Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-1039-2023
https://doi.org/10.5194/gmd-16-1039-2023
Development and technical paper
 | 
09 Feb 2023
Development and technical paper |  | 09 Feb 2023

Bayesian transdimensional inverse reconstruction of the Fukushima Daiichi caesium 137 release

Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan

Related authors

Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Deep learning applied to CO2 power plant emissions quantification using simulated satellite images
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 17, 1995–2014, https://doi.org/10.5194/gmd-17-1995-2024,https://doi.org/10.5194/gmd-17-1995-2024, 2024
Short summary
Segmentation of XCO2 images with deep learning: application to synthetic plumes from cities and power plants
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Marc Bocquet, Jinghui Lian, Grégoire Broquet, Gerrit Kuhlmann, Alexandre Danjou, and Thomas Lauvaux
Geosci. Model Dev., 16, 3997–4016, https://doi.org/10.5194/gmd-16-3997-2023,https://doi.org/10.5194/gmd-16-3997-2023, 2023
Short summary
Accounting for meteorological biases in simulated plumes using smarter metrics
Pierre J. Vanderbecken, Joffrey Dumont Le Brazidec, Alban Farchi, Marc Bocquet, Yelva Roustan, Élise Potier, and Grégoire Broquet
Atmos. Meas. Tech., 16, 1745–1766, https://doi.org/10.5194/amt-16-1745-2023,https://doi.org/10.5194/amt-16-1745-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary

Cited articles

Baklanov, A. and Sørensen, J. H.: Parameterisation of radionuclide deposition in atmospheric long-range transport modelling, Phys. Chem. Earth Pt. B, 26, 787–799, https://doi.org/10.1016/S1464-1909(01)00087-9, 2001. a
Bodin, T. and Sambridge, M.: Seismic tomography with the reversible jump algorithm, Geophys. J. Int., 178, 1411–1436, https://doi.org/10.1111/j.1365-246X.2009.04226.x, 2009. a, b, c, d
Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., and Yamazawa, H.: Preliminary Estimation of Release Amounts of 131I and 137Cs Accidentally Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere, J. Nucl. Sci. Technol, 48, 1129–1134, https://doi.org/10.1080/18811248.2011.9711799, 2011. a, b
Delle Monache, L., Lundquist, J., Kosović, B., Johannesson, G., Dyer, K., Aines, R. D., Chow, F., Belles, R., Hanley, W., Larsen, S., Loosmore, G., Nitao, J., Sugiyama, G., and Vogt, P.: Bayesian inference and markov chain monte carlo sampling to reconstruct a contaminant source on a continental scale, J. Appl. Meteorol. Clim., 47, 2600–2613, https://doi.org/10.1175/2008JAMC1766.1, 2008. a, b
Dumont Le Brazidec, J. and Saunier, O.: Statistics on caesium 137 deposition around the Fukushima-Daiichi plant after the 2011 accident, Zenodo [data set], https://doi.org/10.5281/zenodo.7016491, 2022. a
Download
Short summary
When radionuclides are released into the atmosphere, the assessment of the consequences depends on the evaluation of the magnitude and temporal evolution of the release, which can be highly variable as in the case of Fukushima Daiichi. Here, we propose Bayesian inverse modelling methods and the reversible-jump Markov chain Monte Carlo technique, which allows one to evaluate the temporal variability of the release and to integrate different types of information in the source reconstruction.
Share