
Geosci. Model Dev., 16, 1039–1052, 2023
https://doi.org/10.5194/gmd-16-1039-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Bayesian transdimensional inverse reconstruction of the
Fukushima Daiichi caesium 137 release
Joffrey Dumont Le Brazidec1,2, Marc Bocquet2, Olivier Saunier1, and Yelva Roustan2

1IRSN, PSE-SANTE, SESUC, BMCA, Fontenay-aux-Roses, France
2CEREA, École des Ponts and EDF R&D, Île-de-France, France

Correspondence: Joffrey Dumont Le Brazidec (joffrey.dumont@enpc.fr)

Received: 29 June 2022 – Discussion started: 2 September 2022
Revised: 23 November 2022 – Accepted: 17 January 2023 – Published: 9 February 2023

Abstract. The accident at the Fukushima Daiichi nuclear
power plant (NPP) yielded massive and rapidly varying at-
mospheric radionuclide releases. The assessment of these
releases and of the corresponding uncertainties can be per-
formed using inverse modelling methods that combine an
atmospheric transport model with a set of observations and
have proven to be very effective for this type of problem. In
the case of the Fukushima Daiichi NPP, a Bayesian inversion
is particularly suitable because it allows errors to be mod-
elled rigorously and a large number of observations of differ-
ent natures to be assimilated at the same time. More specifi-
cally, one of the major sources of uncertainty in the source as-
sessment of the Fukushima Daiichi NPP releases stems from
the temporal representation of the source. To obtain a well-
time-resolved estimate, we implement a sampling algorithm
within a Bayesian framework – the reversible-jump Markov
chain Monte Carlo – in order to retrieve the distributions of
the magnitude of the Fukushima Daiichi NPP caesium 137
(137Cs) source as well as its temporal discretization. In addi-
tion, we develop Bayesian methods that allow us to combine
air concentration and deposition measurements as well as to
assess the spatio-temporal information of the air concentra-
tion observations in the definition of the observation error
matrix.

These methods are applied to the reconstruction of the pos-
terior distributions of the magnitude and temporal evolution
of the 137Cs release. They yield a source estimate between 11
and 24 March as well as an assessment of the uncertainties
associated with the observations, the model, and the source
estimate. The total reconstructed release activity is estimated
to be between 10 and 20 PBq, although it increases when the
deposition measurements are taken into account. Finally, the

variable discretization of the source term yields an almost
hourly profile over certain intervals of high temporal vari-
ability, signalling identifiable portions of the source term.

1 Introduction

1.1 The Fukushima Daiichi nuclear accident

On 11 March 2011, an earthquake under the Pacific Ocean
off the coast of Japan triggered an extremely destructive
tsunami that hit the Japanese coastline about 1 h later, killing
18 000 people. These events led to the automatic shutdown
of four Japanese nuclear power plants. However, the submer-
sion of emergency power generators prevented the cooling
system from functioning, making the shutdown impossible
at the Fukushima Daiichi nuclear power plant (NPP). This
yielded a massive release of radionuclides, characterized by
several episodes of varying intensity, that lasted for several
weeks. The estimation of such a release is difficult and sub-
ject to significant uncertainties. Reconstructing the temporal
evolution of the caesium 137 (137Cs) source requires one to
establish a highly variable release rate that runs over several
hundreds of hours.

Since 2011, several approaches have been proposed to
assess the Fukushima Daiichi radionuclide release source
terms. For instance, methods based on a simple comparison
between observations and simulated predictions have been
investigated by Chino et al. (2011), Katata et al. (2012),
Katata et al. (2015), Mathieu et al. (2012), Terada et al.
(2012), Hirao et al. (2013), Kobayashi et al. (2013), and Na-
gai et al. (2017), and ambitious inverse problem methods
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have been developed in studies such as Stohl et al. (2012),
Yumimoto et al. (2016), and Li et al. (2019). In particular,
Winiarek et al. (2012, 2014) used air concentration and de-
position measurements to assess the source term of 137Cs by
rigorously estimating the errors, and Saunier et al. (2013)
evaluated the source term by inverse modelling with ambient
gamma dose measurements. Finally, inverse problem meth-
ods based on a full Bayesian formalism have also been used.
Liu et al. (2017) applied several methods, including Markov
chain Monte Carlo (MCMC) algorithms, to estimate the time
evolution of the 137Cs release, and they accompanied this
with an estimate of the associated uncertainty. Terada et al.
(2020) refined the 137Cs source term with an optimization
method based on a Bayesian inference from several measure-
ment databases.

1.2 Bayesian inverse modelling and sampling of a
radionuclide source

Bayesian inverse problem methods have been shown to be
effective in estimating radionuclide sources (Delle Monache
et al., 2008; Tichý et al., 2016; Liu et al., 2017). Here, we
briefly describe this Bayesian framework for source term re-
construction; a more complete description is available in Du-
mont Le Brazidec et al. (2021). The crucial elements defin-
ing the control variable vector of the source x are (i) lnq,
a vector whose components correspond to the logarithm of
the release rates qi (constant releases at a time interval, such
as 1 d or 1 h), and (ii) hyperparameters such as entries of the
observation error scale matrix R or the time windows of the
release rates (more details in Sect. 3).

The posterior probability density function (pdf) of x is
given by Bayes’ rule:

p(x|y)=
p(y|x)p(x)

p(y)
∝ p(y|x)p(x) (1)

where y is the observation vector. The pdf p(y|x) is the
likelihood, which quantifies the fit of the source vector x to
the data. More precisely, the observations y are compared
to a set of modelled concentrations: Hq (i.e. the predictions,
constructed using a numerical simulation of the radionuclide
transport from the source). H is the observation operator, the
matrix representing the integration in time (i.e. resolvent) of
the atmospheric transport model. Therefore, the predictions
of the model are considered linear in q. The likelihood is
often chosen as a distribution parameterized with an obser-
vation error scale matrix R. The pdf p(x) represents the in-
formation available on the source before data assimilation.

Once the likelihood and the prior are defined, the pos-
terior distribution can be estimated using a sampling algo-
rithm. Sampling techniques include, in particular, the very
popular Markov chain Monte Carlo (MCMC) methods that
assess the posterior pdf of the source, or marginal pdfs
thereof. This method has been applied by Delle Monache
et al. (2008) to estimate the Algeciras incident source loca-

tion, by Keats et al. (2007), and by Yee et al. (2014), who
evaluated Xenon-133 releases at Chalk River Laboratories.
More recently, the technique has been used to assess the un-
certainties in the source reconstruction by Liu et al. (2017),
Dumont Le Brazidec et al. (2020), and Dumont Le Brazidec
et al. (2021).

1.3 The transdimensional analysis and objectives of
this study

The problem of finding a proper representation of x (i.e. a
discretization of the source term) is the problem of finding
the adequate step function for q, i.e. the optimal number of
steps, the optimal time length of each step, and the corre-
sponding release rates. This representation depends on the
case under study: depending on the observations, more or
less information is available to define a more or less tempo-
rally resolved source term. In other words, depending on the
data available to inform one about the source term, the steps
of the function supporting q could be small (a lot of available
information, allowing for a fine representation) or large (lit-
tle information available, providing a coarse representation),
yielding an irregular temporal discretization of the source
term. Note that the choice of the discretization can be seen
as a balancing issue due to the bias–variance trade-off prin-
ciple (Hastie et al., 2009): low-complexity models are prone
to high bias but low variance, whereas high-complexity mod-
els are prone to low bias but high variance. The difficulty in
the source term discretization is that of selecting representa-
tions that are sufficiently rich but not overly complex in order
to avoid over-fitting that leads to high variance error and ex-
cessive computing time. Radionuclides releases such as those
of 137Cs from the Fukushima Daiichi NPP are very signifi-
cant over a long period of time (several weeks) and have a
very high temporal variability. In such case, the choice of the
discretization is a crucial and challenging task.

In this paper, we explore several ways of improving the
source term assessment and its corresponding uncertainty. In
the first instance, we address the issue of sampling in the case
of massive and highly fluctuating releases of radionuclides to
the atmosphere. In the second instance, we propose several
statistical models of the likelihood scale matrix depending
on the available set of observations.

The outline of the paper is as follows. In Sect. 2, the ob-
servational dataset used in this study and the physical model
of the problem are described. We then outline the theoretical
aspects of this study and first focus on the concepts of trans-
dimensionality and model selection (Sect. 3). The reversible-
jump MCMC algorithm (RJ-MCMC) used to shape the re-
lease rates vector q is presented in Sect. 3.1. Other ways to
improve the sampling quality and reduce uncertainties are
then explored via the addition of information in Sect. 3.2.
In particular, methods that combine deposition and concen-
trations observations or that exploit the temporal and spa-
tial information of the observations in the definition of the
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likelihood scale matrix R are proposed. Subsequently, these
methods are evaluated in Sect. 4. Specifically, once the sta-
tistical parametrization of the problem is chosen in Sect. 4.1,
the advantages of the RJ-MCMC are explored in Sect. 4.2.1.
The impact of using the deposition measurements and the
use of the observation temporal and spatial information are
described in Sect. 4.2.2 and 4.2.3. We finally conclude on the
contribution of each method.

This article is in line with the authors’ earlier studies (Liu
et al., 2017; Dumont Le Brazidec et al., 2020, 2021) and
is inspired by the insightful work of Bodin and Sambridge
(2009). In particular, the RJ-MCMC algorithm is applied to
the Fukushima Daiichi case by Liu et al. (2017) using vari-
able discretizations but a fixed number of steps (i.e. grid
cells). Here, it is applied in a more ambitious transdimen-
sional framework, where the number of steps of the dis-
cretization is modified through the progression of the RJ-
MCMC, and using a significantly larger dataset.

2 The Fukushima Daiichi NPP 137Cs release and
numerical modelling

2.1 Observational dataset

The dataset used in this study consists of 137Cs air concen-
tration and deposition measurements over the Japanese ter-
ritory. The vector of 137Cs air concentration measurements
contains 14248 observations (Furuta et al., 2011; Yamada
et al., 2013; Oura et al., 2015; Nagakawa et al., 2015; Tanaka
et al., 2013; Tsuruta et al., 2018; Takehisa et al., 2012)
from 105 stations, whose locations are shown in Fig. 1. This
dataset is significantly larger than the one used by Liu et al.
(2017).

This allows us to better evaluate the relevance of our
methods and to accurately estimate the uncertainties in the
problem. Moreover, the majority of these observations are
hourly, which allows for fine sampling of the 137Cs source
term. Additionally, 1507 deposition measurements are used.
This dataset is described and made available in MEXT
(2012). The observations are located within 300km of the
Fukushima Daiichi NPP; however, measurements too close
to the Fukushima Daiichi plant (typically less than 5 times
the spatial resolution of the meteorological fields described
in Table 1) are not used to consider the short-range dilution
effects of the transport model. These measurements represent
the averages of each grid cell of a field of deposition observa-
tions (in Bq m−2) measured by aerial radiation monitoring.

2.2 Physical parametrization

The atmospheric 137Cs plume dispersion is simulated with
the Eulerian model ldX, which has already been vali-
dated on the Chernobyl and Fukushima Daiichi accidents
(Quélo et al., 2007; Saunier et al., 2013) as well as on
the 106Ru releases in 2017 (Saunier et al., 2019; Dumont

Figure 1. Maximum air concentrations of 137Cs (in Bq m−3) mea-
sured in Japan in March 2011. The light blue points correspond to
concentrations below the detection limit. The purple triangle corre-
sponds to the Fukushima Daiichi NPP.

Le Brazidec et al., 2020, 2021). The meteorological data used
are the 3-hourly high-resolution forecast fields provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) (see Table 1).

The radionuclides, in particular 137Cs, were mainly de-
posited in the Fukushima Prefecture, north-west of the
Fukushima Daiichi NPP. The bulk of the releases occurred
over a 2-week period beginning on 11 March. Therefore, the
model simulations start on 11 March 2011 at 00:00 UTC and
end on 24 March 2011, corresponding to 312 h during which
radionuclides could have been released. The release is as-
sumed to be spread over the first two vertical layers of the
model (between 0 and 160 m). The height of the release has
a small impact, as the modelled predictions are compared
with observations sufficiently far away from the Fukushima
Daiichi NPP and the release mostly remains within the at-
mospheric boundary layer. Finally, it is assumed that all pa-
rameters describing the source aside from the reconstructed
ones are known. This is, for instance, the case for the release
height.
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Table 1. Main set-up parameterizations of the ldX 137Cs transport simulations. The spatial and temporal resolutions are those of the ECMWF
meteorological fields and the transport model. The other entries correspond to parameters of the transport model only.

ECMWF

Spatial resolution 0.125◦× 0.125◦

Temporal resolution 3 h

Vertical resolution 11 terrain-following layers (from 0 to 4400 m)

Vertical mixing K-diffusion parameterized with Louis’ closure (Louis, 1979)
and (Troen and Mahrt, 1986) under unstable planetary boundary layer conditions

Horizontal mixing Constant horizontal eddy diffusion coefficient, Kh = 0m2 s−1

Wet scavenging λ=30p0 (below-cloud), with 30 = 5.10−5 h (mms)−1;
λ=31p

0.64
0 (in-cloud), with 31 = 5.10−4 h (mms)−1;

and p0 is the rainfall intensity (Baklanov and Sørensen, 2001; Querel et al., 2021)

Dry deposition Constant deposition velocity, vd = 2.10−3 ms−1

3 Methodological aspects of the inverse problem

3.1 Reversible-jump MCMC

In this section, we describe the Bayesian reversible-jump
MCMC algorithm used in the following to reconstruct the
vector q discretized over a variable adaptive grid. A good de-
scription of the RJ-MCMC, which was introduced by Green
(1995), can be found in Hastie and Green (2012). The al-
gorithm is also clearly explained and applied by Bodin and
Sambridge (2009). In particular, the method was used by Yee
(2008) in the field of inverse modelling for the assessment of
substance releases as well as by Liu et al. (2017) to quantify
Fukushima Daiichi releases, although with a fixed number
of variable-sized grid cells. A key asset of the RJ-MCMC
technique is its ability to sample a highly variable release by
balancing bias and variance errors.

The RJ-MCMC algorithm is a natural extension of the tra-
ditional Metropolis–Hastings (MH) algorithm to transdimen-
sional discretization grids. In a traditional MH, the distribu-
tion of the release is assessed via a succession of random
walks (e.g. Dumont Le Brazidec et al., 2020). In particular,
special random walks allow the pdf of the discretization steps
within the control vector x to be sampled.

Indeed, as described above, the function that describes the
evolution of the release rate over time is a vector or step func-
tion, where each step (i.e. a grid cell) defines a constant re-
lease rate over a time interval. When using the RJ-MCMC,
these time intervals are neither fixed nor regularly spaced.
Hence, an objective is to retrieve the best stepwise time par-
tition of the source term, which defines the release rates.

To do this, we use the concept of boundary: a boundary
is a time that separates two constant release rates (i.e. that
separates two grid cells where the source term is defined).

Let 3 be the set of Nb boundaries. Boundaries are 0, 312,
and integers in {1,2. . .,311} (0 and 312 are natural and fixed

boundaries), i.e. the boundaries are a selection among the
hours of the release. Finding the probability distribution of
the time steps associated with q is equivalent to finding the
probability distribution of 3. To retrieve the best discretiza-
tions of q, we can therefore sample 3. Figure 2 presents an
example of a source term partition.

The RJ-MCMC is basically equivalent to an MH algorithm
except that some iterations of the algorithm are not intra-
model random jumps (i.e. at constant 3) but rather possibly
inter-model random jumps (i.e. at non-constant 3) or trans-
dimensional (i.e. non-constant 3 size).

Specifically, we use three types of random jumps that gov-
ern the positions and number of boundaries: birth, death, and
move. For these three processes, we draw on the work of
Green (1995), Hastie and Green (2012), Liu et al. (2017),
and (importantly) Bodin and Sambridge (2009). The birth
process is the creation of a new boundary not yet present in
{1,2, . . .,311}, the death process is the removal of an existing
boundary in 3, and the move process is the displacement of
an existing boundary in 3. These processes must respect the
detailed balance criterion in order to ensure the convergence
of the Markov chain to the target distribution (Robert et al.,
2018).

3.2 Handling observations and their errors

3.2.1 Measurements fusion

In this subsection, we propose a method to factor both con-
centration and deposition measurements into a Bayesian
sampling by simply taking their disparity in the observa-
tion error matrix R into account. First of all, R is diagonal
and is, therefore, described by a collection of scale param-
eters. Specifically, two scale parameters, rc and rd, are used
when modelling R and are associated with the air concentra-
tion and deposition measurements respectively. Thus we can
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Figure 2. Example of a source term partition: 3= (λ0, . . .,λ6) is the set of boundaries, and q = (q0, . . .,q5) is the vector of release rates.
The release rate defined on the time interval [λ2,λ3] is constant and equal to q2.

write the following:

R= diag(rc, . . ., rc, rd, . . ., rd), (2)

where diag({ri}i) is the diagonal matrix of diagonal entries
{ri}i . Note that we use the sorting algorithm described by Du-
mont Le Brazidec et al. (2021), which is applied to both the
air concentration and deposition measurements, in all sub-
sequent applications. This algorithm assigns a different scale
parameter rnp to certain non-pertinent observations to prevent
them from artificially reducing rc and rd. With this definition
of R, the scale variables rc, rd, and rnp are included in the
source vector x and, therefore, sampled using a MCMC.

3.2.2 Spatio-temporal observation error scale matrix
modelling

In this subsection, we propose modelling R using the spatio-
temporal information of the concentration observations. We
assume that the error scale parameter corresponding to an
observation–prediction pair depends mainly on the error in
the model predictions. We also propose considering a pre-
diction (i.e. an estimation of the number of radionuclides
present at a definite time and place) as a point in a radionu-
clide plume at a specific time. The prediction modelling error
varies according to its spatio-temporal position. Spatially, if
two points of interest are distant by 1x , the difference in the
errors in their attached model prediction is empirically as-
sumed to be proportional to 1x . Temporally, let us consider
two points in a plume with coordinates x1,x2 at times t and
t+1t respectively, where x1 and x2 are the longitude and lat-
itude. These two points are moving with the plume, and they
are spatially distant by v×1t at time t , where v is a reference
wind speed, representing the average wind over the acciden-
tal period. Therefore, the difference in the modelling errors of
these points is estimated to be proportional to 1x = v×1t .
In that respect, for each concentration observation, yi can be
associated with three coordinates:(
x1,i,x2,i,v ·

(
ti +

1t,i

2

))
(3)

where x1,i , x2,i are the coordinates (in km) of the observa-
tion, v is set equal to 12kmh−1, and ti and 1t,i are the start-
ing time and the duration of the observation in hours respec-
tively. This average wind speed value has not been exten-
sively researched and is only used to estimate the potential

of the method. A clustering algorithm such as the k-means
algorithm can be applied to partition these three coordinates’
observation characteristics into several groups. A scale pa-
rameter rc,i can then be assigned to each group. If the algo-
rithm for sorting pertinent and non-pertinent observations is
applied, this yields

R= diag(rc,i, rnp, rc,j , . . ., rd, rnp), (4)

where rc,i, rd, and rnp are the scale parameters associated
with the spatial or spatio-temporal clusters of air concentra-
tion observations, the deposition measurements, and the non-
pertinent observations respectively. The case where only the
spatial qualification of the observation is used instead of both
the spatial and temporal qualification is also addressed in this
study.

4 Application to the Fukushima Daiichi NPP 137Cs
release

In this section, we apply the previously introduced methods
to the reconstruction of the Fukushima Daiichi 137Cs source
term between 11 and 24 March. However, we first define the
key statistical assumptions and parameters of the inversion
set-up.

4.1 Statistical parametrization

The prior distributions determining the posterior distribution
and the transition probabilities of the RJ-MCMC algorithm
are defined in the next two sections.

4.1.1 Definition of the prior density functions

In this section, we specify the prior distributions of the source
vector components: release rates and hyperparameters. The
source release rate logarithms are assumed to follow a folded
Gaussian prior distribution, so as to concurrently constrain
the number of boundaries and the magnitude of the release
rates. In the general case with Nimp = 312, the scale matrix
B of the folded Gaussian prior is defined as a 312× 312 di-
agonal matrix. The entry bk of B is associated with the kth
hour in {0,1, . . .,311}, comprising hours where we consider
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the release of 137Cs possible. This yields the following:

p(lnq|Nimp)=

Nimp−1∏
k=0

√
2
πbk

(
e
−
(lnqk−ln qb)

2

2bk

)
, (5)

where the folding position is defined as equal to the location
term lnqb. We divide the 312 time intervals into two groups.
The first “unconstrained” group consists of the time intervals
during which we have noticed that a radionuclide emission
does not trigger any noticeable observation. In other words,
it is a time interval during which we have no information on
a potential release. The unconstrained time intervals are the
first 17 h of 11 March (hours in {0,1, . . .,16}), the days of 16
and 17 March (hours in {116,117, . . .,165}), and the last 18 h
of 23 March (hours in {294,295, . . .,311}). The second group
consists of the constrained time intervals. Two hyperparam-
eters – bc for the constrained time intervals and bnc for the
unconstrained time intervals – are used to describe the ma-
trix B. If, instead of two, a single hyperparameter b is used
for all release rates, the unconstrained time intervals are nei-
ther regularized by the observations nor by the prior. Indeed,
to account for high release rates, samples of the distribution
of b reach significant values. Low-magnitude release rates
are then constrained very little by the corresponding prior.
Release rates that are neither constrained by the observations
nor by the priors can, in turn, reach very large values. This
phenomenon was put forward by Liu et al. (2017). The mean
of the folded Gaussian prior is chosen as ln qb = 0 in order
to regularize the unconstrained intervals. It is important to
note that a release rate ln qi sampled by the RJ-MCMC is
an aggregate of these hourly release rates, with each of them
associated with either bc or bnc. Hence, we define the scale
of the prior associated with the release rate ln qi defined be-
tween times ti and ti + ki1t as follows:

bi =

∑ti+ki1t
j=ti

Bj,j
ki1t

=
nc,ibc+ (ki1t − nc,i)bnc

ki1t

= wc,ibc+wnc,ibnc, (6)

where Bj,j is the j th diagonal coefficient of B, nc,i is the
portion of constrained time intervals in ki1t , and wc,i and
wnc,i are the weighted numbers of the respective constrained
and unconstrained hourly release rates included in the release
rate lnqi . This definition is reflected in the prior cost:

Jprior,lnq =

Nimp−1∑
i=0

{
1
2

ln
(
πbi

2

)
+
(lnqi)2

2bi

}
(7)

=

Nimp−1∑
i=0

{
1
2

ln
(
π(wc,ibc+wnc,ibnc)

2

)

+
(lnqi)2

2(wc,ibc+wnc,ibnc)

}
, (8)

where Nimp =Nb− 1 is the number of time steps (Nb being
the number of boundaries) considered at a certain iteration

by the RJ-MCMC and which characterizes the grid on which
lnq is defined. The prior scale parameter bc is included in
the source vector x and sampled with the rest of the vari-
ables. Such a prior on the release rate logarithms also has a
constraining effect on the model’s complexity (Occam’s ra-
zor principle) through the normalization constant of the prior
pdf.

An exponential prior distribution is used for the bound-
aries 3= (λ1, . . .,λk):

p(λ1, . . .,λk)=
e−k∑Nb,max

i=1
Nb,max !

i!(Nb,max−i)!
e−i

if k ∈ {1,2, . . .;Nb,max};

0 otherwise.
(9)

Here, Nb,max = 311. This prior has the effect of penalizing
models that are too complex.

Furthermore, because no a priori information is available,
the prior distributions on the coefficients of the observation
error scale matrix are assumed to be uniform, and the prior
values on the regularization scale terms are assumed to fol-
low Jeffreys’ prior distribution (Jeffreys, 1946; Liu et al.,
2017). The lower and upper bounds of the uniform prior on
the coefficients of the observation error matrix are set as zero
and a large value, the latter of which is not necessarily real-
istic, as in Dumont Le Brazidec et al. (2021).

4.1.2 Parameters of the MCMC algorithm

In the Markov chain, the variables describing the source x

are initialized randomly. The intra-model (i.e. with a fixed
boundary partition) transitions defining the stochastic walks
are set independently for each variable. Each transition prob-
ability is defined as a folded normal distribution, following
Dumont Le Brazidec et al. (2020). Locations of the transition
probabilities are the values of the variables at the current step.
Variances of the related normal distribution are initialized at
σlnq = 0.3 and σr = 0.01, with the values being chosen by
means of experiments. However, the value of σr is adaptive
and is updated every 1000 iterations according to the pre-
dictions’ values. Furthermore, the value of σr is not uniform
across groups of observations: there are as many variances as
observation clusters.

The algorithm runs initially as a classic MH for 104 it-
erations (only intra-model walks are allowed at this stage).
Indeed, allowing transdimensional walks at the beginning of
the run sometimes cause Markov chains to get stuck in lo-
cal minima. In total, 2× 106 iterations are used; this large
number ensures algorithm convergence (i.e. sufficient sam-
pling of the posterior distribution of x) and corresponds to
approximately 1 d of calculation for a 12-core computer. The
burn-in is set to 106 iterations.

The inter-model transdimensional walks (with changing
boundaries) are described in Appendix A, as they are techni-
cal. For this transdimensional case, ulnq is the same for birth
and death processes and is equal to 0.3. There is no variance
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parameter for the move walk. The probability of proposing
an intra-model transition, a birth transition, a death transition
and a move transition is 1/2, 1/6, 1/6, and 1/6 respectively.

4.2 Results

To evaluate the quality of our reconstructed source term as
well as the impact of the techniques proposed in Sect. 3, the
distributions of the 137Cs source are sampled and compared
using several settings:

– Sect. 4.2.1 provides an activity-concentration-based re-
construction of the 137Cs source with a log-Cauchy
likelihood and a threshold (to ensure it is defined for
zero observations or predictions) of 0.5 Bq m−3 (Du-
mont Le Brazidec et al., 2021), the application of the
observation sorting algorithm, and a spatial representa-
tion of R with 10 parameters. The vector

x =
(
lnq, rc,1, . . ., rc,9, rnp,bc, (λ1, . . .,λNimp−1)

)
(10)

is sampled. A log-Cauchy likelihood is chosen because
the associated reconstruction produces the best model-
to-data comparisons among diverse choices of likeli-
hoods and representations of R. The sampled source is
compared to the source terms of Saunier et al. (2013)
and Terada et al. (2020), and all variable marginal dis-
tributions are described.

– In Sect. 4.2.2, we are interested in quantifying the im-
pact of the addition of deposition measurements in the
sampling with the method presented in Sect. 3.2.1. The
source term is sampled in two configurations, namely
with or without the addition of deposition measure-
ments. That is, the vector

x =
(
lnq, rc,1, . . ., rc,9, rnp, rd,bc, (λ1, . . .,

λNimp−1)
)

(11)

is sampled with or without rd. A threshold of
0.5 Bq m−2 is chosen for the deposition measurements.

– Finally, we draw a selection of violin plots in Sect. 4.2.3
to assess the impact of the distribution of the observa-
tions in space and time clusters using the approach in-
troduced in Sect. 3.2.2. More precisely, the fit to the ob-
servations of the reconstructed source is evaluated given
the type of clustering (spatial or spatio-temporal) and
the number of clusters.

4.2.1 Best reconstruction and comparison to other
source terms

In this section, we provide the most appropriate reconstruc-
tion of the source term, based on the activity concentration
measurements, from several choices of likelihoods and R
representations. This best reconstruction is chosen with the

help of a model-to-data comparison, i.e. FAC (factor) scores,
representing the proportion of measurements for which the
observed and modelled values agree. The chosen likelihood
is a log-Cauchy distribution with a threshold of 0.5 Bq m−3,
and air concentration measurements are spatially clustered in
nine groups using the k-means method.

Figure 3 shows the temporal evolution of the median re-
lease rate with its associated standard deviation (i.e. the evo-
lution of the hourly release rates samples that are obtained
from the Nimp RJ-MCMC samples). This temporal evolution
is compared to the source term from Saunier et al. (2013),
which was estimated from gamma dose rate measurements
but from the same meteorological data and transport model,
and to the more recent source term from Terada et al. (2020).

Firstly, we observe that a good match is obtained be-
tween the median release and the source term of Saunier
et al. (2013) or Terada et al. (2020) (on the constrained
time intervals), as the differences between releases under
109 Bq s−1 can be neglected. Indeed, between the 11 and
the 19 March 2011, the three source terms have similar
peak magnitudes (close to 1011 Bq s−1); these peaks are ob-
served at neighbouring time intervals. Between the 19 and
the 21 March, a notable difference can be observed: the RJ-
MCMC source term predicts very high 1 h peaks (close to
1012 Bq s−1), whereas the Terada et al. (2020) source term
distributes the release uniformly over the whole period. Sec-
ondly, release rates are subject to large variations. Indeed,
there are periods of important temporal variability in the re-
lease rate (e.g. between 19 and 21 March) and of low tem-
poral variability (e.g. between 11 and 14 March). This justi-
fies the use of the RJ-MCMC transdimensional algorithm, as
it allows one to reconstruct certain time intervals of the re-
lease with a greater accuracy and others with less complex-
ity. Thirdly, the temporal evolution of the release can be ex-
plored, and several prominent peaks can be observed with a
magnitude approaching or surpassing 1011 Bq s−1: between
12 and 14 March, between 14 and 16 March, on 18 March,
and between 19 and 21 March.

Figure 4a describes the histogram of relative differences in
log10 between predictions (medians of the predictions com-
puted using the samples are employed) and air concentration
observations larger than 0.5 Bq m−3. A value of −1, there-
fore, corresponds to an observation 10 times larger than a
prediction. A good fit between observations and predictions
can be observed, although the observations are globally un-
derestimated by the predictions.

Figure 4b shows the pdf of the total release (in Bq). It can
be seen from this density that most of the total release distri-
bution mass is sampled between 10 and 20 PBq and peaks
at 14 PBq. This is consistent with previous studies which
estimate the release to be between 5 and 30 PBq (Chino
et al., 2011; Terada et al., 2012; Winiarek et al., 2012, 2014;
Saunier et al., 2013; Katata et al., 2015; IAEA, 2015; Yu-
mimoto et al., 2016; Liu et al., 2017; Terada et al., 2020).
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Figure 3. Evolution of the release rate (in Bq s−1) describing the 137Cs source (UTC) sampled with the RJ-MCMC algorithm. The blue line
corresponds to the sampled median release rate. The light blue area corresponds to the area between µlnq , the median, and σlnq , the standard
deviation, of the reconstructed hourly release rates:

[
µlnq − σlnq ,µlnq + σlnq

]
. Our source term is compared to the source terms of Saunier

et al. (2013) and Terada et al. (2020).

Figure 4. Densities or averages of variables describing the 137Cs source reconstructed with the RJ-MCMC technique: (a) density of relative
differences in log10 between observations and predictions; (b) density of the total retrieved released activity (TRRA) of 137Cs during the
Fukushima Daiichi accident (in Bq) – outliers are removed; (c) histogram of the number of boundaries; and (d) mean (± standard deviation)
of the number of boundaries as a function of time (UTC).
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However, note that these works attempted to estimate poten-
tial releases beyond 24 March.

Figure 4c plots the pdf of the number of boundaries (i.e.
a measure of model complexity) sampled by the algorithm.
Here, the minimum of the distribution is 25 boundaries and
the maximum is 45 with a peak at 35 boundaries. Recall that
the maximum number of boundaries is 313.

Figure 4d shows the average number of sampled bound-
aries at each time and the associated standard deviation. The
y axis corresponds to the number of boundaries counted: for
a given hour t , we draw

E[Card{λi ∈ [t − 5. . .t + 5]|λi ∈ (λ0, . . .,λNimp)}], (12)

i.e. the average over all samples of the number of boundaries
counted around t . In essence, the curve shows the number of
boundaries necessary to model the release at a certain time
(i.e. the variability in the release according to the algorithm).
We observe that there is a large variability between 14 and
15 March as well as between 19 and 21 March. This cor-
relates very well with the observable results in Fig. 3. This
observation once again confirms the relevance of using the
RJ-MCMC algorithm: periods of high variability can be sam-
pled finely.

4.2.2 Impact of using deposition measurements

In this section, we study the impact of adding 1507 depo-
sition measurements to the 14248 air concentration mea-
surements. A log-Cauchy distribution with a threshold of
0.5 Bq m−3 for the air concentration measurements and
0.5 Bq m−2 for the deposit measurements is employed. Air
concentration measurements are clustered with a spatial k-
means algorithm in nine groups, as described in Sect. 4.2.1.
To quantify the impact of the added measurements, we sam-
ple the following vector with an RJ-MCMC algorithm in two
cases, with or without deposition measurements, i.e. with or
without rd, as follows:

x =
(
lnq, rc,1, . . ., rc,9, rnp, rd,bc, (λ1, . . .,λNimp−1)

)
. (13)

In the case without deposition measurements, we use the
same samples as in Sect. 4.2.1. A posteriori marginals of
these control variables are displayed in Fig. 5.

In Fig. 5a, the medians of the two sampling datasets are
similar, except for the release rates between 11 and 14 March.
Indeed, when using air concentration and deposition mea-
surements, the release rate peaks on 12 March instead of on
13 March, the latter of which is the case when using air con-
centrations alone.

In Fig. 5b, the main mode of the total retrieved released
activity (TRRA) distribution retrieved using the air concen-
tration and deposition measurements is 5 PBq larger than
the TRRA reconstructed with the air concentration measure-
ments alone. Moreover, the reconstructed density with both
types of measurements has a large variance and leads to the

possibility of a larger release (up to 75 PBq). The density of
the number of boundaries with both types of measurements
is shifted to higher values compared with the density with
air concentrations alone, which indicates a reconstructed re-
lease of greater complexity (Fig. 5c). This is consistent with
the fact that the second release is reconstructed with a larger
number of observations.

In Fig. 5d, the number of boundaries was estimated to be
half as large on 14 March when deposition measurements
were used, but it was estimated to be larger on 15 March.
These differences are rather surprising insofar as there is no
obvious disparity between the medians of the release rates
for the two reconstructions in Fig. 5a on these days.

In Table 2, we evaluate the FAC2, FAC5, and FAC10
scores for both cases. FAC scores are common metrics for
measuring the fit of a source term with available observa-
tions. The FAC2, FAC5, and FAC10 are the proportion of
measurements for which the observed and modelled values
agree by a factor of 2, 5, or 10 respectively. For example, a
FAC2 score of 0.32 with respect to the air concentration mea-
surements (yi)i∈{1,Nobs} means that 32% of the predictions
((Hq)i)i∈{1,Nobs} (i.e. simulated measurements) are such that

0.5<
(Hq)i + yt

yi + yt
< 2, (14)

where Nobs is the number of observations considered, and yt
is a threshold set at 0.5 Bq m−3. This threshold is added to
limit the weight of low values, considered of lesser interest,
in the indicator. Finally, to calculate the FAC scores, only
observations above 1 Bq m−3 are considered.

The FAC scores show that the source term obtained with
the RJ-MCMC has a better agreement with the air concentra-
tion measurements than the Saunier et al. (2013) or Terada
et al. (2020) source terms. This shows that the RJ-MCMC is
able to sample source terms consistent with air concentration
measurements but does not allow us to reach a conclusion
regarding its performance: the sampling algorithm was op-
timized using air concentrations, whereas, for example, the
Saunier et al. (2013) source term was recovered from dose
rate measurements. However, the source term found with the
RJ-MCMC on air concentration measurements can be fairly
evaluated using deposition measurements. It is observed that
the fits with the deposition measurements of the three source
terms are similar.

Furthermore, as expected, Table 2 shows that there is a
significant difference in the fit with the deposition measure-
ments when they are added to the observation dataset used
to reconstruct the source term. However, the addition of the
deposition measurements has no impact on the quality of the
fit to the air concentration measurements. This suggests that
an RJ-MCMC optimized on dose rate measurements, in ad-
dition to the deposition and air concentrations, may obtain
a good agreement with the dose rate measurements, without
degrading its results on deposition or air concentrations.
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Figure 5. The panels correspond to probability densities or averages of variables describing the 137Cs source reconstructed with the
RJ-MCMC technique using air concentration and deposition measurements. Panel (a) displays the medians and standard deviations of
hourly release rates. The red and blue curves correspond to the sampled median release rates. The red and light blue areas correspond
to the areas between µlnq , the median, and σlnq , the standard deviation, of the sampled hourly release rates for each reconstruction:[
µlnq − σlnq ,µlnq + σlnq

]
. Panel (b) shows the probability density of the total release of 137Cs during the Fukushima Daiichi accident

(in Bq). Panel (c) provides a histogram of the number of boundaries. Panel (d) shows the mean (± standard deviation) of the number of
boundaries according to the hour considered.

4.2.3 Impact of the observation error matrix R
representation

In this section, we investigate the spatial and spatio-temporal
representation of the R likelihood scale matrix. Figure 6
presents violin plots of the FAC2 and FAC5 scores for air
concentration measurements against the number of scale pa-
rameters chosen to describe R (i.e. the number of observa-
tions clusters). Violin plots are created out of the best scores
of 44 RJ-MCMC sampling datasets with diverse likelihoods
chosen after Dumont Le Brazidec et al. (2021) in order to
make the conclusions less dependent on statistical modelling.
The chosen numbers of spatial clusters (1, 2, and 9) and
spatio-temporal clusters (3 and 7) of the violins are a selec-
tion for the sake of clarity.

For both the FAC2 and FAC5 air concentration scores,
it can be observed that the spatio-temporal labelling of the

observations does not increase the quality of the scores,
whereas the number of spatial clusters does. For example,
we can observe a difference of 0.02 between the second quar-
tile of the FAC2 score for sampling datasets with two spatial
groups and the second quartile of the FAC2 score for sam-
pling datasets with nine spatial groups. One hypothesis is that
the error is mainly related to the distance to the source and
remains relatively homogeneous in time. However, the use of
an accurate estimate of the effective wind speed as a function
of time and depending on the position of the observations is
necessary to draw conclusions; such a study is outside the
scope of this paper.

5 Summary and conclusions

In this paper, we investigated a transdimensional sampling
method to reconstruct highly fluctuating radionuclide atmo-

Geosci. Model Dev., 16, 1039–1052, 2023 https://doi.org/10.5194/gmd-16-1039-2023



J. Dumont Le Brazidec et al.: Transdimensional inversion of Fukushima Daiichi 137Cs release 1049

Figure 6. Violin plots of the air concentration FAC2 and FAC5 scores against the observation error scale parameters’ spatio-temporal groups
number. Points composing the violin plots consist of the best FAC2 and FAC5 scores of 44 sampling datasets using diverse configurations of
likelihoods and thresholds (log-normal, log-Laplace, and log-Cauchy) chosen according to Dumont Le Brazidec et al. (2021). The horizontal
segments within the violins represent (from bottom to top) the respective first, second, and third quartiles. The chosen numbers of spatial and
spatio-temporal clusters are only a selection for the sake of clarity.

Table 2. Comparison of observed and simulated measurements
from reconstructed predictions with air concentration measure-
ments only or with air concentration and deposition measurements.
The FAC2, FAC5, and FAC10 are the proportion of measurements
for which the observed and modelled values agree by a factor of
2, 5, or 10 respectively. For example, the table reads as follows:
the predictions calculated based on air concentrations only obtain a
FAC5 score of 0.58 with respect to the deposition measurements.

Origin of the source term FAC2 FAC5 FAC10

RJ-MCMC (based on air concentrations only)

Air concentration 0.32 0.68 0.85
Deposition 0.31 0.58 0.75

RJ-MCMC (air concentration and deposition)

Air concentration 0.31 0.67 0.85
Deposition 0.49 0.77 0.86

Source term of Saunier et al. (2013)

Air concentration 0.18 0.52 0.76
Deposition 0.28 0.64 0.74

Source term of Terada et al. (2020)

Air concentration 0.17 0.52 0.78
Deposition 0.29 0.64 0.76

spheric sources and applied it to assess the 137Cs Fukushima
Daiichi release. Furthermore, we proposed two more meth-
ods to add information to the model in order to reduce uncer-
tainties attached to such a complex release.

Firstly, an RJ-MCMC algorithm was defined. This MH
extension to transdimensional meshes allows one to sample
both the source term and its underlying adaptive discretiza-
tion in time. In the case of complex releases, an adaptive grid

allows one to reconstruct the source term with high accuracy
and discretization consistent with the available observations.

Secondly, we have focused on ways to add information by
adapting the representation of the observation error matrix
R. We proposed the assimilation of deposition measurements
or spatial and temporal information on the air concentration
observations by increasing the complexity of R.

Subsequently, the distributions of the variables defining
the source of 137Cs were fully sampled. This enabled the es-
timation of the uncertainties associated with these variables
as well as the evaluation and demonstration of the merits of
the methods.

Firstly, we observed that the predictions reproduce the air
concentration and deposition observations well. When us-
ing air concentrations only, the FAC2 and FAC5 scores cor-
responding to air concentration measurements are 0.32 and
0.68 respectively. The main part of the best total release dis-
tribution mass is estimated to be between 10 and 20 PBq and
peaks at 14 PBq, which is in accord with previous estima-
tions.

Secondly, the periods of high variability in 137Cs releases
have been reconstructed with accuracy by the RJ-MCMC al-
gorithm. The transdimensional method also allowed the peri-
ods of low temporal variability to be sampled more coarsely,
thereby avoiding variance errors and saving computing time,
which, in particular, confirms the conclusions of Liu et al.
(2017). The priors that we chose allowed for an efficient reg-
ularization of the release rates and their adaptive mesh.

Finally, the use of combined air concentration and deposi-
tion measurements had an impact on the reconstruction of the
TRRA distribution, the mean of which increased by 10 PBq.
The spatial clustering methods proved to increase the quality
of the predictions by improving the model-to-data compari-
son.

We recommend the use of the RJ-MCMC for long-release
source reconstruction. It allows one to sample highly vari-
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able source terms with great accuracy by solving the bias–
variance trade-off. We also recommend the use of advanced
modelling of R considering the deposition measurements
and the spatial information of the air concentration obser-
vations which have proven to be valuable in reducing the
observation–prediction discrepancies.

Appendix A: RJ-MCMC mathematical details

Here, we describe the mathematical details of the three inter-
model walks: move, birth, and death. The move process is
intra-dimensional. Provided that the move is a symmetric
motion, the associated g-transition distribution is symmetric,
i.e.

g(xi |xj )

g(xj |xi)
= 1. (A1)

The birth process is the creation of a new boundary, a
walk from xi (a vector composed of n boundaries) to xj (a
vector composed of n+ 1 boundaries) is proposed. In other
words, by generating a new boundary, one release rate is de-
stroyed and two new release rates emerge from this destruc-
tion. We therefore assign two new release rates lnq ′k−1 =

lnqk−1− ulnq and lnq ′k = lnqk−1+ ulnq , with ulnq (a Gaus-
sian noise). The transition probability is defined as follows
(Bodin and Sambridge, 2009):

g(3i, lnqi |3j , lnqj )= g(3i |3j , lnqj )

g(lnqi |3i,3j , lnqj )= g(3i |3j )

g(lnqi | lnqj ,3i). (A2)

The probability of a birth at a certain position among
Nb,max−Nimp+ 1 positions not occupied by boundaries is

g(3i |3j )=
1

Nb,max−Nimp+ 1
. (A3)

Furthermore, the probability of generating new release rates
is Gaussian:

g(lnqi |3i, lnqj )= g(lnq
′

k−1, lnq
′

k| lnqk−1,ulnq)

=
1

√
2πσ

e
−
u2

lnq
2σ2 , (A4)

where the new boundary here is generated at hour k− 1.
The probability of death of one among theNimp−1 bound-

aries is

g(3j |3i)=
1

Nimp− 1
, (A5)

which is a uniform choice among Nimp− 1 possibilities. On
the other hand, the probability g(lnqj |3j ,3i, lnqi) of de-
stroying the release associated with this position is 1.
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