Articles | Volume 16, issue 9
https://doi.org/10.5194/gmd-16-2649-2023
https://doi.org/10.5194/gmd-16-2649-2023
Model description paper
 | 
17 May 2023
Model description paper |  | 17 May 2023

The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish

Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum

Related authors

The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025,https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Feeding strategy as a key driver of the bioaccumulation of MeHg in megabenthos
David Johannes Amptmeijer, Andrea Padilla, Sofia Modesti, Corinna Schrum, and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-1494,https://doi.org/10.5194/egusphere-2025-1494, 2025
Short summary
Bioaccumulation as a driver of high MeHg in the North and Baltic Seas
David Johannes Amptmeijer, Elena Mikhavee, Ute Daewel, Johannes Bieser, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2025-1486,https://doi.org/10.5194/egusphere-2025-1486, 2025
Short summary
Bioconcentration as a key driver of Hg bioaccumulation in high trophic level fish
David Amptmeijer and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-312,https://doi.org/10.5194/egusphere-2025-312, 2025
Short summary
Constraining elemental mercury air–sea exchange using long-term ground-based observations
Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand
EGUsphere, https://doi.org/10.5194/egusphere-2024-3722,https://doi.org/10.5194/egusphere-2024-3722, 2024
Short summary

Related subject area

Oceanography
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Improvements to the Met Office's global ocean–sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025,https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Resolution dependence of interlinked Southern Ocean biases in global coupled HadGEM3 models
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
Geosci. Model Dev., 18, 2725–2745, https://doi.org/10.5194/gmd-18-2725-2025,https://doi.org/10.5194/gmd-18-2725-2025, 2025
Short summary
A new global high-resolution wave model for the tropical ocean using WAVEWATCH III version 7.14
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025,https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary

Cited articles

Allison, J. D. and Allision, T. L.: PARTITION COEFFICIENTS FOR METALS IN SURFACE WATER, SOIL, AND WASTE, EPA/600/R-05/074 U.S. Environmental Protection Agency, Washington, DC, https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=135783 (last access: 7 April 2023), 2005. 
AMAP/EMEP: Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport, UNEP Chemicals Branch, Geneva, 2013. 
AMAP/EMEP: Global Mercury Assessment 2018, UN Environment Programme Chemicals and Health Branch Geneva Switzerland, ISBN 978-92-807-3744-8, 2019a. 
AMAP/EMEP: Technical Background Report for the Global Mercury Assessment 2018, Arctic Monitoring and Assessment Programme, Oslo, Norway/UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland, viii + 426 pp. including E-Annexes, 2019b. 
Download
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
Share