Articles | Volume 16, issue 9
https://doi.org/10.5194/gmd-16-2565-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2565-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0)
Y. Joseph Zhang
CORRESPONDING AUTHOR
Center for Coastal Resource Management, Virginia Institute of Marine
Science, College of William & Mary, Gloucester Point, VA 23062, USA
Tomas Fernandez-Montblanc
Earth Sciences Department, University of Cadiz INMAR, Puerto Real,
11519, Spain
William Pringle
Environmental Science Division, Argonne National Laboratory, Lemont,
IL 60439, USA
Hao-Cheng Yu
Center for Coastal Resource Management, Virginia Institute of Marine
Science, College of William & Mary, Gloucester Point, VA 23062, USA
Linlin Cui
Center for Coastal Resource Management, Virginia Institute of Marine
Science, College of William & Mary, Gloucester Point, VA 23062, USA
Saeed Moghimi
Coastal Survey Development Lab, NOAA National Ocean Service, Silver Spring, MD 20910, USA
Related authors
Xun Cai, Qubin Qin, Linlin Cui, Xiucheng Yang, Yinglong Joseph Zhang, and Jian Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-593, https://doi.org/10.5194/egusphere-2025-593, 2025
Short summary
Short summary
We presented NAAC, a high-resolution, two-decade simulation of coastal hydrodynamics using the 3D unstructured-grid model SCHISM (v5.11.0). This model seamlessly integrates simulations from the North American Atlantic coastal ocean to tidal tributaries and wetlands. By bridging the gap between large-scale regional ocean models and fine-scale shallow water systems and intertidal zones, this work helps fill observational gaps and provides valuable insights into studies like saltwater intrusion.
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024, https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Short summary
We coupled an unstructured hydro-model with an advanced column sea ice model to meet the growing demand for increased resolution and complexity in unstructured sea ice models. Additionally, we present a novel tracer transport scheme for the sea ice coupled model and demonstrate that this scheme fulfills the requirements for conservation, accuracy, efficiency, and monotonicity in an idealized test. Our new coupled model also has good performance in realistic tests.
Hao-Cheng Yu, Yinglong Joseph Zhang, Lars Nerger, Carsten Lemmen, Jason C. S. Yu, Tzu-Yin Chou, Chi-Hao Chu, and Chuen-Teyr Terng
EGUsphere, https://doi.org/10.5194/egusphere-2022-114, https://doi.org/10.5194/egusphere-2022-114, 2022
Preprint archived
Short summary
Short summary
We develop a new data assimilative approach by combining two parallel frameworks: PDAF and ESMF. This allows maximum flexibility and easy implementation of data assimilation for fully coupled earth system model applications. It is also validated by using a simple benchmark and applied to a realistic case simulation around Taiwan. The real case test shows significant improvement for temperature, velocity and surface elevation before, during and after typhoon events.
Fei Ye, Wei Huang, Yinglong J. Zhang, Saeed Moghimi, Edward Myers, Shachak Pe'eri, and Hao-Cheng Yu
Nat. Hazards Earth Syst. Sci., 21, 1703–1719, https://doi.org/10.5194/nhess-21-1703-2021, https://doi.org/10.5194/nhess-21-1703-2021, 2021
Short summary
Short summary
Compound flooding is caused by multiple mechanisms contributing to elevated water level simultaneously, which poses higher risks than conventional floods. This study uses a holistic approach to simulate the processes on a wide range of spatial and temporal scales that contributed to the compound flooding during Hurricane Florence in 2018. Sensitivity tests are used to isolate the contribution from each mechanism and identify the region experiencing compound effects, thus supporting management.
Xun Cai, Qubin Qin, Linlin Cui, Xiucheng Yang, Yinglong Joseph Zhang, and Jian Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-593, https://doi.org/10.5194/egusphere-2025-593, 2025
Short summary
Short summary
We presented NAAC, a high-resolution, two-decade simulation of coastal hydrodynamics using the 3D unstructured-grid model SCHISM (v5.11.0). This model seamlessly integrates simulations from the North American Atlantic coastal ocean to tidal tributaries and wetlands. By bridging the gap between large-scale regional ocean models and fine-scale shallow water systems and intertidal zones, this work helps fill observational gaps and provides valuable insights into studies like saltwater intrusion.
Chunyong Jung, Pengfei Xue, Chenfu Huang, William Pringle, Mrinal Biswas, Geeta Nain, and Jiali Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-47, https://doi.org/10.5194/wes-2025-47, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study introduces a system that combines weather, ocean, and wave models to better understand their interactions during tropical storms and their impact on offshore structures like wind turbines. Tested using Hurricane Henri (2021), the system improves storm predictions by including how waves and ocean cooling affect storm strength and wind patterns. The results show this approach helps assess risks to offshore infrastructure during severe weather, making it more accurate and reliable.
Paola Emilia Souto-Ceccon, Juan Montes, Enrico Duo, Paolo Ciavola, Tomás Fernández-Montblanc, and Clara Armaroli
Earth Syst. Sci. Data, 17, 1041–1054, https://doi.org/10.5194/essd-17-1041-2025, https://doi.org/10.5194/essd-17-1041-2025, 2025
Short summary
Short summary
This dataset supports the growing need for information on coastal storm impacts. It covers different European countries and is an open-access tool that can be exploited, updated, or complemented by different users and for different purposes. Via labelling with unique identifiers, the database allows for a quick and consistent retrieval of all of the resources associated with a storm event. The adopted approach can be easily exported to all European countries and beyond.
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 25, 13–39, https://doi.org/10.5194/nhess-25-13-2025, https://doi.org/10.5194/nhess-25-13-2025, 2025
Short summary
Short summary
The present work, developed within the EU H2020 European Coastal Flood Awareness System (ECFAS) project, presents an approach used to estimate direct impacts of coastal flood on population, buildings, and roads along European coasts. The findings demonstrate that the ECFAS impact approach offers valuable estimates for affected populations, reliable damage assessments for buildings and roads, and improved accuracy compared to traditional grid-based approaches.
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024, https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Short summary
We coupled an unstructured hydro-model with an advanced column sea ice model to meet the growing demand for increased resolution and complexity in unstructured sea ice models. Additionally, we present a novel tracer transport scheme for the sea ice coupled model and demonstrate that this scheme fulfills the requirements for conservation, accuracy, efficiency, and monotonicity in an idealized test. Our new coupled model also has good performance in realistic tests.
Marine Le Gal, Tomás Fernández-Montblanc, Enrico Duo, Juan Montes Perez, Paulo Cabrita, Paola Souto Ceccon, Véra Gastal, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 23, 3585–3602, https://doi.org/10.5194/nhess-23-3585-2023, https://doi.org/10.5194/nhess-23-3585-2023, 2023
Short summary
Short summary
Assessing coastal hazards is crucial to mitigate flooding disasters. In this regard, coastal flood databases are valuable tools. This paper describes a new coastal flood map catalogue covering the entire European coastline, as well as the methodology to build it and its accuracy. The catalogue focuses on frequent extreme events and relies on synthetic scenarios estimated from local storm conditions. Flood-prone areas and regions sensitive to storm duration and water level peak were identified.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Hao-Cheng Yu, Yinglong Joseph Zhang, Lars Nerger, Carsten Lemmen, Jason C. S. Yu, Tzu-Yin Chou, Chi-Hao Chu, and Chuen-Teyr Terng
EGUsphere, https://doi.org/10.5194/egusphere-2022-114, https://doi.org/10.5194/egusphere-2022-114, 2022
Preprint archived
Short summary
Short summary
We develop a new data assimilative approach by combining two parallel frameworks: PDAF and ESMF. This allows maximum flexibility and easy implementation of data assimilation for fully coupled earth system model applications. It is also validated by using a simple benchmark and applied to a realistic case simulation around Taiwan. The real case test shows significant improvement for temperature, velocity and surface elevation before, during and after typhoon events.
Fei Ye, Wei Huang, Yinglong J. Zhang, Saeed Moghimi, Edward Myers, Shachak Pe'eri, and Hao-Cheng Yu
Nat. Hazards Earth Syst. Sci., 21, 1703–1719, https://doi.org/10.5194/nhess-21-1703-2021, https://doi.org/10.5194/nhess-21-1703-2021, 2021
Short summary
Short summary
Compound flooding is caused by multiple mechanisms contributing to elevated water level simultaneously, which poses higher risks than conventional floods. This study uses a holistic approach to simulate the processes on a wide range of spatial and temporal scales that contributed to the compound flooding during Hurricane Florence in 2018. Sensitivity tests are used to isolate the contribution from each mechanism and identify the region experiencing compound effects, thus supporting management.
William J. Pringle, Damrongsak Wirasaet, Keith J. Roberts, and Joannes J. Westerink
Geosci. Model Dev., 14, 1125–1145, https://doi.org/10.5194/gmd-14-1125-2021, https://doi.org/10.5194/gmd-14-1125-2021, 2021
Short summary
Short summary
We improve and test a computer model that simulates tides and storm surge over all of Earth's oceans and seas. The model varies mesh resolution (triangular element sizes) freely so that coastal areas, especially storm landfall locations, are well-described. We develop systematic tests of the resolution in order to suggest good mesh design criteria that balance computational efficiency with accuracy for both global astronomical tides and coastal storm tides under extreme weather forcing.
Cited articles
Androsov, A., Fofonova, V., Kuznetsov, I., Danilov, S., Rakowsky, N., Harig, S., Brix, H., and Wiltshire, K. H.: FESOM-C v.2: coastal dynamics on hybrid unstructured meshes, Geosci. Model Dev., 12, 1009–1028, https://doi.org/10.5194/gmd-12-1009-2019, 2019.
Arbic, B. K., Wallcraft, A. J., and Metzger, E. J.: Concurrent simulation of the
eddying general circulation and tides in a global ocean model, Ocean
Model., 32, 175–187, https://doi.org/10.1016/j.ocemod.2010.01.007, 2010.
Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B.,
Farrar, J., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A.,
Menemenlis, D., Metzger, E., Müller, M., Nelson, A. D., Nelson, B. C.,
Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott, R. B.,
Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft, A.
J., Zamudio, L., and Zhao, Z.: A Primer on Global Internal Tide and Internal
Gravity Wave Continuum Modeling in HYCOM and MITgcm, New Frontiers In
Operational Oceanography, 307–391, https://doi.org/10.17125/gov2018.ch13, 2018.
Baptista, A. M.: CORIE: the first decade of a coastal-margin collaborative
observatory, Oceans 2006, MTS/IEEE, Boston, MA, 2006.
Baptista, A. M., Zhang, Y., Chawla, A., Zulauf, M. A., Seaton, C., Myers,
E. P., Kindle, J., Wilkin, M., Burla, M., and Turner, P. J.: A cross-scale
model for 3D baroclinic circulation in estuary-plume-shelf systems: II.
Application to the Columbia River, Cont. Shelf Res., 25, 935–972,
2005.
Blakely, C. P., Ling, G., Pringle, W. J., Contreras, M. T., Wirasaet, D.,
Westerink, J. J., Moghimi, S., Seroka, G., Shi, L., Myers, E., Owensby, M.,
and Massey, C.: Dissipation and Bathymetric Sensitivities in an
Unstructured Mesh Global Tidal Model, J. Geophys. Res.-Oceans, 127, e2021JC018178,
https://doi.org/10.1029/2021JC018178, 2022.
Bottom, D. L., Simenstad, C. A., Burke, J., Baptista, A. M., Jay, D. A.,
Jones, K. K., Casillas, E., and Schiewe, M. H.: Salmon at river's end: The role of
the estuary in the decline and recovery of Columbia River salmon, NOAA Tech.
Memo., NMFS-NWFSC-68, 246 pp., U.S. Dept. of Commerce, 2005.
Burla, M., Baptista, A. M. Zhang, Y., and Frolov, S.: Seasonal and
inter-annual variability of the Columbia River plume: a perspective enabled
by multi-year simulation databases, J. Geophys. Res., 115, C00B16, https://doi.org/10.1029/2008JC004964, 2010.
Carrere, L., Lyard, F., Cancet, M., Guillot, A., and Roblou, L.: FES 2012:
a new global tidal model taking advantage of nearly 20 years of altimetry,
20 Years of Progress in Radar Altimatry, 710, 13, 2013.
CoNED: Coastal National Elevation Database, https://www.usgs.gov/publications/coastal-national-elevation-database (last access: May 2023),
2022.
CUDEM: Continuously Updated Digital Elevation Model, https://coast.noaa.gov/htdata/raster2/elevation/NCEI_ninth_Topobathy_2014_8483/ (last access: May 2023),
2022.
Dai, A.: Hydroclimatic trends during 1950–2018 over global land, Clim.
Dynam., 56, 4027–4049, https://doi.org/10.1007/s00382-021-05684-1, 2021.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19,
183–204, 2002.
Egbert, R. D. and Ray, R. D.: Semi-diurnal and diurnal tidal dissipation from
TOPEX/Poseidon altimetry, Geophys. Res. Lett., 30, 1907,
https://doi.org/10.1029/2003GL017676, 2003.
Fringer, O. B., Dawson, C. N., He, R., Ralston, D. K., and Zhang, Y.: The
future of coastal and estuarine modeling: Findings from a workshop, Ocean
Model., 143, 101458, https://doi.org/10.1016/j.ocemod.2019.101458, 2019.
Garcia-Berdeal, I., Hickey, B. M., and Kawase, M.: Influence of wind stress and
ambient flow on a high discharge river plume, J. Geophys. Res. 107, 3130,
https://doi.org/10.1029/2001JC000932, 2002.
Garner, S. T.: A topographic drag closure built on an analytical base flux,
J. Atmos. Sci., 62, 2302–2315, https://doi.org/10.1175/JAS3496.1,
2005.
GEBCO Compilation Group: GEBCO 2019 Grid,
https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e, 2019.
Geyer, W. R. and MacCready, P.: The Estuarine Circulation, Annu. Rev.
Fluid Mech., 46, 175–197, 2004.
Good, S., Fiedler, E., Mao, C., Martin, M. J., Maycock, A., Reid, R.,
Roberts-Jones, J., Searle, T., Waters, J., While, J., and Worsfold, M.: The
Current Configuration of the OSTIA System for Operational Production of
Foundation Sea Surface Temperature and Ice Concentration Analyses, Remote
Sens., 12, 720, https://doi.org/10.3390/rs12040720, 2020 (data available at: https://doi.org/10.48670/moi-00165).
Huang, W., Ye, F., Zhang, Y., Park, K., Du, J., Moghimi, S., Myers, E.,
Pe'eri, S., Calzada, J. R., Yu, H. C., Nunez, K., and Liu, Z.: Compounding
factors for extreme flooding around Galveston Bay during Hurricane Harvey,
Ocean Model., 158, 101735, https://doi.org/10.1016/j.ocemod.2020.101735, 2021.
Huang, W., Zhang, Y., Wang, Z., Ye, F., Moghimi, S., Myers, E., and Yu, H.:
Tidal simulation revisited, Ocean Dynam., 72, 187–205, https://doi.org/10.1007/s10236-022-01498-9, 2022.
Holt, J., Hyder, P., Ashworth, M., Harle, J., Hewitt, H. T., Liu, H., New, A. L., Pickles, S., Porter, A., Popova, E., Allen, J. I., Siddorn, J., and Wood, R.: Prospects for improving the representation of coastal and shelf seas in global ocean models, Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, 2017.
Jahanmard, V., Delpeche-Ellmann, N., and Ellmann, A.: Realistic dynamic
topography through coupling geoid and hydrodynamic models of the Baltic Sea,
Cont. Shelf Res., 222, 104421,
https://doi.org/10.1016/j.csr.2021.104421, 2021.
Jay, D. A. and Smith, J. D.: Circulation, density distribution and nea-spring
transitions in the Columbia river estuary, Prog. Oceanogr., 25, 81–112,
1990.
Karna, T. and Baptista, A.M .: Evaluation of a long-term hindcast simulation
for the Columbia River estuary, Ocean Model., 99, 1–14, 2016.
Logemann, K., Linardakis, L., and Korn, P.: Global tide simulations with ICON-O:
testing the model performance on highly irregular meshes, Ocean Dynam., 71,
43–57, https://doi.org/10.1007/s10236-020-01428-7, 2021.
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021.
Munk, W. H. and Wunsch, C.: Abyssal recipes II: energetics of tidal and wind
mixing, Deep-Sea Res. Pt. I, 45, 1977–2010,
https://doi.org/10.1016/S0967-0637(98)00070-3, 1998.
Pawlowicz, R., Beardsley, R., and Lentz, S.: Classical tidal harmonic analysis
including error estimates in MATLAB using T_TIDE, Comput.
Geosci., 28, 929–937, 2002.
Pickering, M. D., Horsburgh, K. J., Blundell, J. R., Hirschi, J. J.-M. Nicholls,
R. J., Verlaan, M., and Wells, N. C.: The impact of future sea-level rise on
the global tides, Cont. Shelf Res., 142, 50–68, 2017.
Pringle, W. J., Gonzalez-lopez, J., Joyce, B., Westerink, J. J., and van
der Westhuysen, A. J.: Baroclinic Coupling Improves Depth-Integrated
Modeling of Coastal Sea Level Variations around Puerto Rico and the U.S.
Virgin Islands, J. Geophys. Res.-Oceans, 124, 2196–2217,
https://doi.org/10.1029/2018JC014682, 2019.
Pringle, W. J., Wirasaet, D., Roberts, K. J., and Westerink, J. J.: Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance, Geosci. Model Dev., 14, 1125–1145, https://doi.org/10.5194/gmd-14-1125-2021, 2021.
Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud,
M.: A multi-resolution approach to global ocean modeling, Ocean Model., 69,
211–232, https://doi.org/10.1016/j.ocemod.2013.04.010,
2013.
Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T.,
Menemenlis, D., O'Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G.,
Wallcraft, A. J., and Zamudio, L.: Spectral decomposition of internal gravity wave
sea surface height in global models, J. Geophys. Res.-Oceans,
122, 7803–7821, https://doi.org/10.1002/2017JC013009, 2017.
Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C., Morlighem, M., and Steinhage, D.: A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry, Earth Syst. Sci. Data, 8, 543–557, https://doi.org/10.5194/essd-8-543-2016, 2016.
Schindelegger, M., Green, J. A., Wilmes, S. B., and Haigh, I. D.: Can We
Model the Effect of Observed Sea Level Rise on Tides?, J. Geophys.
Res.-Oceans, 123, 4593–4609,
https://doi.org/10.1029/2018JC013959, 2018.
Stepanov, V. N. and Hughes, C. W.: Parameterization of ocean
self-attraction and loading in numerical models of the ocean circulation,
J. Geophys. Res.-Oceans, 109, 1–11,
https://doi.org/10.1029/2003jc002034, 2004.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 6, 235–265, 2003.
Wang, P., Bernier, N. B., and Thompson, K. R.: Adding baroclinicity to a
global operational model for forecasting total water level: Approach and
impact, Ocean Model., 174, 102031,
https://doi.org/10.1016/j.ocemod.2022.102031, 2022.
Wang, X., Chao, Y., Shum, C. K., Yi, Y., and Fok, H. S.: Comparison of two
methods to assess ocean tide models, J. Atmos. Ocean.
Tech., 29, 1159–1167, 2012.
Willmott, C. J.: On the validation of models, Phys. Geogr., 2, 184–194,
1981.
Wong, A., Wijffels, S.E., Riser, S.C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G.C., Martini, K., Murphy, D.J., Scanderbeg, M., Bhaskar, T., Buck, J., Merceur, F., Carval, T., Maze, G., Cabanes, C., André, X,, Poffa, N., Yashayaev, I., Barker, P.M., Guinehut, S., Belbéoch, M., Ignaszewski. M., Baringer, M.O., Schmid, C., Lyman, J.M., McTaggart, K.E., Purkey, S.G., Zilberman, N., Alkire, M.B., Swift, D., Owens, W.B., Jayne, S.R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P., Cancouët, R., Coatanoan, C., Dobbler, D., Juan, A.G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourlès, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P.-Y., Rannou, J.-P., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I.M., Klein, B., Notarstefano, G., Poulain, P.-M., Vélez-Belchí, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J.L., Oke, P.R., van Wijk, E.M., Carse, F., Donnelly, M., Gould, W.J., Gowers, K., King, B.A., Loch, S.G., Mowat, M., Turton, J., Rama, R., Ravichandran, M., Freeland, H.J., Gaboury, I., Gilbert, D., Greenan, B., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S.-D., and Park, H.-M.: Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats, Front. Mar. Sci., 7, 700, https://doi.org/10.3389/fmars.2020.00700, 2020.
Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M.,
and Haigh, I.: Towards a global higher-frequency sea level dataset,
Geosci. Data J., 3, 50–59, 2016a.
Woodworth, P. L., Hunter, J. R., Marcos Moreno, M., Caldwell, P. C., Menendez, M., and Haigh, I. D.: GESLA (Global Extreme Sea Level Analysis) high frequency sea level dataset – Version 2, British Oceanographic Data Centre – Natural Environment Research Council [data set], UK, https://doi.org/10.5285/3b602f74-8374-1e90-e053-6c86abc08d39, 2016b.
Ye, F., Zhang, Y., Wang, H., Friedrichs, M. A. M., Irby, I. D., Alteljevich,
E., Valle-Levinson, A., Wang, Z., Huang, H., Shen, J., and Du, J.: A 3D
unstructured-grid model for Chesapeake Bay: importance of bathymetry, Ocean
Model., 127, 16–39, 2018.
Ye, F., Zhang, Y., He, R., Wang, Z., Wang, H. V., and Du, J.: Third-order
WENO transport scheme for simulating the baroclinic eddying ocean on an
unstructured grid, Ocean Model., 143, 101466,
https://doi.org/10.1016/j.ocemod.2019.101466, 2019.
Ye, F., Zhang, Y., Yu, H., Sun, W., Moghimi, S., Myers, E.P., Nunez, K.,
Zhang, R., Wang, H. V., Roland, A., Martins, K., Bertin, X., Du, J., and Liu,
Z.: Simulating storm surge and compound flooding events with a
creek-to-ocean model: importance of baroclinic effects, Ocean Model.,
145, 101526, https://doi.org/10.1016/j.ocemod.2019.101526, 2020.
Ye, F., Huang, W., Zhang, Y. J., Moghimi, S., Myers, E., Pe'eri, S., and Yu, H.-C.: A cross-scale study for compound flooding processes during Hurricane Florence, Nat. Hazards Earth Syst. Sci., 21, 1703–1719, https://doi.org/10.5194/nhess-21-1703-2021, 2021.
Zhang, Y., Ateljevich, E., Yu, H-C., Wu, C.-H., and Yu, J. C. S.: A new
vertical coordinate system for a 3D unstructured-grid model, Ocean
Model., 85, 16–31, 2015.
Zhang, Y., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale modeling
with SCHISM, Ocean Model., 102, 64–81, https://doi.org/10.1016/j.ocemod.2016.05.002,
2016.
Zhang, Y., Ye, F., Yu, H., Sun, W., Moghimi, S., Myers, E.P., Nunez, K.,
Zhang, R., Wang, H.V., Roland, A., Du, J., and Liu, Z.: Simulating compound
flooding events in a hurricane, Ocean Dynam., 70, 621–640,
https://doi.org/10.1007/s10236-020-01351-x, 2020.
Zhang, Y. J., Wang, Z. G., Ye, F., Cai, C., Lemmen, C., Khan, J.U., Yu, H.C., Wang, Q., Calzada, J. R., Mentaschi, L., Seaton, C., Nam, K., Martins, K., Shu, Q., Breyiannis, B., Trenham, C., Ateljecvich, E., Tran, H. Q., Clements, J., Huang, W., and Pezerat, M.:
schism-dev/schism: (v5.10.0), Zenodo [code], https://doi.org/10.5281/zenodo.6851013, 2022.
Zhang, Y. J., Fernandez-MontBlanc, T., Pringle, W., Yu, H.-C., Cui, L., and Moghimi, S.: Global seamless tidal simulation using a 3D unstructured-grid model, Geoscientific Model Development, Zenodo [code], https://doi.org/10.5281/zenodo.7779837, 2023.
Short summary
Simulating global ocean from deep basins to coastal areas is a daunting task but is important for disaster mitigation efforts. We present a new 3D global ocean model on flexible mesh to study both tidal and nontidal processes and total water prediction. We demonstrate the potential for
seamlesssimulation, on a single mesh, from the global ocean to a few estuaries along the US West Coast. The model can serve as the backbone of a global tide surge and compound flooding forecasting framework.
Simulating global ocean from deep basins to coastal areas is a daunting task but is important...