Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-1119-2023
https://doi.org/10.5194/gmd-16-1119-2023
Development and technical paper
 | 
15 Feb 2023
Development and technical paper |  | 15 Feb 2023

AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols

Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel

Related authors

Representing improved tropospheric ozone distribution by including lightning NOx emissions in CHIMERE
Sanhita Ghosh, Arineh Cholakian, Sylvain Mailler, and Laurent Menut
EGUsphere, https://doi.org/10.5194/egusphere-2024-3087,https://doi.org/10.5194/egusphere-2024-3087, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024,https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
The CHIMERE chemistry-transport model v2023r1
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024,https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
What is the relative impact of nudging and online coupling on meteorological variables, pollutant concentrations and aerosol optical properties?
Laurent Menut, Bertrand Bessagnet, Arineh Cholakian, Guillaume Siour, Sylvain Mailler, and Romain Pennel
Geosci. Model Dev., 17, 3645–3665, https://doi.org/10.5194/gmd-17-3645-2024,https://doi.org/10.5194/gmd-17-3645-2024, 2024
Short summary
An improved version of the piecewise parabolic method advection scheme: description and performance assessment in a bidimensional test case with stiff chemistry in toyCTM v1.0.1
Sylvain Mailler, Romain Pennel, Laurent Menut, and Arineh Cholakian
Geosci. Model Dev., 16, 7509–7526, https://doi.org/10.5194/gmd-16-7509-2023,https://doi.org/10.5194/gmd-16-7509-2023, 2023
Short summary

Related subject area

Atmospheric sciences
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024,https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary

Cited articles

Adebiyi, A. A. and Kok, J. F.: Climate models miss most of the coarse dust in the atmosphere, Sci. Adv., https://doi.org/10.1126/sciadv.aaz9507, 2020. a
Betzer, P. R., Carder, K. L., Duce, R. A., Merrill, J. T., Tindale, R. W., Uematsu, M., Costello, D. K., Young, R. W., Feely, R. A., Breland, J. A., Bernstein, R. E., and Greco, A. M.: Long-range transport of giant mineral aerosol particles, Nature, 336, 568–571, https://doi.org/10.1038/336568a0, 1988. a
Bell, C. and Contributors: Thermo: Chemical properties component of Chemical Engineering Design Library (ChEDL), GitHub [code], https://github.com/CalebBell/thermo (last access: 10 February 2023), 2016–2021. a
Cheng, N.-S.: Comparison of formulas for drag coefficient and settling velocity of spherical particles, Powder Technol., 189, 395–398, https://doi.org/10.1016/j.powtec.2008.07.006, 2009. a, b, c, d, e
Clift, R. and Gauvin, W. H.: Motion of entrained particles in gas streams, Can. J. Chem. Eng., 49, 439–448, https://doi.org/10.1002/cjce.5450490403, 1971. a, b, c, d, e, f, g, h, i, j, k, l
Short summary
Large or even giant particles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.