Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2167-2023
https://doi.org/10.5194/gmd-16-2167-2023
Methods for assessment of models
 | 
20 Apr 2023
Methods for assessment of models |  | 20 Apr 2023

Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model

Liang Wang, Bingcheng Wan, Shaohui Zhou, Haofei Sun, and Zhiqiu Gao

Related authors

Quality assessment of YUNYAO radio occultation data in the neutral atmosphere
Xiaoze Xu, Wei Han, Jincheng Wang, Zhiqiu Gao, Fenghui Li, Yan Cheng, and Naifeng Fu
Atmos. Meas. Tech., 18, 1339–1353, https://doi.org/10.5194/amt-18-1339-2025,https://doi.org/10.5194/amt-18-1339-2025, 2025
Short summary
All-Sky Temperature and Humidity Retrieval from the MWRI-RM Onboard the FY-3G Satellite
Minghua Liu, Wei Han, Yunfan Yang, Haofei Sun, and Ruoying Yin
EGUsphere, https://doi.org/10.5194/egusphere-2025-680,https://doi.org/10.5194/egusphere-2025-680, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024,https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Reconstruction of 3D precipitation measurements from FY-3G MWRI-RM imaging and sounding channels
Yunfan Yang, Wei Han, Haofei Sun, Jun Li, Jiapeng Yan, and Zhiqiu Gao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-175,https://doi.org/10.5194/amt-2024-175, 2024
Revised manuscript under review for AMT
Short summary
A robust error correction method for numerical weather prediction wind speed based on Bayesian optimization, variational mode decomposition, principal component analysis, and random forest: VMD-PCA-RF (version 1.0.0)
Shaohui Zhou, Chloe Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
Geosci. Model Dev., 16, 6247–6266, https://doi.org/10.5194/gmd-16-6247-2023,https://doi.org/10.5194/gmd-16-6247-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025,https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025,https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
NeuralMie (v1.0): an aerosol optics emulator
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025,https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025,https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary

Cited articles

Alemany, S., Beltran, J., Perez, A., and Ganzfried, S.: Predicting Hurricane Trajectories Using a Recurrent Neural Network, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2–7 February 2018, Lousiana, USA, 33, 468–475, https://doi.org/10.1609/aaai.v33i01.3301468, 2018. 
Ali, M. M., Kishtawal, C. M., and Jain, S.: Predicting cyclone tracks in the north Indian Ocean: An artificial neural network approach, Geophys. Res. Lett., 34, 545–559, https://doi.org/10.1029/2006gl028353, 2007. 
Bathla, G.: Stock Price prediction using LSTM and SVR, 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), 6–8 November 2020, Himachal Pradesh, India, 211–214, https://doi.org/10.1109/PDGC50313.2020.9315800, 2020. 
Boussioux, L., Zeng, C., Guenais, T., and Bertsimas, D.: Hurricane Forecasting: A Novel Multimodal Machine Learning Framework, Weather Forecast., 37, 817–831, https://doi.org/10.1175/WAF-D-21-0091.1, 2022. 
Brand, S., Buenafe, C. A., and Hamilton, H. D.: Comparison of Tropical Cyclone Motion and Environmental Steering, Mon. Weather Rev., 109, 908–909, https://doi.org/10.1175/1520-0493(1981)109<0908:cotcma>2.0.co;2, 1981. 
Download
Short summary
The past 24 h TC trajectories and meteorological field data were used to forecast TC tracks in the northwestern Pacific from hours 6–72 based on GRU_CNN, which we proposed in this paper and which has better prediction results than traditional single deep-learning methods. The historical steering flow of cyclones has a significant effect on improving the accuracy of short-term forecasting, while, in long-term forecasting, the SST and geopotential height will have a particular impact.
Share