Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2167-2023
https://doi.org/10.5194/gmd-16-2167-2023
Methods for assessment of models
 | 
20 Apr 2023
Methods for assessment of models |  | 20 Apr 2023

Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model

Liang Wang, Bingcheng Wan, Shaohui Zhou, Haofei Sun, and Zhiqiu Gao

Related authors

Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024,https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Reconstruction of 3D precipitation measurements from FY-3G MWRI-RM imaging and sounding channels
Yunfan Yang, Wei Han, Haofei Sun, Jun Li, Jiapeng Yan, and Zhiqiu Gao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-175,https://doi.org/10.5194/amt-2024-175, 2024
Revised manuscript under review for AMT
Short summary
Quality Assessment of YUNYAO GNSS-RO Refractivity Data in the Neutral Atmosphere
Xiaoze Xu, Wei Han, Jincheng Wang, Zhiqiu Gao, Fenghui Li, Yan Cheng, and Naifeng Fu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-150,https://doi.org/10.5194/amt-2024-150, 2024
Revised manuscript under review for AMT
Short summary
A robust error correction method for numerical weather prediction wind speed based on Bayesian optimization, variational mode decomposition, principal component analysis, and random forest: VMD-PCA-RF (version 1.0.0)
Shaohui Zhou, Chloe Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
Geosci. Model Dev., 16, 6247–6266, https://doi.org/10.5194/gmd-16-6247-2023,https://doi.org/10.5194/gmd-16-6247-2023, 2023
Short summary
A deep learning method for convective weather forecasting: CNN-BiLSTM-AM (version 1.0)
Jianbin Zhang, Zhiqiu Gao, Yubin Li, and Yuncong Jiang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-187,https://doi.org/10.5194/gmd-2023-187, 2023
Preprint withdrawn
Short summary

Related subject area

Atmospheric sciences
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025,https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025,https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025,https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025,https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary

Cited articles

Alemany, S., Beltran, J., Perez, A., and Ganzfried, S.: Predicting Hurricane Trajectories Using a Recurrent Neural Network, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2–7 February 2018, Lousiana, USA, 33, 468–475, https://doi.org/10.1609/aaai.v33i01.3301468, 2018. 
Ali, M. M., Kishtawal, C. M., and Jain, S.: Predicting cyclone tracks in the north Indian Ocean: An artificial neural network approach, Geophys. Res. Lett., 34, 545–559, https://doi.org/10.1029/2006gl028353, 2007. 
Bathla, G.: Stock Price prediction using LSTM and SVR, 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), 6–8 November 2020, Himachal Pradesh, India, 211–214, https://doi.org/10.1109/PDGC50313.2020.9315800, 2020. 
Boussioux, L., Zeng, C., Guenais, T., and Bertsimas, D.: Hurricane Forecasting: A Novel Multimodal Machine Learning Framework, Weather Forecast., 37, 817–831, https://doi.org/10.1175/WAF-D-21-0091.1, 2022. 
Brand, S., Buenafe, C. A., and Hamilton, H. D.: Comparison of Tropical Cyclone Motion and Environmental Steering, Mon. Weather Rev., 109, 908–909, https://doi.org/10.1175/1520-0493(1981)109<0908:cotcma>2.0.co;2, 1981. 
Download
Short summary
The past 24 h TC trajectories and meteorological field data were used to forecast TC tracks in the northwestern Pacific from hours 6–72 based on GRU_CNN, which we proposed in this paper and which has better prediction results than traditional single deep-learning methods. The historical steering flow of cyclones has a significant effect on improving the accuracy of short-term forecasting, while, in long-term forecasting, the SST and geopotential height will have a particular impact.