISS-E2-R-CC.rcp45.r1i1p1_1 0.209
NESM3.ssp245.r1i1p1f1 0.209 FIO-ESM.rcp45.r1i1p1_1 0.21 GFDL-ESM2M.rcp45.r1i1p1_1 0.21
ACCESS1.3.rcp45.r1i1p1_1 0.212 MIROC6.ssp245.r1i1p1f1 0.212 HadGEM2-CC.rcp45.r1i1p1_1 0.213
BNU-ESM.rcp45.r1i1p1_1 0.215 CSIRO-Mk3-6-0.rcp45.r1i1p1_1 0.216 MIROC5.rcp45.r1i1p1_1 0.217
bcc-csm1-1-m.rcp45.r1i1p1_1 0.218 HadGEM2-ES.rcp45.r1i1p1_1 0.22 MRI-CGCM3.rcp45.r1i1p1_1 0.221
CanESM2.rcp45.r1i1p1_1 0.223 bcc-csm1-1.rcp45.r1i1p1_1 0.233 MCM-UA-1-0.ssp245.r1i1p1f2 0.234
MIROC-ES2L.ssp245.r1i1p1f2 0.235 IPSL-CM5B-LR.rcp45.r1i1p1_1 0.244 FGOALS.g2.rcp45_r1 0.246
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Figure 2. Same as Fig. 1 but for the mean annual cycle in precipitation.

Figure 3. Same as Fig. 1 but for the mean annual cycle in sea level pressure.

2.1.2 Evaluation of the simulated interannual
variability

The results of the evaluation of the interannual variability in
the annual mean TAS are shown in Fig. 4 in terms of the lead-
ing common EOF, with a map of the covariance connected
to its interannual variability (panel a), eigenvalues (panel b),
and time evolution (panel c). One striking observation is that

the leading mode accounted for 65 % of the variance, with
the five leading modes accounting for approximately 90 %,
suggesting that most GCMs reproduced a similar covariance
structure. We used a rank metric R, where the PC weights
for ERA5 were compared with the spread of the CMIP5 and
CMIP6 ensembles in terms of their rank within each year
and each ensemble. For the leading mode of the annual mean
temperature shown in Fig. 4, both the CMIP5 and the CMIP6
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Figure 4. Common EOFs which present the covariance structure for model simulations of the interannual variability in the annual mean
TAS. Panel (a) presents the spatial covariance structure of the leading mode, (b) indicates the variance associated with 20 leading modes, and
(c) shows the leading PC for the multi-model ensemble. The black curve represents the ERA5 reanalysis, whereas the red curves represent
CMIP5 and the green curves CMIP6.

produced ensemble results with a statistical population that
was likely to be consistent with ERA5 data. In both cases, the
two-sided Kolmogorov–Smirnov test indicated a high prob-
ability (p value) of R belonging to a uniform distribution. A
p value close to zero means that the data connected to the part
of the leading PC representing ERA5 most likely belonged
to a different statistical population than the respective CMIP
ensemble (data from different segments of the same leading
PC), whereas a p value near unity implies that ERA5 and the
CMIP ensemble more likely belonged to the same statistical
population. In our analysis, the Kolmogorov–Smirnov test
for CMIP5 returnedD = 0.099206 with a p value of 0.5647,
and the CMIP6 R obtained D = 0.11362 with a p value of
0.3902. Figure 5 provides a visualization of the rank metric
R on a year-by-year basis (panel a), as well as a histogram
of the ranks for the TAS results shown in Fig. 4. It is evi-
dent from these plots that R varies over the whole interval
[0,1] and follows a distribution that is more or less uniform
(flat structure), which we expect for R if each rank is equally
probable. Hence, for the annual mean TAS over the Nordic
regions, both CMIP ensembles provided an approximate rep-
resentation of the interannual variability seen in ERA5 and
connected to the leading mode. A set of Monte Carlo simula-
tions indicated that the ranking scores would fluctuate, even
with ensembles that mimicked perfectly the statistical prop-
erties of the observations, due to the limited sample size.

A corresponding assessment of the leading common EOF
for PR (Fig. 6) indicated similar differences in statistical

terms for both CMIP5 (D = 0.11858, p value= 0.3384) and
CMIP6 (D = 0.13085, p value= 0.2309). The leading com-
mon EOF for annual PR representing variations along the
west coast of Norway only accounted for 27 % of the vari-
ance, but the five leading modes accounted for approximately
60 %, suggesting that interannual variability in precipitation
involves more-complicated anomalies and perhaps greater
model differences. The low variance associated with the
leading modes may suggest that the models produce different
spatio-temporal covariance structures, i.e. that they produce
different typical patterns of rainfall. It is also possible that a
lower fraction of variance represented by the leading mode
is due to smaller-scale spatial structures relative to the do-
main size when it comes to precipitation patterns. Hence, the
common EOFs applied to annual PR revealed a more compli-
cated situation where more than one mode dominates. In this
case, the first five PCs represented the most salient proper-
ties in terms of PR spatio-temporal covariance, representing
more than 60 % of the variance, and the high-order PCs were
associated with negligible variance that typically represents
numeric noise.

Our assessment of how well the GCMs reproduced inter-
annual variations in the annual mean PSL gave similar re-
sults as for TAS and PR. The leading mode was character-
ized by a centre of action over northern Scandinavia and ac-
counted for 62 % of the variance (Fig. 7). The second and
third modes were less important, but the fact that they had
similar eigenvalues (16 %) suggests that they were degener-

Geosci. Model Dev., 16, 2899–2913, 2023 https://doi.org/10.5194/gmd-16-2899-2023



R. E. Benestad et al.: Common empirical orthogonal functions and model evaluation 2907

Figure 5. Rank statistics R for the case presented in Fig. 4, where
panel (a) shows the rank of ERA5 results within the multi-model
ensemble spread on a year-to-year basis, whereas panel (b) shows
histograms of the rank statistics together with results from Monte
Carlo simulations of perfect cases (the y axis shows frequency, and
the x axis shows the range of rank categories). Red marks CMIP5,
whereas blue marks CMIP6. The Kolmogorov–Smirnov statistic D
for CMIP5 was D = 0.099206, with a p value of 0.5647, and the
CMIP6 R obtained D = 0.11362 with a p value of 0.3902.

ate, which refers to the two patterns being two aspects of
the same mode (Wilks, 2006, p. 488). For PSL, R was close
to having a uniform distribution, and the test did not indi-
cate a difference that was statistically significant at the 5 %
level for either CMIP5 (D = 0.13492, p value= 0.2016) or
CMIP6 (D = 0.14329, p value= 0.1504). In other words,
both CMIP5 and CMIP6 seemed to roughly reproduce the
annual mean circulation patterns over the Nordic region seen
in the ERA5 data represented by the leading mode. The three
leading modes accounted for approximately 94 % of the vari-
ance, suggesting that the GCMs reproduced a similar covari-
ance structure, albeit with slight variations.

We examined the nature of the multi-model ensemble dis-
tribution of the data of the leading PC for the annual ag-

gregated statistics for the year 2022 and found them to be
approximately normally distributed (Fig. 8) for most cases,
both when it came to annual and seasonal timescales and
for both CMIP5 RCP4.5 and CMIP6 SSP245. Only in a few
cases did the data deviate substantially from the diagonal in
the Q–Q plot, such as for the annual mean TAS (Fig. 8b),
but this was not the typical outcome (Supplement, Benestad,
2022).

2.1.3 Evaluation of the simulated historic trends

Figure 9 shows common EOFs that have been used to com-
pare 1959–2021 trend maps from CMIP5 RCP4.5 (red curve
in panel c) and CMIP6 SSP245 (blue curve in panel c) with
ERA5 (black symbol), in this case over the Barents Sea re-
gion. Each ensemble member was represented by only one
weight in the leading PC. The leading mode accounted for
94 % of the variance, suggesting that all models reproduced
patterns with the strongest response in the northeast and the
weakest response in the southwest, albeit with different am-
plitudes. The CMIP6 SSP245 (blue curve) indicated stronger
variability between models than the CMIP5 RCP4.5 (red
curve), suggesting a wider range of outcomes for the for-
mer and that the CMIP6 ensemble contained some more ex-
treme models. It is nevertheless evident that the spread in
both CMIP5 and CMIP6 embraced the results obtained with
ERA5.

2.1.4 Assessment of robustness

The analyses of the mean seasonal cycle, the interannual
variability, and historic trends were repeated for the said ag-
gregated statistics for each of the winter, spring, summer
and autumn seasons (Supplement), as one motivation be-
hind this evaluation was to assess typical predictors used
in empirical–statistical downscaling, which mainly involves
seasonally aggregated statistics. We obtained similar results
for the four different seasons (winter, spring, summer, and
autumn). Moreover, the spatial domain (region) was chosen
for the benefit of assessing the models before using them as
input in downscaling exercises. The use of common EOFs as
a framework for downscaling also provides a quality assess-
ment (Benestad, 2001; Benestad et al., 2016), but extending
them to larger multi-model ensembles provides a more com-
prehensive assessment of the entire ensemble. The repeated
analysis for different spatial domains gave similar conclu-
sions as those presented here for the 55–72◦ N, 5◦W–45◦ E
domain and the Barents Sea region.

2.2 Discussion

Linear algebra, eigenfunctions, and EOFs are well-
established and versatile mathematical concepts, but we ar-
gue that there are still innovative ways of applying them in
data analysis. In these demonstrations, they provided the ba-
sis for a framework, referred to as common EOFs, that en-
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Figure 6. Same as Fig. 4 but for the annual mean precipitation PR.

Figure 7. Same as Fig. 4 but for the annual mean PSL.

abled simple data comparisons, with an emphasis on the most
salient features in the data. It is, in general, possible that the
reference does not fall inside the ensemble spread for indi-
vidual PCs, for which common EOFs would give low frac-
tional variances for the leading modes and different ampli-
tudes in the PCs. In a way, one could refer to the applica-
tion of common EOFs as a kind of machine learning (ML)

approach to big data, characterized by large data volumes,
diverse sources, and speedy analysis.

Our demonstrations revealed a spread in the CMIP GCM
ensembles that appeared to be consistent with the ERA5 in-
terannual variability and a spread that was often close to be-
ing normally distributed. The different ensemble members
were independent of each other and could be considered to
be random in terms of their phase and timing, making the
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Figure 8. Normal Q–Q Plots for CMIP5 RCP4.5 (a, c) and CMIP6 SSP245 (b, d) and for annual mean TAS (a, b) and winter mean TAS (c,
d), showing variations in the nature of the ensemble distribution. The more pronounced deviation from a normal distribution for annual mean
CMIP6 TAS in panel (b) was untypical for these results. Each data point represents the leading PC weight for 2021 for one GCM, i.e. the
end points of the time series in the panel c of Figs. 4, 6, and 7.

ensemble suitable for representing the non-deterministic nat-
ural variability. From a physical point of view, we know that
these models reproduce chaotic and stochastic variability on
decadal scales, and this is especially apparent if the ensemble
is made up of simulations with one common model (Deser
et al., 2012). For multi-model ensembles, there is also the
additional component in terms of model differences. In one
respect, we should indeed expect a strong interdependence
between climate models, since they are built to represent the
same physical system, but what we really desire is that the
aspects that are not well-established and uncertain should in-
volve different choices or methods so that they also provide
a decent sample of the parameter space of unknowns. But
in practice, different groups often copy others’ attempts so
that model uncertainties are not so well sampled (Boé, 2018).
Nevertheless, the simulated stochastic–chaotic regional in-

ternal variability appears to be more pronounced, as both the
time series in Figs. 4–7 seem to indicate, so these concerns
are secondary in this case.

The independence between each model’s representation of
random variability, together with the ensemble spread being
approximately normal, suggests that the salient information
about future projections can be summarized by the follow-
ing two parameters: the ensemble mean µe and the ensemble
standard deviation σe. They can provide an estimate of a con-
fidence interval µe± 2σe, and if the ensemble spread is ap-
proximately normally distributed, we can use them to project
a PDF ∼N (µe,σ

2
e ) for future aggregated TAS, PR, or PSL

statistics on an annual or seasonal basis. This illustrates the
difference between data and information, where the collec-
tion of time series for all ensemble members constitutes the
data of the ensemble, whereas µe±2σe provides information
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Figure 9. Common EOFs which present the covariance structure for model simulations of trend maps in the annual mean TAS.
Panel (a) presents the spatial covariance structure of the leading mode; (b) indicates the variance associated with 20 leading modes; and
(c) shows the leading PC, where each weight represents a different member of the multi-model ensemble. The black symbols represent the
ERA5 reanalysis, whereas red and blue curves mark CMIP5 and CMIP6 weights respectively. The units are dimensionless in (a) and (c), as
the final numbers are a product of the eigenpattern, eigenvalue, and PC according to Eq. (1). The units of panel (b) are %.

about the ensemble. Hence, users of regional climate pro-
jections may not necessarily need to adapt their analysis to
many individual simulations if they can get away with infor-
mation about potential future outlooks in terms of a robust
confidence interval. A PDF representing the ensemble distri-
bution may also be used as a component of Bayesian infer-
ences to estimate probabilities for e.g. heatwaves or heavy
24 h precipitation (Benestad et al., 2018, 2019b).

The common-EOF framework also suggested that CMIP6
models were better than CMIP5 models at reproducing the
mean seasonal cycle in TAS, PR, and PSL over the Nordic
region. Additionally, our analysis proposed that both CMIP5
RCP4.5 and CMIP6 SSP245 multi-model ensembles provide
an approximate description of typical predictors on spatial
domains relevant for empirical–statistical downscaling over
the Nordic countries. The information about improved sim-
ulations in CMIP6 is in line with Lauer et al. (2022), who
found that the total cloud cover, cloud water path, and cloud
radiative effect were slightly better in the CMIP6 multi-
model mean than in the CMIP5 ensemble mean in terms of
mean bias, pattern correlation, and relative root-mean-square
deviation. They also noted that an underestimation of cloud
cover in stratocumulus regions is still a problem in CMIP6.
The clouds simulated by the CMIP5 models were reported
to be too few and too reflective over the Southern Ocean but
were significantly improved in CMIP6.

The common EOF-approach and the esd tool (Benestad
et al., 2015) represent a complement to already-existing anal-
ysis tools such as the GCMeval tool (Parding et al., 2020)
or the Earth System Model Evaluation Tool (ESMValTool)

(Eyring et al., 2020; Weigel et al., 2021). The latter performs
common preprocessing operations and diagnostics that in-
clude tailored diagnostics and performance metrics for spe-
cific scientific applications. It furthermore provides diagnos-
tics for the mean annual cycle, pattern correlation, clustering,
and EOFs, with RMSE estimates on a grid-by-grid basis (or
spatial means of grid box estimates) rather than in terms of
covariance structure, such as in Fig. 1 and Table 1. The ES-
MValTool also offers a regression of monthly mean geopo-
tential heights onto the leading principal component monthly
average to represent the northern annular mode (NAM) rather
than a common-EOF approach similar to that presented in
Fig. 4. It makes use of the Climate Variability Diagnostics
Package (CVDP) that computes key metrics of internal cli-
mate variability in a set of user-specific model simulations
and observational datasets, providing spatial patterns and
time series (Phillips et al., 2014). Although it offers a large
collection of diagnostics and performance metrics for atmo-
spheric, oceanic, and terrestrial variables for the mean state,
trends, and variability, it does not include common EOFs.
While the ESMValTool is designed for the evaluation of cli-
mate model performance on a more individual basis rather
than how well multi-model ensembles represent the world,
the common-EOF framework proposed here can be used to
assess whether the multi-model ensemble is fit for represent-
ing climate change and non-deterministic climate variability.
Hence, the common-EOF framework can be designed to as-
sess model results with a focus on their application for cli-
mate change adaptation. The ESMValTool has been devel-
oped as a community effort currently involving more than 40
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institutes, with a rapidly growing developer and user com-
munity. It offers more predefined functionalities than the esd
package, but the esd package is more generic and flexible and
also more geared towards empirical–statistical downscaling
(ESD). ESD can also provide diagnostics about GCMs (Ben-
estad, 2021), and the esd package is designed to deal with
a more varied set of data types than just GCM output, as it
has evolved from a previous open-source R library, namely
clim.pact (Benestad, 2003). Both these tools can likely
benefit from closer collaboration than in the past, as they
seem to complement each other. Moreover, common EOFs
make it easy to avoid matrices of many small maps (stamp
collections) that are difficult to digest, since comparisons can
be limited to time series and their differences in terms of
statistics. Finally, common EOFs also give a visual impres-
sion of simulated quality, as well as a framework for more-
objective tests when applied to their principal components.

The results presented here for TAS represent a typical
easy case where the variance is represented overwhelmingly
by the first EOF and where ERA5 lies well in the mid-
dle of the ensemble distribution. The results for PR exhibit
a more complicated situation in the interannual variation
where higher-order PCs represent a greater fraction of the
covariance structure, and in our case, the 20 leading modes
merely accounted for about 80 % of the variance. For a more
complete evaluation, the RMSE score metric em needs to in-
clude higher-order PCs, and according to Eq. (1), we get

em =

√∑N
i=13

2
i

∑
t (Vm,i,t −V1,i,t )2

N
, (2)

whereN is the number of modes, 3 contains the eigenvalues,
and Vm,i,t is the ith PC for model m in the ensemble refer-
ences that consists of a time series over time period t . The
leading EOFs are associated with higher fractions of vari-
ance and higher eigenvalues 3i , whereas the RMSE is less
sensitive to higher-order ones with low 3i .

One choice regarding the use of this approach for evalua-
tion is to include only the ensemble of projections in the EOF
analysis and then to project one or several reference reanaly-
ses onto these patterns. This variation of our approach would
represent a cleaner approach not to meddle projections and
references, especially if the projections involve other time
periods and future outlooks. However, the exclusion of the
reanalysis from estimating the EOFs would hardly make any
appreciable difference with such vast ensembles as used here
and with the same time coverage. In our case, the hypothesis
was that the selected reanalysis and model data represent the
same statistics, variable, region, and time period and hence
should have similar properties. It is of course possible that
the GCMs and reference differ so much so that the reference
is outside the ensemble spread, which would indicate that
they belong to different statistical populations. This matters
for the first PCs representing a large fraction of variance but

can be ignored for high-order PCs associated with negligible
variance that represents numeric noise.

3 Conclusions

We present some demonstrations of how common EOFs can
be applied in global climate model evaluation and use them to
show that the CMIP6 SSP245 multi-model ensemble repre-
sents an improvement over CMIP5 RCP4.5 when it comes to
reproducing the mean seasonal cycle in the near-surface tem-
perature, precipitation, and mean sea level pressure over the
Nordic countries. The analysis based on common EOFs also
suggests that both CMIP ensembles are able to reproduce the
interannual variability of these variables over the Nordic re-
gion and that they seem to embrace the observed historical
trend seen in the ERA5 reanalysis. Common EOFs are not
widely used within the climate research community, and we
propose that they may benefit further research through inno-
vative applications. A motivation for using common EOFs
was to assess the value of multi-model ensembles of cli-
mate models for the application in climate service rather
than focusing on single models. Hence, they were used to
answer the question of whether the said CMIP multi-model
ensembles are able to reproduce the observed statistics of
the regional climate that are necessary for supporting climate
change adaptation.

Code and data availability. Both R markdown scripts
with embedded R code, output in the PDF format,
and data in R binary are available from Figshare
(https://doi.org/10.6084/m9.figshare.21641756.v3; Benestad,
2022).

Video supplement. A couple of YouTube demonstrations on com-
mon EOFs are available from https://youtu.be/32mtHHAoq6k
(Benestad, 2023a) and https://youtu.be/E01hthVL9pY (Benestad,
2023b).
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line at: https://doi.org/10.5194/gmd-16-2899-2023-supplement.

Author contributions. REB conceptualized the work, carried out
the analysis, and participated in the writing; KMP and AM con-
tributed to the write up and the development of the esd package
used to compute common EOFs and to carry out the analysis; JL,
AD, and OAL contributed to the writing process.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

https://doi.org/10.5194/gmd-16-2899-2023 Geosci. Model Dev., 16, 2899–2913, 2023

https://doi.org/10.6084/m9.figshare.21641756.v3
https://youtu.be/32mtHHAoq6k
https://youtu.be/E01hthVL9pY
https://doi.org/10.5194/gmd-16-2899-2023-supplement


2912 R. E. Benestad et al.: Common empirical orthogonal functions and model evaluation

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Several datasets (CMIP5 and CMIP6) used
in this work were obtained from the CMIP6 project hosted on
the Earth System Grid Federation https://esgf-data.dkrz.de/projects/
esgf-dkrz/ (last access: 25 May 2023) and from CMIP5 through the
KNMI ClimateExplorer https://climexp.knmi.nl/start.cgi (last ac-
cess: 25 May 2023). The ERA5 reanalysis was obtained through
the Copernicus Climate Change Services (C3S) Climate Data
Store (CDS): https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels-monthly-means?tab=form (last ac-
cess: 25 May 2023) The analysis was implemented in the R environ-
ment (R Core Team, 2023) and R studio https://posit.co/downloads/
(last access: 25 May 2023).

Review statement. This paper was edited by Axel Lauer and re-
viewed by Abdel Hannachi and one anonymous referee.

References

Ambaum, M. H. P., Hoskins, B. J., and Stephenson, D. B.:
Arctic Oscillation or North Atlantic Oscillation?, J.
Climate, 14, 3495–3507, https://doi.org/10.1175/1520-
0442(2001)014<3495:AOONAO>2.0.CO;2, 2001.

Barnett, T. P.: Comparison of Near-Surface Air Temperature Vari-
ability in 11 Coupled Global Climate Models, J. Climate, 12,
511–518, 1999.

Becker, R. A., Chambers, J. M., and Wilks, A. R.: The new S
language: a programming environment for data analysis and
graphics, Wadsworth & Brooks/Cole computer science series,
Wadsworth & Brooks/Cole Advanced Books & Software, Pa-
cific Grove, Calif., ISBN 9780534091927, 9780534091934,
053409192X, 0534091938; OCLC Number (WorldCat Unique
Identifier): 17677647, 1988.

Benestad, R.: Common EOFs for model evaluation, Figshare [data
set], https://doi.org/10.6084/M9.FIGSHARE.21641756.V3,
2022.

Benestad, R.: Common EOFs for evaluation of geophysical data
and global climate models, Youtube [video], https://youtu.be/
32mtHHAoq6k, last access: 25 May 2023a.

Benestad, R.: A brief presentation of common EOFs in R-studio,
Youtube [video], https://youtu.be/E01hthVL9pY, last access:
25 May 2023b.

Benestad, R., Sillmann, J., Thorarinsdottir, T. L., Guttorp, P.,
Mesquita, M. d. S., Tye, M. R., Uotila, P., Maule, C. F., The-
jll, P., Drews, M., and Parding, K. M.: New vigour involving
statisticians to overcome ensemble fatigue, Nat. Clim. Change,
7, 697–703, https://doi.org/10.1038/nclimate3393, 2017.

Benestad, R., Caron, L.-P., Parding, K., Iturbide, M.,
Gutierrez Llorente, J. M., Mezghani, A., and Doblas-
Reyes, F. J.: Using statistical downscaling to assess
skill of decadal predictions, Tellus A, 71, 1652882,
https://doi.org/10.1080/16000870.2019.1652882, 2019a.

Benestad, R. E.: A comparison between two empirical downscaling
strategies, Int. J. Climatol., 21, 1645–1668, dOI 10.1002/joc.703,
2001.

Benestad, R. E.: clim.pact-V.1.0, KLIMA 04/03, met, P.O. Box 43
Blindern, 0313 Oslo, Norway, https://www.met.no (last access:
25 May 2023), 2003.

Benestad, R. E.: A Norwegian Approach to Downscaling, Geosci.
Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-
2021-176, 2021.

Benestad, R. E., Sutton, R. T., Allen, M., and Anderson, D. L. T.:
Interaction between Intraseasonal Kelvin waves and Tropical In-
stability waves in the Tropical Pacific, Geophys. Res. Lett., 28,
2041–2044, https://doi.org/10.1029/2000GL012563, 2001.

Benestad, R. E., Hanssen-Bauer, I., and Førland, E. J.: Empiri-
cally downscaled temperature scenarios for Svalbard, Atmos.
Sci. Lett., 3, 71–93, 2002.

Benestad, R. E., Hanssen-Bauer, I., and Chen, D.: Empirical-
statistical downscaling, World Scientific, 228, 2008.

Benestad, R. E., Mezghani, A., and Parding, K. M.: esd V1.0, Zen-
odo [code], https://doi.org/10.5281/zenodo.29385, 2015.

Benestad, R. E., Parding, K. M., Isaksen, K., and Mezghani,
A.: Climate change and projections for the Barents region:
what is expected to change and what will stay the same?,
Environ. Res. Lett., 11, 054017, https://doi.org/10.1088/1748-
9326/11/5/054017, 2016.

Benestad, R. E., van Oort, B., Justino, F., Stordal, F., Parding, K.
M., Mezghani, A., Erlandsen, H. B., Sillmann, J., and Pereira-
Flores, M. E.: Downscaling probability of long heatwaves based
on seasonal mean daily maximum temperatures, Adv. Stat. Clim.
Meteorol. Oceanogr., 4, 37–52, https://doi.org/10.5194/ascmo-4-
37-2018, 2018.

Benestad, R. E., Parding, K. M., Erlandsen, H. B., and Mezghani,
A.: A simple equation to study changes in rainfall statistics,
Environ. Res. Lett., 14, 084017, https://doi.org/10.1088/1748-
9326/ab2bb2, 2019b.

Boé, J.: Interdependency in Multimodel Climate Projections: Com-
ponent Replication and Result Similarity, Geophys. Res. Lett.,
45, 2771–2779, https://doi.org/10.1002/2017GL076829, 2018.

Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q.,
Caiafa, C., and Phan, H. A.: Tensor Decompositions for Sig-
nal Processing Applications: From two-way to multiway compo-
nent analysis, IEEE Signal Processing Magazine, 32, 145–163,
https://doi.org/10.1109/MSP.2013.2297439, 2015.

Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.:
Communication of the role of natural variability in future
North American climate, Nat. Clim. Change, 2, 775–779,
https://doi.org/10.1038/nclimate1562, 2012.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela,
B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais,
N., Cionni, I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P.,
Debeire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw,
P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Good-
man, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A.,
Kadow, C., Kindermann, S., Koirala, S., Koldunov, N., Leje-

Geosci. Model Dev., 16, 2899–2913, 2023 https://doi.org/10.5194/gmd-16-2899-2023

https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://climexp.knmi.nl/start.cgi
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form
https://posit.co/downloads/
https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2
https://doi.org/10.6084/M9.FIGSHARE.21641756.V3
https://youtu.be/32mtHHAoq6k
https://youtu.be/32mtHHAoq6k
https://youtu.be/E01hthVL9pY
https://doi.org/10.1038/nclimate3393
https://doi.org/10.1080/16000870.2019.1652882
https://www.met.no
https://doi.org/10.5194/gmd-2021-176
https://doi.org/10.5194/gmd-2021-176
https://doi.org/10.1029/2000GL012563
https://doi.org/10.5281/zenodo.29385
https://doi.org/10.1088/1748-9326/11/5/054017
https://doi.org/10.1088/1748-9326/11/5/054017
https://doi.org/10.5194/ascmo-4-37-2018
https://doi.org/10.5194/ascmo-4-37-2018
https://doi.org/10.1088/1748-9326/ab2bb2
https://doi.org/10.1088/1748-9326/ab2bb2
https://doi.org/10.1002/2017GL076829
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1038/nclimate1562
https://doi.org/10.5194/gmd-9-1937-2016


R. E. Benestad et al.: Common empirical orthogonal functions and model evaluation 2913

une, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F.,
Müller, B., Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi,
V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan,
R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel,
K., and Zimmermann, K.: Earth System Model Evaluation Tool
(ESMValTool) v2.0 – an extended set of large-scale diagnos-
tics for quasi-operational and comprehensive evaluation of Earth
system models in CMIP, Geosci. Model Dev., 13, 3383–3438,
https://doi.org/10.5194/gmd-13-3383-2020, 2020.

Flury, B. N.: Common Principal Components
in k Groups, J. Am. Stat. A., 79, 892–898,
https://doi.org/10.1080/01621459.1984.10477108, 1984.

Flury, B. N. and Gautschi, W.: An Algorithm for Simulta-
neous Orthogonal Transformation of Several Positive Defi-
nite Symmetric Matrices to Nearly Diagonal Form, SIAM
Journal on Scientific and Statistical Computing, 7, 169–184,
https://doi.org/10.1137/0907013, 1986.

Frankignoul, C., Février, S., Sennéchael, N., Verbeek, J., and
Braconno, P.: An intercomparison between four tropical
ocean models Thermocline variability, Tellus A, 47, 351,
https://doi.org/10.3402/tellusa.v47i3.11522, 1995.

Hannachi, A.: Patterns identification and data mining in weather and
climate, Springer, Cham, oCLC: 1328009409, 2022.

Hannachi, A., Finke, K., and Trendafilov, N.: Common EOFs: a tool
for multi-model comparison and evaluation, Clim. Dynam., 60,
1689–1703, https://doi.org/10.1007/s00382-022-06409-8, 2022.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-
ers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Bal-
samo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,
L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

Huth, R. and Beranová, R.: How to Recognize a True Mode
of Atmospheric Circulation Variability, Earth Space Sci., 8,
e2020EA001275, https://doi.org/10.1029/2020EA001275, 2021.

Joliffe, I. T.: Principal Component Analysis, Springer Series in
Statistics, Springer, https://doi.org/10.1007/b98835, 1986.

Lauer, A., Bock, L., Hassler, B., Schröder, M., and Stengel, M.:
Cloud Climatologies from Global Climate Models – A Compari-
son of CMIP5 and CMIP6 Models with Satellite Data, J. Climate,
36, 1–53, https://doi.org/10.1175/JCLI-D-22-0181.1, 2022.

Lorenz, E.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–
141, 1963.

Lorenz, E. N.: Empirical Orthogonal Functions and Statistical
Weather Prediction, Sci. rep. 1, Department of Meteorology,
MIT, USA, Cambridge, Massachusetts, https://eapsweb.mit.edu/
sites/default/files/Empirical_Orthogonal_Functions_1956.pdf
(last access: 25 May 2023), 1956.

Meehl, G. A., Covey, C., McAvaney, B., Latif, M., and Stouffer,
R. J.: Overview of the Coupled Model intercomparison project,
B. Am. Meteorol. Soc., 86, 89–93, 2005.

Navarra, A. and Simoncini, V.: A guide to empirical orthogonal
functions for climate data analysis, Springer, Dordrecht, New
York, oCLC: ocn462919781, 2010.

Parding, K. M., Dobler, A., McSweeney, C. F., Landgren, O. A.,
Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., Räty,
O., Viktor, E., El Zohbi, J., Christensen, O. B., and Loukos,
H.: GCMeval – An interactive tool for evaluation and selec-
tion of climate model ensembles, Climate Services, 18, 100167,
https://doi.org/10.1016/j.cliser.2020.100167, 2020.

Philander, S.: El Niño, La Niña, and the Southern Oscillation, Aca-
demic Press, N.Y., ISBN 9780080570983, 1989.

Phillips, A. S., Deser, C., and Fasullo, J.: Evaluating
Modes of Variability in Climate Models, Eos, Trans-
actions American Geophysical Union, 95, 453–455,
https://doi.org/10.1002/2014EO490002, 2014.

Preisendorfer, R. W.: Principal Component Analysis in Meteorol-
ogy and Oceanology, Elsevier Science Press, Amsterdam, ISBN-
10 0444430148, ISBN-13 978-0444430144, 1988.

R Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 25 May 2023), 2023.

Sanderson, B. M., Knutti, R., and Caldwell, P.: A Representative
Democracy to Reduce Interdependency in a Multimodel Ensem-
ble, J. Climate, 28, 5171–5194, https://doi.org/10.1175/JCLI-D-
14-00362.1, 2015.

Sengupta, S. and Boyle, J. S.: Using Common Principal Compo-
nents in Comparing GCM Simulations, J. Climate, 11, 816–830,
1998.

Sengupta, S. K. and Boyle, J. S.: Statistical Intercomparison of
Global Climate Models: A Common Principal Component Ap-
proach, Tech. Rep. 13, PCMDI, Lawrence Livermore National
Laboratory, California, USA, https://pcmdi.llnl.gov/report/ab13.
html (last access: 25 May 2023), 1993.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of
CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.

Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., Schlund,
M., Adeniyi, K., Andela, B., Arnone, E., Berg, P., Caron, L.-P.,
Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, C.
W., Paçal, A., Pérez-Zanón, N., Predoi, V., Sandstad, M., Sill-
mann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, J., and
Eyring, V.: Earth System Model Evaluation Tool (ESMValTool)
v2.0 – diagnostics for extreme events, regional and impact eval-
uation, and analysis of Earth system models in CMIP, Geosci.
Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-
3159-2021, 2021.

Wilks, D. S.: Statistical methods in the atmospheric sciences, no.
v. 91 in International geophysics series, Academic Press, Ams-
terdam, Boston, 2nd edn., ISBN 13 978-0-12-751966-1, ISBN
10 0-12-751966-1, 2006.

https://doi.org/10.5194/gmd-16-2899-2023 Geosci. Model Dev., 16, 2899–2913, 2023

https://doi.org/10.5194/gmd-13-3383-2020
https://doi.org/10.1080/01621459.1984.10477108
https://doi.org/10.1137/0907013
https://doi.org/10.3402/tellusa.v47i3.11522
https://doi.org/10.1007/s00382-022-06409-8
https://doi.org/10.1002/qj.3803
https://doi.org/10.1029/2020EA001275
https://doi.org/10.1007/b98835
https://doi.org/10.1175/JCLI-D-22-0181.1
https://eapsweb.mit.edu/sites/default/files/Empirical_Orthogonal_Functions_1956.pdf
https://eapsweb.mit.edu/sites/default/files/Empirical_Orthogonal_Functions_1956.pdf
https://doi.org/10.1016/j.cliser.2020.100167
https://doi.org/10.1002/2014EO490002
https://www.R-project.org/
https://doi.org/10.1175/JCLI-D-14-00362.1
https://doi.org/10.1175/JCLI-D-14-00362.1
https://pcmdi.llnl.gov/report/ab13.html
https://pcmdi.llnl.gov/report/ab13.html
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.5194/gmd-14-3159-2021
https://doi.org/10.5194/gmd-14-3159-2021

	Abstract
	Introduction
	Data & method
	Results
	Evaluation of the simulated mean seasonal cycle
	Evaluation of the simulated interannual variability
	Evaluation of the simulated historic trends
	Assessment of robustness

	Discussion

	Conclusions
	Code and data availability
	Video supplement
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

