Articles | Volume 16, issue 9
https://doi.org/10.5194/gmd-16-2477-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2477-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants
Oceanography and Marine Meteorology, Norwegian Meteorological Institute, Bergen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Loris Calgaro
Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
Knut-Frode Dagestad
Oceanography and Marine Meteorology, Norwegian Meteorological Institute, Bergen, Norway
Christian Ferrarin
CNR – National Research Council of Italy, ISMAR – Institute of Marine Sciences, Venice, Italy
Antonio Marcomini
Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
Øyvind Breivik
Oceanography and Marine Meteorology, Norwegian Meteorological Institute, Bergen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Lars Robert Hole
Oceanography and Marine Meteorology, Norwegian Meteorological Institute, Bergen, Norway
Related authors
No articles found.
Christian Ferrarin, Debora Bellafiore, Alejandro Paladio Hernandez, Irina Dinu, and Adrian Stanica
EGUsphere, https://doi.org/10.5194/egusphere-2025-606, https://doi.org/10.5194/egusphere-2025-606, 2025
Short summary
Short summary
We implemented a hydrodynamic model to the entire Danube Delta region consisting of the river network, coastal lagoons and part of the prodelta coastal sea. The model was applied to investigate the water distribution among the river branches, the dynamics of the coastal sea in front of the delta, the renewal capacity of the lagoons, the processes regulating the water exchange among the different water bodies and the potential impacts of lagoon-sea reconnection solutions.
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Alvise Benetazzo, Trygve Halsne, Øyvind Breivik, Kjersti Opstad Strand, Adrian H. Callaghan, Francesco Barbariol, Silvio Davison, Filippo Bergamasco, Cristobal Molina, and Mauro Bastianini
Ocean Sci., 20, 639–660, https://doi.org/10.5194/os-20-639-2024, https://doi.org/10.5194/os-20-639-2024, 2024
Short summary
Short summary
We investigated the behaviour of air bubble plumes in the upper ocean in various stormy conditions. We conducted a field experiment in the North Adriatic Sea using high-resolution sonar. We found that bubble penetration depths respond rapidly to wind and wave forcings and can be triggered by the cooling of the water masses. We also found a strong connection between bubble depths and theoretical CO2 gas transfer. Our findings have implications for air–sea interaction studies.
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 16, 6899–6919, https://doi.org/10.5194/gmd-16-6899-2023, https://doi.org/10.5194/gmd-16-6899-2023, 2023
Short summary
Short summary
We propose a discrete multilayer shallow water model based on z-layers which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation independently of the vertical resolution. The algorithm is based on a two-step procedure used in numerical simulations with moving boundaries (grid movement followed by a grid topology change, that is, the insertion/removal of surface layers), which avoids the appearance of very thin surface layers.
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023, https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Short summary
Surface waves that propagate in oceanic or coastal environments get influenced by their surroundings. Changes in the ambient current or the depth profile affect the wave propagation path, and the change in wave direction is called refraction. Some analytical solutions to the governing equations exist under ideal conditions, but for realistic situations, the equations must be solved numerically. Here we present such a numerical solver under an open-source license.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Marco Bajo, Christian Ferrarin, Georg Umgiesser, Andrea Bonometto, and Elisa Coraci
Ocean Sci., 19, 559–579, https://doi.org/10.5194/os-19-559-2023, https://doi.org/10.5194/os-19-559-2023, 2023
Short summary
Short summary
This work uses a hydrodynamic model which assimilates in situ data to reproduce tides, surges, and seiches in the Mediterranean basin. Furthermore, we study the periods of the barotropic modes of the Mediterranean and Adriatic basins. This research aims to improve the forecasting and reanalysis for operational warning and climatological studies. It aims also to reach a better knowledge of these sea level components in this area.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Graig Sutherland, Victor de Aguiar, Lars-Robert Hole, Jean Rabault, Mohammed Dabboor, and Øyvind Breivik
The Cryosphere, 16, 2103–2114, https://doi.org/10.5194/tc-16-2103-2022, https://doi.org/10.5194/tc-16-2103-2022, 2022
Short summary
Short summary
The marginal ice zone (MIZ), which is the transition region between the open ocean and the dense pack ice, is a very dynamic region comprising a mixture of ice and ocean conditions. Using novel drifters deployed in various ice conditions in the MIZ, several material transport models are tested with two operational ice–ocean prediction systems. A new general transport equation, which uses both the ice and ocean solutions, is developed that reduces the error in drift prediction for our case study.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 14, 645–659, https://doi.org/10.5194/gmd-14-645-2021, https://doi.org/10.5194/gmd-14-645-2021, 2021
Short summary
Short summary
The problem of the optimization of ocean monitoring networks is tackled through the implementation of data assimilation techniques in a numerical model. The methodology has been applied to the tide gauge network in the Lagoon of Venice (Italy). The data assimilation methods allow identifying the minimum number of stations and their distribution that correctly represent the lagoon's dynamics. The methodology is easily exportable to other environments and can be extended to other variables.
Cited articles
Ådlandsvik, B.: VertEgg – a toolbox for simulation of vertical
distributions of fish eggs, version 1.0, Institute of Marine Research, Bergen, 66 pp., 2000. a
Aghito, M.: ChemicalDrift 1.0: code (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7429159, 2022a. a
Aghito, M.: ChemicalDrift 1.0: code and data (1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7249447, 2022b. a
Azarpira, M., Zarrati, A. R., and Farrokhzad, P.: Comparison between the
Lagrangian and Eulerian Approach in Simulation of Free Surface Air-Core
Vortices, Water, 13, 726, https://doi.org/10.3390/w13050726, 2021. a
Becker, A., Wotawa, G., De Geer, L.-E., Seibert, P., Draxler, R. R., Sloan,
C., D’Amours, R., Hort, M., Glaab, H., Heinrich, P., Grillon, Y.,
Shershakov, V., Katayama, K., Zhang, Y., Stewart, P., Hirtl, M., Jean, M.,
and Chen, P.: Global backtracking of anthropogenic radionuclides by means of
a receptor oriented ensemble dispersion modelling system in support of
Nuclear-Test-Ban Treaty verification, Atmos. Environ., 41,
4520–4534, https://doi.org/10.1016/j.atmosenv.2006.12.048, 2007. a
Bellafiore, D., Mc Kiver, W., Ferrarin, C., and Umgiesser, G.: The
importance of modeling nonhydrostatic processes for dense water reproduction
in the southern Adriatic Sea, Ocean Model., 125, 22–28,
https://doi.org/10.1016/j.ocemod.2018.03.001, 2018. a
Brekke, C., Espeseth, M. M., Dagestad, K.-F., Röhrs, J., Hole, L. R., and
Reigber, A.: Integrated Analysis of Multisensor Datasets and Oil Drift
Simulations – A Free-Floating Oil Experiment in the Open Ocean, J.
Geophys. Res.-Oceans, 126, e2020JC016499,
https://doi.org/10.1029/2020JC016499, 2021. a
Calgaro, L., Badetti, E., Bonetto, A., Contessi, S., Pellay, R., Ferrari, G.,
Artioli, G., and Marcomini, A.: Consecutive thermal and wet conditioning
treatments of sedimentary stabilized cementitious materials from HPSS®
technology: Effects on leaching and microstructure, J. Environ.
Manage., 250, 109503, https://doi.org/10.1016/j.jenvman.2019.109503, 2019. a
Calgaro, L., Contessi, S., Bonetto, A., Badetti, E., Ferrari, G., Artioli, G.,
and Marcomini, A.: Calcium aluminate cement as an alternative to ordinary
Portland cement for the remediation of heavy metals contaminated soil:
mechanisms and performance, J. Soil. Sediment., 21, 1755–1768, https://doi.org/10.1007/s11368-020-02859-x, 2021. a
Chang, Y.-T., Park, H. K., Lee, S., and Kim, E.: Have Emission Control Areas
(ECAs) harmed port efficiency in Europe?, Transport. Res. D, 58, 39–53, https://doi.org/10.1016/j.trd.2017.10.018, 2018. a
Dagestad, K.-F., Röhrs, J., Breivik, Ø., and Ådlandsvik, B.: OpenDrift v1.0: a generic framework for trajectory modelling, Geosci. Model Dev., 11, 1405–1420, https://doi.org/10.5194/gmd-11-1405-2018, 2018. a, b, c
D'Amours, R., Malo, A., Servranckx, R., Bensimon, D., Trudel, S., and
Gauthier-Bilodeau, J.-P.: Application of the atmospheric Lagrangian particle
dispersion model MLDP0 to the 2008 eruptions of Okmok and Kasatochi
volcanoes, J. Geophys. Res.-Atmos., 115, D00L11,
https://doi.org/10.1029/2009JD013602, 2010. a
Danovaro, R. and Boero, F.: Italian Seas, in: World Seas: an Environmental
Evaluation, Elsevier, 283–306, https://doi.org/10.1016/B978-0-12-805068-2.00060-7,
2019. a
Deacon, E. L.: Gas transfer to and across an air-water interface, Tellus, 29,
363–374, https://doi.org/10.1111/j.2153-3490.1977.tb00746.x, 1977. a
Deltares: Delft3D WAVE User manual, Delft, https://content.oss.deltares.nl/delft3d4/D-Water_Quality_User_Manual.pdf, (last access: 28 April 2023), 2023. a
Draxler, R., Arnold, D., Chino, M., Galmarini, S., Hort, M., Jones, A.,
Leadbetter, S., Malo, A., Maurer, C., Rolph, G., Saito, K., Servranckx, R.,
Shimbori, T., Solazzo, E., and Wotawa, G.: World Meteorological
Organization's model simulations of the radionuclide dispersion and
deposition from the Fukushima Daiichi nuclear power plant accident, J.
Environ. Radioactiv., 139, 172–184,
https://doi.org/10.1016/j.jenvrad.2013.09.014, 2015. a
Fantke, P.: USEtox (R) 2.0 Documentation (Version 1.1),
https://doi.org/10.11581/DTU:00000011, 2018. a
Ferrarin, C., Davolio, S., Bellafiore, D., Ghezzo, M., Maicu, F., Drofa, O.,
Umgiesser, G., Bajo, M., De Pascalis, F., Malguzzi, P., Zaggia, L.,
Lorenzetti, G., Manfè, G., and Mc Kiver, W.: Cross-scale operational
oceanography in the Adriatic Sea, J. Oper. Oceanogr., 12, 86–103,
https://doi.org/10.1080/1755876X.2019.1576275, 2019. a
Fofonoff, N. and Millard Jr, R.: Algorithms for the computation of fundamental
properties of seawater, UNESCO Technical Papers in Marine Sciences, 44,
https://doi.org/10.25607/OBP-1450, 1983. a
Galí, M., Falls, M., Claustre, H., Aumont, O., and Bernardello, R.: Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean, Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, 2022. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horànyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a
Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J. F., Jefferson, A., Mefford, T., Quinn, P. K., Sharma, S., Ström, J., and Stohl, A.: Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output, Atmos. Chem. Phys., 10, 669–693, https://doi.org/10.5194/acp-10-669-2010, 2010. a
Hole, L. R., de Aguiar, V., Dagestad, K.-F., Kourafalou, V. H., Androulidakis,
Y., Kang, H., Le Hénaff, M., and Calzada, A.: Long term simulations of
potential oil spills around Cuba, Mar. Pollut. Bull., 167, 112285, https://doi.org/10.1016/j.marpolbul.2021.112285,
2021. a
Honti, M., Hahn, S., Hennecke, D., Junker, T., Shrestha, P., and Fenner, K.:
Bridging across OECD 308 and 309 Data in Search of a Robust Biotransformation
Indicator, Environ. Sci. Technol., 50, 6865–6872,
https://doi.org/10.1021/acs.est.6b01097, 2016. a
Jalkanen, J.-P., Johansson, L., Wilewska-Bien, M., Granhag, L., Ytreberg, E., Eriksson, K. M., Yngsell, D., Hassellöv, I.-M., Magnusson, K., Raudsepp, U., Maljutenko, I., Winnes, H., and Moldanova, J.: Modelling of discharges from Baltic Sea shipping, Ocean Sci., 17, 699–728, https://doi.org/10.5194/os-17-699-2021, 2021. a
Johnson, M. T.: A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas, Ocean Sci., 6, 913–932, https://doi.org/10.5194/os-6-913-2010, 2010. a
Karickhoff, S. W. and Morris, K. R.: Sorption dynamics of hydrophobic
pollutants in sediment suspensions, Environ. Toxicol. Chem.,
4, 469–479, https://doi.org/10.1002/etc.5620040407, 1985. a, b
Kobayashi, T., Otosaka, S., Togawa, O., and Hayashi, K.: Development of a
Non-conservative Radionuclides Dispersion Model in the Ocean and its
Application to Surface Cesium-137 Dispersion in the Irish Sea, J.
Nucl. Sci. Tech., 44, 238–247,
https://doi.org/10.1080/18811248.2007.9711278, 2007. a
Lee, H.-J., Kim, S.-W., Brioude, J., Cooper, O. R., Frost, G. J., Kim, C.-H.,
Park, R. J., Trainer, M., and Woo, J.-H.: Transport of NOx in East Asia
identified by satellite and in situ measurements and Lagrangian particle
dispersion model simulations, J. Geophys. Res.-Atmos.,
119, 2574–2596, https://doi.org/10.1002/2013JD021185, 2014. a
Lunde Hermansson, A., Hassellöv, I.-M., Moldanová, J., and Ytreberg, E.:
Comparing emissions of polyaromatic hydrocarbons and metals from marine fuels
and scrubbers, Transport. Res. D, 97,
102912, https://doi.org/10.1016/j.trd.2021.102912, 2021. a, b
McGillis, W. R., Edson, J. B., Hare, J. E., and Fairall, C. W.: Direct
covariance air-sea CO2 fluxes, J. Geophys. Res.-Oceans, 106, 16729–16745, https://doi.org/10.1029/2000JC000506, 2001. a
Myksvoll, M. S., Jung, K.-M., Albretsen, J., and Sundby, S.: Modelling
dispersal of eggs and quantifying connectivity among Norwegian coastal cod
subpopulations, ICES J. Mar. Sci., 71, 957–969,
https://doi.org/10.1093/icesjms/fst022, 2013. a
Naidu, R., Biswas, B., Willett, I. R., Cribb, J., Kumar Singh, B., Paul
Nathanail, C., Coulon, F., Semple, K. T., Jones, K. C., Barclay, A., and
Aitken, R. J.: Chemical pollution: A growing peril and potential
catastrophic risk to humanity, Environ. Int., 156, 106616,
https://doi.org/10.1016/j.envint.2021.106616, 2021. a
Onink, V., Jongedijk, C. E., Hoffman, M. J., van Sebille, E., and Laufkötter,
C.: Global simulations of marine plastic transport show plastic trapping in
coastal zones, Enviro. Res. Lett., 16, 064053,
https://doi.org/10.1088/1748-9326/abecbd, 2021. a
Parnis, J. M. and Mackay, D.: Multimedia Environmental Models, CRC Press,
https://doi.org/10.1201/9780367809829, 2020. a
Paterson, S. and Mackay, D.: Interpreting chemical partitioning in
soil–plant–air systems with a fugacity model, in: Plant Contamination: Modeling and Simulation of Organic ChemicalProcesses, edited by: Trapp, S. and McFarlane, J. C., Lewis, Boca Raton, FL, USA, 191–214, 1995. a
Periáñez, R.: A modelling study on 137Cs and 239,240Pu behaviour in the
Alborán Sea, western Mediterranean, J. Environ. Radioactiv.,
99, 694–715, https://doi.org/10.1016/J.JENVRAD.2007.09.011, 2008. a
Periáñez, R.: Modelling the environmental behaviour of pollutants in
Algeciras Bay (south Spain), Mar. Pollut. Bull., 64, 221–232,
https://doi.org/10.1016/j.marpolbul.2011.11.030, 2012. a
Periáñez, R. and Elliott, A. J.: A particle-tracking method for simulating
the dispersion of non-conservative radionuclides in coastal waters, J.
Environ. Radioactiv., 58, 13–33,
https://doi.org/10.1016/S0265-931X(01)00028-5, 2002. a, b, c
Periáñez, R., Hierro, A., Bolívar, J. P., and Vaca, F.: The geochemical
behavior of natural radionuclides in coastal waters: A modeling study for the
Huelva estuary, J. Marine Syst., 126, 82–93,
https://doi.org/10.1016/j.jmarsys.2012.08.001, 2013. a
Pirotta, E., Thomas, L., Costa, D. P., Hall, A. J., Harris, C. M., Harwood, J.,
Kraus, S. D., Miller, P. J., Moore, M. J., Photopoulou, T., Rolland, R. M.,
Schwacke, L., Simmons, S. E., Southall, B. L., and Tyack, P. L.:
Understanding the combined effects of multiple stressors: A new perspective
on a longstanding challenge, Sci. Total Environ., 821,
153322, https://doi.org/10.1016/j.scitotenv.2022.153322, 2022. a
Prata, A. J., Carn, S. A., Stohl, A., and Kerkmann, J.: Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat, Atmos. Chem. Phys., 7, 5093–5103, https://doi.org/10.5194/acp-7-5093-2007, 2007. a
Röhrs, J., Dagestad, K.-F., Asbjørnsen, H., Nordam, T., Skancke, J., Jones, C. E., and Brekke, C.: The effect of vertical mixing on the horizontal drift of oil spills, Ocean Sci., 14, 1581–1601, https://doi.org/10.5194/os-14-1581-2018, 2018. a
Sardain, A., Sardain, E., and Leung, B.: Global forecasts of shipping traffic
and biological invasions to 2050, Nat. Sustain., 2, 274–282,
https://doi.org/10.1038/s41893-019-0245-y, 2019. a
Schwarzenbach, R., Gschwend, P., and Imboden, D.: Environmental organic
chemistry, Wiley, New York, ISBN 978-0-471-83941-5, 1993. a
Seiter, K., Hensen, C., Schröter, J., and Zabel, M.: Organic carbon
content in surface sediments – Defining regional provinces, Deep-Sea
Res. Pt. I, 51, 2001–2026,
https://doi.org/10.1016/j.dsr.2004.06.014, 2004. a
Simonsen, M., Lind, O. C., Øyvind Saetra, Isachsen, P. E., Teien, H. C.,
Albretsen, J., and Salbu, B.: Coastal transport of river-discharged
radionuclides: Impact of speciation and transformation processes in numerical
model simulations, Sci. Total Environ., 669, 856–871,
https://doi.org/10.1016/J.SCITOTENV.2019.01.434, 2019a. a, b, c, d, e
Simonsen, M., Teien, H. C., Lind, O. C., Øyvind Saetra, Albretsen, J., and
Salbu, B.: Modeling key processes affecting Al speciation and transport in
estuaries, Sci. Total Environ., 687, 1147–1163,
https://doi.org/10.1016/J.SCITOTENV.2019.05.318, 2019b. a
Site, A. D.: Factors Affecting Sorption of Organic Compounds in Natural
Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A
Review, J. Phys. Chem. Ref. Data, 30, 187–439,
https://doi.org/10.1063/1.1347984, 2001. a
Stokes, G. G.: On the effect of the internal friction of fluids on the motion
of pendulums, Transactions of the Cambridge Philosophical Society, 9, Part
ii, 8–106, 1851. a
Sundby, S.: A one-dimensional model for the vertical distribution of pelagic
fish eggs in the mixed layer, Deep-Sea Res. Pt. A, 30, 645–661,
https://doi.org/10.1016/0198-0149(83)90042-0, 1983. a
Szymczycha, B., Zaborska, A., Bełdowski, J., Kuliński, K.,
Beszczyńska-Möller, A., Kȩdra, M., and Pempkowiak, J.: The
Baltic Sea, in: World Seas: an Environmental Evaluation,
Elsevier, 85–111, https://doi.org/10.1016/B978-0-12-805068-2.00005-X, 2019. a
Testa, D.: A note on the potential designation of the mediterranean sea as a
sulphur emission control area, Mar. Policy, 121, 104145,
https://doi.org/10.1016/j.marpol.2020.104145, 2020. a
Tonani, M., Pinardi, N., Fratianni, C., Pistoia, J., Dobricic, S., Pensieri, S., de Alfonso, M., and Nittis, K.: Mediterranean Forecasting System: forecast and analysis assessment through skill scores, Ocean Sci., 5, 649–660, https://doi.org/10.5194/os-5-649-2009, 2009. a
Turner, D. R., Hassellöv, I.-M., Ytreberg, E., and Rutgersson, A.:
Shipping and the environment: Smokestack emissions, scrubbers and
unregulated oceanic consequences, Elementa, 5, 45,
https://doi.org/10.1525/elementa.167, 2017. a
Turner, D. R., Edman, M., Gallego-Urrea, J. A., Claremar, B., Hassellöv,
I.-M., Omstedt, A., and Rutgersson, A.: The potential future contribution of
shipping to acidification of the Baltic Sea, Ambio, 47, 368–378,
https://doi.org/10.1007/s13280-017-0950-6, 2018. a
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F.,
Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli,
F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H.,
Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121,
49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018. a
Vedachalam, S., Baquerizo, N., and Dalai, A. K.: Review on impacts of low
sulfur regulations on marine fuels and compliance options, Fuel, 310,
122243, https://doi.org/10.1016/j.fuel.2021.122243, 2022. a
Zhang, Y., Eastham, S. D., Lau, A. K., Fung, J. C., and Selin, N. E.: Global
air quality and health impacts of domestic and international shipping,
Environ. Res. Lett., 16, 084055, https://doi.org/10.1088/1748-9326/ac146b,
2021. a
Short summary
The newly developed ChemicalDrift model can simulate the transport and fate of chemicals in the ocean and in coastal regions. The model combines ocean physics, including transport due to currents, turbulence due to surface winds and the sinking of particles to the sea floor, with ocean chemistry, such as the partitioning, the degradation and the evaporation of chemicals. The model will be utilized for risk assessment of ocean and sea-floor contamination from pollutants emitted from shipping.
The newly developed ChemicalDrift model can simulate the transport and fate of chemicals in the...