Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-1119-2023
https://doi.org/10.5194/gmd-16-1119-2023
Development and technical paper
 | 
15 Feb 2023
Development and technical paper |  | 15 Feb 2023

AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols

Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel

Related authors

New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024,https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
The CHIMERE chemistry-transport model v2023r1
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024,https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
What is the relative impact of nudging and online coupling on meteorological variables, pollutant concentrations and aerosol optical properties?
Laurent Menut, Bertrand Bessagnet, Arineh Cholakian, Guillaume Siour, Sylvain Mailler, and Romain Pennel
Geosci. Model Dev., 17, 3645–3665, https://doi.org/10.5194/gmd-17-3645-2024,https://doi.org/10.5194/gmd-17-3645-2024, 2024
Short summary
An improved version of the piecewise parabolic method advection scheme: description and performance assessment in a bidimensional test case with stiff chemistry in toyCTM v1.0.1
Sylvain Mailler, Romain Pennel, Laurent Menut, and Arineh Cholakian
Geosci. Model Dev., 16, 7509–7526, https://doi.org/10.5194/gmd-16-7509-2023,https://doi.org/10.5194/gmd-16-7509-2023, 2023
Short summary
Impact of Landes forest fires on air quality in France during the 2022 summer
Laurent Menut, Arineh Cholakian, Guillaume Siour, Rémy Lapere, Romain Pennel, Sylvain Mailler, and Bertrand Bessagnet
Atmos. Chem. Phys., 23, 7281–7296, https://doi.org/10.5194/acp-23-7281-2023,https://doi.org/10.5194/acp-23-7281-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024,https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024,https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024,https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024,https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024,https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary

Cited articles

Adebiyi, A. A. and Kok, J. F.: Climate models miss most of the coarse dust in the atmosphere, Sci. Adv., https://doi.org/10.1126/sciadv.aaz9507, 2020. a
Betzer, P. R., Carder, K. L., Duce, R. A., Merrill, J. T., Tindale, R. W., Uematsu, M., Costello, D. K., Young, R. W., Feely, R. A., Breland, J. A., Bernstein, R. E., and Greco, A. M.: Long-range transport of giant mineral aerosol particles, Nature, 336, 568–571, https://doi.org/10.1038/336568a0, 1988. a
Bell, C. and Contributors: Thermo: Chemical properties component of Chemical Engineering Design Library (ChEDL), GitHub [code], https://github.com/CalebBell/thermo (last access: 10 February 2023), 2016–2021. a
Cheng, N.-S.: Comparison of formulas for drag coefficient and settling velocity of spherical particles, Powder Technol., 189, 395–398, https://doi.org/10.1016/j.powtec.2008.07.006, 2009. a, b, c, d, e
Clift, R. and Gauvin, W. H.: Motion of entrained particles in gas streams, Can. J. Chem. Eng., 49, 439–448, https://doi.org/10.1002/cjce.5450490403, 1971. a, b, c, d, e, f, g, h, i, j, k, l
Short summary
Large or even giant particles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.