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Abstract. This study introduces AerSett v1.0 (AERosol
SETTling version 1.0), a model giving the settling speed
of big spherical aerosols in the atmosphere without going
through an iterative equation resolution. We prove that, for
all spherical atmospheric aerosols with diameter D up to
1000µm, this direct and explicit method including the drag
coefficient formulation of Clift and Gauvin (1971) and the
Davies (1945) slip correction factor gives results within 2 %
of the exact solution obtained from the numerical resolu-
tion of a non-linear fixed-point equation. This error is ac-
ceptable considering the uncertainties on the drag coefficient
formulations themselves. For D < 100µm, the error is be-
low 0.5 %. We provide a Fortran implementation of this sim-
ple and straightforward model, hoping that more chemistry–
transport models (CTMs) and general circulation models will
be able to take into account large-particle drag correction
to the settling speed of big spherical aerosol particles in
the atmosphere, without performing an iterative and time-
consuming calculation.

1 Introduction

One of the main purposes of chemistry–transport models
(CTMs) is to simulate the aerosol concentration in the at-
mosphere as accurately as possible. The settling velocity of
aerosols is a key driver of their dry removal from the atmo-
sphere (Zhang et al., 2001). With dry removal being the only
sink for atmospheric aerosol under dry conditions, any error
on representing the settling velocity of atmospheric aerosol
will have a direct impact on their modeled concentrations.

Fortunately, for particles with diameter D < 10µm, which
are the most significant for health effects, the Stokes law
(Stokes, 1851) along with slip correction factors (Cunning-
ham, 1910; Davies, 1945) gives a straightforward and accu-
rate way to calculate the settling speed of aerosol particles.

However, dust particles exist in the atmosphere with dif-
ferent sizes from D ' 0.1µm to D > 100µm (Ryder et al.,
2019). These authors classify mineral dust particles accord-
ing to three modes as follows:

– 0.1µm<D < 2.5µm: accumulation mode,

– 2.5µm<D < 20µm: coarse mode,

– 20µm<D <∞: giant mode.

The contribution of the giant mode is substantial, at least over
the Sahara: Ryder et al. (2019) show that not considering gi-
ant dust particles over the Sahara results in an underestima-
tion of mass concentration by 40 % as well as extinction by
as much as 18 % for shortwave radiation and 26 % for long-
wave radiation. Dust particles with diameter D up to 100µm
are present not only above the Sahara (Ryder et al., 2019)
but also far away from emission sources: Betzer et al. (1988)
have observed dust particles with D > 75µm in the atmo-
sphere more than 10000km away from their source. More
recently, van der Does et al. (2018) have observed dust par-
ticles with diameter up to 450µm over the Atlantic Ocean,
more than 2400km away from the West African coast. Mod-
eling coarse and giant dust particles is still a very challeng-
ing task. For example, Drakaki et al. (2022) show that the
WRFV4.2.1 model with a version of the GOCART–AFWA
dust scheme (see LeGrand et al., 2019), modified to include
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coarse and giant dust particles, underestimates the lifetime of
coarse and giant dust particles in the atmosphere. They show
that their simulation results are closer to observation when
they include an artificial reduction of particles’ settling ve-
locities by 60 % to 80 % (depending on the diameter). This
reduction is a way to account for underrepresented mech-
anisms such as non-sphericity of particles (Mallios et al.,
2020), or their electric charges, which have been discussed
as possible factors explaining a longer atmospheric lifetime
of coarse dust particles (Adebiyi and Kok, 2020). Several ob-
servational and modeling studies have addressed the question
of coarse and giant dust particles in the atmosphere: doing an
exhaustive bibliographical overview on this question falls be-
yond the scope of the present study. For a more complete bib-
liography, the reader is referred to van der Does et al. (2018),
Ryder et al. (2019) and Drakaki et al. (2022).

The settling speed of giant particles deviates substan-
tially from the Stokes law, an effect that can be taken into
account using mathematical formulations known as large-
particle drag corrections. Usually, these large-particle drag
corrections are performed by using empirical formulations of
the drag coefficient Cd as a function of the Reynolds number
Re (typically the one provided by Clift and Gauvin, 1971),
and numerically solving an equation to obtain an estimate of
the settling speed v∞ as a function of the characteristics of
the particle and of ambient air. This method is robust and per-
mits studies like Drakaki et al. (2022) while taking this effect
into account, but it induces large calculation costs. Since the
important impact of giant dust particles on the dust concen-
tration and optical effect has been demonstrated (e.g., Ryder
et al., 2019), there is an emerging need to solve the problems
that hinder the representation of giant dust particles in CTMs
and general circulation models. Designing a robust and effi-
cient method to calculate the settling speed of giant dust par-
ticles is a step in this direction. Until now, the gravitational
settling speed in most chemistry–transport models is calcu-
lated with a plain Stokes formulation and a slip correction
factor for the smallest particles, as in Zhang et al. (2001) but
without a large-particle drag correction (e.g., Sič et al., 2015;
Rémy et al., 2019; Shu et al., 2021). An exception to this
is the recent development exposed by Drakaki et al. (2022)
in the GOCART–AFWA dust scheme of WRFV4.2.1. In that
study, the Clift and Gauvin (1971) drag coefficient correc-
tion is taken into account by a bisection method, performed
at each time step, in each model cell and for each model size
bin to calculate the settling speed as a function of the particle
properties and the atmospheric conditions.

Since it has been highlighted by Drakaki et al. (2022) that
taking large-particle drag correction into account is impor-
tant for representing the settling of giant dust particles, the
goal of this article is to give a simple, robust and computa-
tionally efficient expression to calculate the settling speed of
spherical atmospheric aerosol, including large-particle drag
correction. As discussed thoroughly in Goossens (2019), sev-
eral parameterizations exist for the drag coefficient, each of

them fitting the reference data of Lapple and Sheperd (1940)
only in part. These parameterizations give drag coefficients
which differ between them and from measurements by a few
percents. Among these parameterizations, the Clift and Gau-
vin (1971) and Cheng (2009) formulations seem to perform
better according to the objective scores presented in Table 2
of Goossens (2019). In the present study, we base our calcu-
lations on the Clift and Gauvin (1971) drag coefficient for-
mulation and use Cheng (2009) as a benchmark of the un-
certainty that can exist between several state-of-the-art drag
coefficient formulations.

In Sect. 2, we review the basic equations that govern the
settling speed of spherical aerosol particles in the atmosphere
(leaving aside slip correction); in Sect. 3, we lay the basis for
a new methodology for finding the settling speed of the par-
ticle as a function of the particle and surrounding gas param-
eters. In Sect. 4, we apply this method to the case of the drag
coefficient parameterization of Clift and Gauvin (1971) and
give an approximated expression of the large-particle drag
correction factor. Sections 2, 3 and 4 focus on the large-
particle drag correction, ignoring the slip correction factor.
In Sect. 5, we extend the results of the previous sections by
showing how to combine the slip correction factor with the
large-particle drag correction, and we present the equations
that define the AerSett (AERosol SETTling) method, includ-
ing both effects. In Sect. 6, we evaluate the computational
benefit of this method compared to other numerical resolu-
tion strategies. Finally, we conclude in Sect. 7 by summa-
rizing the method we propose for the calculation of the set-
tling speed of large spherical aerosol particles as well as fu-
ture prospects for improving the representation of the settling
speed of aerosol particles in chemistry–transport models.

2 Basic equations

We will follow the notations of Mallios et al. (2020). The
settling speed v∞ of a spherical particle with diameter D is
given by

1
2
CdApρav

2
∞ =

(
ρp− ρa

)
Vpg, (1)

where Cd is the drag coefficient, Ap the projected area of the
particle normal to the flow, ρa the density of air, ρp the den-
sity of the settling particle, v∞ the settling speed of the parti-
cle, Vp the particle volume and g the acceleration of gravity.

In the case of spherical particles and for extremely small
Reynolds numbers, Stokes (1851) has shown that

Cd =
12
Re
, (2)

where the Reynolds number Re is defined as follows:

Re=
ρaDv∞

2µ
. (3)
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For all the calculations below, we have used the follow-
ing empirical expression for dynamic viscosity µ (NOAA/-
NASA/USAF, 1976):

µ=
βT

3
2

T + S
, (4)

where β = 1.458× 10−6 kgs−1 m−1 K−
1
2 and S = 110.4K.

While Eq. (2) only holds for extremely small Reynolds
number (Re< 0.1), Clift and Gauvin (1971) has given an em-
pirical expression of Cd as a function of Re, which holds up
to Re= 105:

Cd =
12
Re

(
1+ 0.2415 Re0.687

)
+

0.42

1+ 19 019
Re1.16

, (5)

where exponents 0.687 and 1.16 and coefficients 0.2415,
0.42 and 19 019 are empirical values that permit Eq. (5) to
fit experimental data. Hereinafter, we will refer to Eq. (5) as
the Clift–Gauvin formula.

Equations (1) and (5) are two equations for two unknowns,
v∞ and Cd. For small Reynolds numbers (Re< 0.1), Eq. (5)
is reduced to Eq. (2) and we obtain:

vStokes
∞ =

D2 (ρp− ρa
)
g

18µ
. (6)

If the Reynolds number exceeds 0.1, Eq. (2) does not hold,
and v∞ does not have a general analytical expression. The
solution to Eq. (2) can be obtained by an iterative fixed-point
method as suggested in van Boxel (1998), or by a bisection
method as in Drakaki et al. (2022). The results of this nu-
merical calculation are shown in Fig. 1. Figure 1a shows
that the Stokes equation (Eq. 6) gives excellent results for
D < 20µm, but it also shows that deviations from it due
to the departure of the drag coefficient from Eq. (2) grad-
ually arise when D exceeds 20µm, reaching −30% when
D ' 100µm and−90% whenD ' 1000µm (Fig. 1c). While
particles with diameter D ' 1000µm are not a concern for
chemistry–transport modeling, those with D ' 100µm are
an emerging concern due to recent observations of particles
with such diameters far away from their source (van der Does
et al., 2018).

Solving Eq. (1) with an iterative method as suggested in
van Boxel (1998) demands several iterations when the di-
ameter of the particle gets close to 100µm or beyond (see
Sect. 6). This is why we will expose a way to estimate v∞
from the physical parameters of the problem in a straightfor-
ward way.

3 Expressing v∞ from the parameters of the problem

To slightly generalize matters, let us rewrite Eq. (5) as

Cd =
12
Re
(1+ f (Re)) , (7)

where f is a function characterizing the deviation of Cd from
its Stokes (1851) expression.

Injecting Eq. (7) into Eq. (1), with Ap =
πD2

4 and Vp =
πD3

6 , we obtain:

v∞ =
D2 (ρp− ρa

)
g

18µ
×

1
(1+ f (Re))

, (8)

= vStokes
∞ ×

1
(1+ f (Re))

. (9)

Of course, Eq. (9) does not give an explicit formulation of v∞
since Re depends on v∞ (Eq. 3). However, we are looking
for a way to take advantage of Eq. (9) to obtain an explicit
estimate of v∞ so that we introduce the deviation of v∞ from
vStokes
∞ and δ as

v∞ = v
Stokes
∞ (1+ δ) . (10)

The terminal Reynolds number of the particle is equal to

Re=
ρaDv

Stokes
∞ (1+ δ)

2µ
= (1+ δ)

ρaD
3 (ρp− ρa

)
g

36µ2 . (11)

Let us introduce

R =
ρaD

3 (ρp− ρa
)
g

36µ2 , (12)

where R is the Reynolds number of the particle if it were
to fall at speed vStokes

∞ : we will call it the virtual Reynolds
number. The Reynolds number of the particle falling at its
corrected settling speed v∞ is R(1+ δ). With these modifi-
cations, Eq. (9) can be rewritten as follows:

1+ δ =
1

1+ f ((1+ δ)R)
. (13)

In this equation,R is a non-dimensional number that depends
on the characteristics of the problem (Eq. 12), and f is the
relative deviation of the drag coefficient Cd from 12

Re (Eq. 7).
Independent of the formulation of f (Re), the relative devi-
ation δ of v∞ from vStokes

∞ is the solution of the fixed-point
Eq. (13). Therefore, δ is a function ofR, and only ofR, which
we will note δ (R). In other words, the settling speed of par-
ticles can be expressed as follows:

v∞ =
D2 (ρp− ρa

)
g

18µ
× (1+ δ (R)), with (14)

R =
ρaD

3 (ρp− ρa
)
g

36µ2 . (15)

This shows that the dependance of v∞ on parameters D, ρp,
ρa, g, µ and on function f (Re) has a very specific form, and
that, if one wants to tabulate the solutions, the values of δ (R)
could be obtained once and for all solving Eq. (13) for the
entire relevant range of the possible values of R (where the
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Figure 1. (a) Settling speed of a spherical particle where ρ = 2650kgm−3 in air with P = 101325Pa and T = 293.15K as a function of
diameter where Cd from Eqs. (5) (blue) and (6) (orange). (b) Reynolds number from Eqs. (5) (blue) and (6) (orange). (c) Relative difference
of v∞ from vStokes

∞ .

virtual Reynolds number R is defined by Eq. 12), instead of
tabulating v∞ for all the possible combinations of D, ρp, ρa,
g and µ. Instead of performing such a tabulation, in the next
section, we will show that it is possible to find an analytical
expression approximating δ (R).

4 The δ (R) function in the Clift–Gauvin case

Now, we proceed supposing that the expression of Cd as a
function of Re is that of Clift and Gauvin (1971) (Eq. 5),
yielding the following expression for f (Re):

f (Re)= 0.2415Re0.687
+

Re
12
×

0.42

1+ 19 019
Re1.16

. (16)

Equation (13) can then be solved iteratively, as suggested in
van Boxel (1998). The resulting function δ (R) is shown in
Fig. 2a. Due to the sigmoid shape of δ (R), fitting it with
a logistic function of lnR is tempting and gives relatively
good results. However, a generalized logistic function gives
an even better agreement with the exact solution (Fig. 2a).
The equation obtained with this fit is

δ(R)'−
(

1+ e−0.4335(ln R−0.8921)
)−1.905

, (17)

'−

(
1+

(
R

2.440

)−0.4335
)−1.905

. (18)

This expression of δ(R) yields an error relative to the exact
solution < 1% up to Re= 10 and < 2.5% up to Re= 103

(Fig. 2b). Considering that Goossens (2019) indicate that the
Clift–Gauvin empirical formulation of the drag coefficient
(Eq. 5) is true within 7 % of the reference drag coefficient val-
ues of Lapple and Sheperd (1940), approximating δ (R) by
the generalized logistic function given in Eq. (18) is accurate
enough not to degrade the evaluation of the settling speed, at
least until Re= 103, which is well beyond the typical range
of the Reynolds number for atmospheric aerosol in free fall

(Fig. 1b). Figure 2c indeed shows that the error committed by
applying the fit formula (Eq. 18) instead of actually solving
Eq. (13) is smaller than the discrepancy between the Clift and
Gauvin (1971) formulation and the Cheng (2009) parameter-
ization. With the Clift and Gauvin (1971) and Cheng (2009)
drag formulations being the two best-performing formula-
tions according to the objective scores presented in Goossens
(2019) (their Table 2), this confirms that the error introduced
by using Eq. (18) instead of the exact solution of Eq. (13)
is smaller than the uncertainty of state-of-the-art drag coeffi-
cient formulations.

Figure 3a shows that, for all realistic particle sizes and
all realistic atmospheric pressures in the troposphere, the
Reynolds number is below 100, and Fig. 3b shows that the
error induced by using Eq. (18) to evaluate the solution of
Eq. (13) is less than 0.5 % for all particles with D < 100µm,
and less than 2 % for all particles with diameter less than
D < 1000µm: this shows that the domain of applicability of
Eq. (18) largely covers the size range of giant dust particles
(for which the typical diameter is below or around 100µm,
with exceptional observations of particles with D ' 400µm
as in van der Does et al., 2018).

5 Inclusion of the slip correction factor

So far, for the sake of simplicity, we have assumed that con-
tinuum fluid mechanics apply to our falling particles. As ex-
plained in, e.g., Seinfeld and Pandis (1997) (Chap. 8), this
assumption holds only if Kn� 1, where Kn is the Knudsen
number of the falling particle:

Kn=
2λ
D
, (19)

where λ is the mean free path of molecules in air. The mean
free path in air is given by the following empirical equation
as a function of pressure P , dynamic viscosity µ and density
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Figure 2. (a) δ (R) (solution of Eq. 13) as a function of R when f is defined from the Clift–Gauvin expression (Eq. 16). The red line is a
fit of the solution by a generalized logistic function (Eq. 18). (b) Percent error of the fitted expression of v∞ relative to the exact solution.
(c) Percent difference of the settling speed v∞ calculated with the Clift and Gauvin (1971) parameterization relative to the one calculated
with the Cheng (2009) parameterization.

Figure 3. (a) v∞ from the Clift–Gauvin expression (Eq. 16) as a function of atmospheric pressure P and particle diameter D for an
atmospheric particle with density ρ = 2650kgm−3. The dependance of temperature on pressure has been taken from the US standard
atmosphere (NOAA/NASA/USAF, 1976). Black contours are iso-Re contours. (b) Percent error committed by using Eq. (18) instead of
solving Eq. (13).

ρa (Jennings, 1988):

λ=

√
π

8
×

µ
0.4987445
√
Pρa

. (20)

From the Knudsen number, slip correction factors can be
designed to account for the non-continuous effects, turning
Eq. (1) into

1
2
Cd

Cc
Apρav

2
∞ =

(
ρp− ρa

)
Vpg, (21)

where the slip correction factor Cc (also known as the Cun-
ningham (1910) correction factor) is usually estimated from
the Davies (1945) expression:

Cc = 1+Kn
(

1.257+ 0.4exp
(
−

1.1
Kn

))
. (22)

From Eqs. (7) and (21), and if we introduce the Stokes ter-
minal velocity including the slip correction term, ṽStokes

∞ , as

ṽStokes
∞ = Ccv

Stokes
∞ , (23)

we obtain the following:

v∞ = ṽ
Stokes
∞ ×

1
(1+ f (Re))

. (24)

The terminal Reynolds number of the particle is equal to

Re=
ρaDṽ

Stokes
∞ (1+ δ)

2µ
= (1+ δ)

CcρaD
3 (ρp− ρa

)
g

36µ2 (25)

Let us introduce:

R̃ =
ρaDṽ

Stokes
∞

2µ
. (26)

With these notations, Re= (1+ δ)R̃, and Eq. (24) becomes

(1+ δ)=
1(

1+ f
(
(1+ δ)R̃

)) . (27)

Equation (27) is the same fixed-point equation as Eq. (13) but
with parameter R̃ (defined from Eq. 26) instead of R (from
Eq. 12). Therefore, its solution is δ

(
R̃
)
, where the δ function
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is the same as represented in Fig. 2a, and it can correspond-
ingly be approximated by Eq. (18), with the same error term
as represented in Fig. 2b. The fact that the introduction of the
slip correction factor Cc changes the mathematical method
only very slightly to obtain the expression of the settling
speed v∞ is a fortunate consequence of the slip correction
factor being a function of the Knudsen number only, with no
dependance on particle speed.

To summarize the previous development, the method we
have designed to calculate v∞ including the slip correction
term and the drag correction term takes the following steps:

1. Calculate Kn from Eq. (19) and Cc from Eq. (22).

2. Calculate ṽStokes
∞ from Eq. (23) and R̃ from Eq. (26).

3. Calculate v∞ as

v∞ = ṽ
Stokes
∞ ×

[
1−

(
1+

(
R̃

2.440

)−0.4335
)−1.905

]
.

Figure 4 shows the impact of the slip correction term and the
drag correction term on ṽ∞. Two regimes are clearly sep-
arated in this figure, with v∞

vStokes
∞

> 1 for the smaller parti-
cles, for which the slip correction term dominates, and the
larger particles for which the drag correction term dominates.
Between these two regimes, a relatively large zone exists
in which the departure of v∞ from vStokes

∞ is less than 5%.
This zone in which the Stokes equation is directly applicable
covers the 3µm<D < 35µm diameter range at ground-level
pressure and the 10 µm<D < 50µm range at 200hPa. Some
authors (e.g., Mallios et al., 2020) argue that the slip correc-
tion factor Cc should only be applied in the Stokes regime
(Re< 0.1). However, in Fig. 4, it has been applied regard-
less of the Reynolds number. Analysis of Fig. 4 shows that
the choice of applying the slip correction factor for Re> 0.1
or not has little consequence, at least in the troposphere, be-
cause in all the portions of the pressure–diameter diagram
where Re> 0.1 (above the red line in Fig. 4),Cc is comprised
between 1 and 1.02, so whether or not this factor which is ex-
tremely close to 1 is applied has no practical consequence on
the simulated value of v∞.

6 Implementation and computational efficiency

Apart from its simplicity, another possible advantage of the
straightforward evaluation of v∞ using the three steps de-
fined above is its computational efficiency compared to the
currently available methods:

– Bisection method. Find Re as the solution to Re=
R̃

1+f (Re) starting from Re ∈
[
0; R̃

]
and successively cut

the solution interval [Rem;ReM] into halves until the rel-
ative error on speed becomes smaller than ε: ReM−Rem

Rem
<

ε; then v∞ = ṽStokes
∞

Re
R̃

.

Figure 4. Ratio v∞
vStokes
∞

as a function of atmospheric pressure P and

particle diameter D for a spherical particle with ρp = 2650kgm−3

(color shades). Black contours are iso-lines for the slip correction

factor Cc =
ṽStokes
∞

vStokes
∞

, and white lines are iso-lines of 1+ δ
(
R̃
)
=

v∞
ṽStokes
∞

. The red line corresponds to Re= 0.1, where Re> 0.1 above

this line and Re< 0.1 below.

– Fixed-point method. Find the solution δ to Eq. (27)
starting from δ0 = 0 and iterate it with δi+1 =

1
1+f

(
R̃×(1+δi )

) − 1 until the relative error on speed

becomes smaller than ε: |δi+1−δi |
1+δi+1

< ε. Then, v∞ =

ṽStokes
∞ (1+ δ).

– AerSett method. Directly calculate v∞ = ṽ
Stokes
∞ ×[

1−
(

1+
(

R̃
2.440

)−0.4335
)−1.905

]
.

The bisection and fixed-point methods depend on a tolerance
parameter ε, which we have set to ε = 0.02, corresponding to
the maximal error of 2 % observed using the AerSett method
(Fig. 3b).

A Fortran code has been designed to estimate the calcula-
tion cost for these three methods (Fig. 5). This has been done
by performing the calculation of v∞ for 108 random values
of D, at a random altitude z in the atmosphere between 0
and 12 000m. The pressure and temperature values P(z) and
T (z) are estimated from the US Standard Atmospheric pro-
file (NOAA/NASA/USAF, 1976).

To optimize calculation speed, we have observed that for
R̃ < 0.0116 we have 1+ δ

(
R̃
)
> 0.99, so that for all three

methods we speed up the calculation by assuming that v∞ =
ṽStokes
∞ when R̃ < 0.0116. As can be seen in Fig. 4 (see the

0.99 iso-line of 1+ δ
(
R̃
)
), this means that for all particles

with a diameter D < 20µm (the precise threshold value de-
pends on pressure and temperature), no drag correction factor
is applied.
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Figure 5. Execution time in nanoseconds (ns) for the three numer-
ical methods described in Sect. 6 as a function of D. The estimate
has been performed for 4 ranges of D (0.1–1, 1–10, 10–100, 100–
1000 µm). In each of these intervals, the calculation of v∞ as a func-
tion of D, ρp, ρa, λ and µ has been performed 108 times with each
method, for 108 values of D selected randomly within the range.
The execution time in nanoseconds corresponds to the total execu-
tion time (for 108 calls to the function) divided by the number of
calls (108) so that it represents an estimate of the execution time for
one call to the function. The test has been performed on a laptop
with an Intel Core i7-1165G7 CPU.

Figure 5 shows that, for D < 10µm, the computation time
(around 12ns per call) is the same for the three methods,
which is expected since the drag correction factor is not cal-
culated for these diameters, resulting in R̃ < 0.0116. In av-
erage over the entire interval, the bisection method and the
fixed-point method are about 4 times slower than the AerSett
method. For D > 100µm, the bisection method is 6.6 times
slower than AerSett, and the fixed-point method is 8 times
slower. It is also worth noting that in Fig. 5, the fixed-point
method is faster than the bisection method for small values
of D but slower for large values of D. The average num-
ber of iterations to obtain convergence increases from 4.5
(10µm<D < 100 µm) to 7.8 (100µm<D < 1000 µm) for
the bisection method, and from 1.5 (10µm<D < 100µm)
to 7.4 (100µm<D < 1000µm) for the fixed-point method.
This sharper increase in the number of iterations to obtain
convergence in the fixed-point method explains why bisec-
tion becomes more efficient for large values of D.

7 Conclusions

As a conclusion, we have found that the following method
is suitable to evaluate the settling speed of spherical aerosol
particles in the atmosphere, v∞:

ṽStokes
∞ = Cc

D2 (ρp− ρa
)
g

18µ
, (28)

R̃ =
ρaDṽ

Stokes
∞

2µ
, (29)

v∞ = ṽ
Stokes
∞ ×

1−

1+

(
R̃

2.440

)−0.4335
−1.905

 . (30)

The slip correction factor Cc can be obtained by the Davies
(1945) formula (Eq. 22). To reduce computation time, for
R̃ < 0.116, Eq. (30) can be replaced by just v∞ = ṽStokes

∞ ,
changing the result by less than 1%.

Equations (28), (29) and (30) constitute the AerSett model
v1.0 (AerSett for AERosol SETTling). The error induced by
applying this model compared to an iterative calculation of
v∞ is less than 0.5% for particles with diameterD < 100µm
and less than 2% for particles with D < 1000µm (Fig. 3b).
Particles with larger diameters fall so rapidly that they are not
relevant as atmospheric aerosol: other parameterizations ex-
ist for the falling hydrometeors (Khvorostyanov and Curry,
2005), taking into account the shape of snow flakes, the
deformation of raindrops due to their speed, etc. We have
shown that the error due to using Eq. (30) is smaller than the
uncertainty that exists between different state-of-the-art for-
mulations of the drag coefficient, showing that this error is
not a problem for modeling.

Equation (30) takes into account both the slip correction
factor (for small particles) and the large-particle drag cor-
rection factor. Figure 4 shows that for particles smaller than
D ' 10µm, the slip correction factor dominates, while for
particles larger than 20µm, the large-particle drag correc-
tion factor dominates. The reduction in settling speed rela-
tive to vStokes

∞ reaches about 25% for a particle with diameter
D ' 100µm, a typical diameter for giant dust particles. So,
if chemistry–transport models are to represent the observed
giant dust particles (which is still a challenge), large-particle
drag correction for the gravitational settling speed needs to be
taken into account, and we think that Eq. (30), valid for all
spherical particles with D < 1000µm and at least from the
surface to p = 200hPa (Figs. 3b and 4), is the simplest avail-
able method to do it. While designed specifically to take into
account large-particle drag correction, Eq. (30) includes the
slip correction term as well, which is critical for the finer at-
mospheric aerosol withD < 10µm. Using Eq. (30) yields an
error smaller than 2 % relative to the exact combined effect
of the Davies (1945) slip correction factor and the Clift and
Gauvin (1971) large-particle drag correction factor. There-
fore, it is possible to use this formulation systematically for
spherical particles in chemistry–transport models. An imple-
mentation of Eqs. (28)–(30) in a Fortran module along with
the necessary thermodynamical calculations is available for
download and use (see “Code availability” section). We have
shown (Sect. 6, and in particular Fig. 5) that the use of this
Fortran routine allows us to gain a factor of 4 (in general)
to 8 (for particles with D > 100µm) relative to bisection or
fixed-point methods.
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To go further in understanding the settling speed of giant
dust particles and be able to represent them in chemistry–
transport models, it is necessary to extend simple models
such as AerSett to the case of non-spherical particles, and
give simple and straightforward estimates of the drag cor-
rection factor δ, not only as a function of particle density and
diameter, as in the present study, but also including other fac-
tors such as particle eccentricity which have been shown to
have a strong impact on the settling speed of dust particles
(Mallios et al., 2020, and references therein). To solve the
persistent mystery of the processes allowing giant dust par-
ticles to stay airborne over long distances, new findings on
physical processes such as the electric charges of the parti-
cles and their effect on settling velocities are still needed.
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