Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2167-2023
https://doi.org/10.5194/gmd-16-2167-2023
Methods for assessment of models
 | 
20 Apr 2023
Methods for assessment of models |  | 20 Apr 2023

Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model

Liang Wang, Bingcheng Wan, Shaohui Zhou, Haofei Sun, and Zhiqiu Gao

Related authors

Evaluation of FY-4A/AGRI visible reflectance using the equivalents derived from the forecasts of CMA-MESO using RTTOV
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, and Peilong Yu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-12,https://doi.org/10.5194/amt-2024-12, 2024
Preprint under review for AMT
Short summary
A robust error correction method for numerical weather prediction wind speed based on Bayesian optimization, variational mode decomposition, principal component analysis, and random forest: VMD-PCA-RF (version 1.0.0)
Shaohui Zhou, Chloe Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
Geosci. Model Dev., 16, 6247–6266, https://doi.org/10.5194/gmd-16-6247-2023,https://doi.org/10.5194/gmd-16-6247-2023, 2023
Short summary
A deep learning method for convective weather forecasting: CNN-BiLSTM-AM (version 1.0)
Jianbin Zhang, Zhiqiu Gao, Yubin Li, and Yuncong Jiang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-187,https://doi.org/10.5194/gmd-2023-187, 2023
Preprint withdrawn
Short summary
A benchmark dataset of diurnal- and seasonal-scale radiation, heat, and CO2 fluxes in a typical East Asian monsoon region
Zexia Duan, Zhiqiu Gao, Qing Xu, Shaohui Zhou, Kai Qin, and Yuanjian Yang
Earth Syst. Sci. Data, 14, 4153–4169, https://doi.org/10.5194/essd-14-4153-2022,https://doi.org/10.5194/essd-14-4153-2022, 2022
Short summary
Surface Urban Energy and Water Balance Scheme (v2020a) in vegetated areas: parameter derivation and performance evaluation using FLUXNET2015 dataset
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022,https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary

Related subject area

Atmospheric sciences
MEXPLORER 1.0.0 – a mechanism explorer for analysis and visualization of chemical reaction pathways based on graph theory
Rolf Sander
Geosci. Model Dev., 17, 2419–2425, https://doi.org/10.5194/gmd-17-2419-2024,https://doi.org/10.5194/gmd-17-2419-2024, 2024
Short summary
Advances and prospects of deep learning for medium-range extreme weather forecasting
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 2347–2358, https://doi.org/10.5194/gmd-17-2347-2024,https://doi.org/10.5194/gmd-17-2347-2024, 2024
Short summary
An overview of the Western United States Dynamically Downscaled Dataset (WUS-D3)
Stefan Rahimi, Lei Huang, Jesse Norris, Alex Hall, Naomi Goldenson, Will Krantz, Benjamin Bass, Chad Thackeray, Henry Lin, Di Chen, Eli Dennis, Ethan Collins, Zachary J. Lebo, Emily Slinskey, Sara Graves, Surabhi Biyani, Bowen Wang, Stephen Cropper, and the UCLA Center for Climate Science Team
Geosci. Model Dev., 17, 2265–2286, https://doi.org/10.5194/gmd-17-2265-2024,https://doi.org/10.5194/gmd-17-2265-2024, 2024
Short summary
cloudbandPy 1.0: an automated algorithm for the detection of tropical–extratropical cloud bands
Romain Pilon and Daniela I. V. Domeisen
Geosci. Model Dev., 17, 2247–2264, https://doi.org/10.5194/gmd-17-2247-2024,https://doi.org/10.5194/gmd-17-2247-2024, 2024
Short summary
PyRTlib: an educational Python-based library for non-scattering atmospheric microwave radiative transfer computations
Salvatore Larosa, Domenico Cimini, Donatello Gallucci, Saverio Teodosio Nilo, and Filomena Romano
Geosci. Model Dev., 17, 2053–2076, https://doi.org/10.5194/gmd-17-2053-2024,https://doi.org/10.5194/gmd-17-2053-2024, 2024
Short summary

Cited articles

Alemany, S., Beltran, J., Perez, A., and Ganzfried, S.: Predicting Hurricane Trajectories Using a Recurrent Neural Network, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2–7 February 2018, Lousiana, USA, 33, 468–475, https://doi.org/10.1609/aaai.v33i01.3301468, 2018. 
Ali, M. M., Kishtawal, C. M., and Jain, S.: Predicting cyclone tracks in the north Indian Ocean: An artificial neural network approach, Geophys. Res. Lett., 34, 545–559, https://doi.org/10.1029/2006gl028353, 2007. 
Bathla, G.: Stock Price prediction using LSTM and SVR, 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), 6–8 November 2020, Himachal Pradesh, India, 211–214, https://doi.org/10.1109/PDGC50313.2020.9315800, 2020. 
Boussioux, L., Zeng, C., Guenais, T., and Bertsimas, D.: Hurricane Forecasting: A Novel Multimodal Machine Learning Framework, Weather Forecast., 37, 817–831, https://doi.org/10.1175/WAF-D-21-0091.1, 2022. 
Brand, S., Buenafe, C. A., and Hamilton, H. D.: Comparison of Tropical Cyclone Motion and Environmental Steering, Mon. Weather Rev., 109, 908–909, https://doi.org/10.1175/1520-0493(1981)109<0908:cotcma>2.0.co;2, 1981. 
Download
Short summary
The past 24 h TC trajectories and meteorological field data were used to forecast TC tracks in the northwestern Pacific from hours 6–72 based on GRU_CNN, which we proposed in this paper and which has better prediction results than traditional single deep-learning methods. The historical steering flow of cyclones has a significant effect on improving the accuracy of short-term forecasting, while, in long-term forecasting, the SST and geopotential height will have a particular impact.