Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2
Rainer Schneck
CORRESPONDING AUTHOR
Max Planck Institute for Meteorology, Hamburg, Germany
Veronika Gayler
Max Planck Institute for Meteorology, Hamburg, Germany
Julia E. M. S. Nabel
Max Planck Institute for Meteorology, Hamburg, Germany
Max Planck Institute for Biogeochemistry, Jena, Germany
Thomas Raddatz
Max Planck Institute for Meteorology, Hamburg, Germany
Christian H. Reick
Max Planck Institute for Meteorology, Hamburg, Germany
Reiner Schnur
Max Planck Institute for Meteorology, Hamburg, Germany
Related authors
No articles found.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Wolfgang A. Müller, Stephan Lorenz, Trang V. Pham, Andrea Schneidereit, Renate Brokopf, Victor Brovkin, Nils Brüggemann, Fatemeh Chegini, Dietmar Dommenget, Kristina Fröhlich, Barbara Früh, Veronika Gayler, Helmuth Haak, Stefan Hagemann, Moritz Hanke, Tatiana Ilyina, Johann Jungclaus, Martin Köhler, Peter Korn, Luis Kornblüh, Clarissa Kroll, Julian Krüger, Karel Castro-Morales, Ulrike Niemeier, Holger Pohlmann, Iuliia Polkova, Roland Potthast, Thomas Riddick, Manuel Schlund, Tobias Stacke, Roland Wirth, Dakuan Yu, and Jochem Marotzke
EGUsphere, https://doi.org/10.5194/egusphere-2025-2473, https://doi.org/10.5194/egusphere-2025-2473, 2025
Short summary
Short summary
ICON XPP is a newly developed Earth System model configuration based on the ICON modeling framework. It merges accomplishments from the recent operational numerical weather prediction model with well-established climate components for the ocean, land and ocean-biogeochemistry. ICON XPP reaches typical targets of a coupled climate simulation, and is able to run long integrations and large-ensemble experiments, making it suitable for climate predictions and projections, and for climate research.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Suqi Guo, Felix Havermann, Steven J. De Hertog, Fei Luo, Iris Manola, Thomas Raddatz, Hongmei Li, Wim Thiery, Quentin Lejeune, Carl-Friedrich Schleussner, David Wårlind, Lars Nieradzik, and Julia Pongratz
Earth Syst. Dynam., 16, 631–666, https://doi.org/10.5194/esd-16-631-2025, https://doi.org/10.5194/esd-16-631-2025, 2025
Short summary
Short summary
Land cover and land management changes (LCLMCs) can alter climate even in intact areas, causing carbon changes in remote areas. This study is the first to assess these effects, finding they substantially alter global carbon dynamics, changing terrestrial stocks by up to dozens of gigatonnes. These results are vital for scientific and policy assessments, given the expected role of LCLMCs in achieving the Paris Agreement's goal to limit global warming below 1.5 °C.
Mateo Duque-Villegas, Martin Claussen, Thomas Kleinen, Jürgen Bader, and Christian H. Reick
Clim. Past, 21, 773–794, https://doi.org/10.5194/cp-21-773-2025, https://doi.org/10.5194/cp-21-773-2025, 2025
Short summary
Short summary
We simulate the last glacial cycle with a comprehensive model of the Earth system and investigate vegetation cover change in northern Africa during the last four African Humid Periods (AHPs). We find a common pattern of vegetation change and relate it with climatic factors in order to discuss how vegetation might have evolved during even older AHPs. This scaling relationship we find according to past AHPs fails to account for projected changes in northern Africa under strong greenhouse gas warming.
Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, and Thomas Riddick
Clim. Past, 21, 719–751, https://doi.org/10.5194/cp-21-719-2025, https://doi.org/10.5194/cp-21-719-2025, 2025
Short summary
Short summary
A fully coupled atmosphere–ocean–ice-sheet–solid-earth model was applied to simulate the time from the Last Glacial Maximum (about 25 000 years before the present) to the pre-industrial period. The model simulations are compared to observational estimates. During this climate transition, the model simulates several abrupt changes in the North Atlantic region, which are initiated by different processes. The underlying mechanisms are analysed and described.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Daniele Peano, Deborah Hemming, Christine Delire, Yuanchao Fan, Hanna Lee, Stefano Materia, Julia E. M .S. Nabel, Taejin Park, David Wårlind, Andy Wiltshire, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-4114, https://doi.org/10.5194/egusphere-2024-4114, 2025
Short summary
Short summary
Earth System Models are the principal tools for scientists to study past, present, and future climate changes. This work investigates the ability of a set of them to represent the observed changes in vegetation, which are vital to estimating the impact of future climate mitigation and adaptation strategies. This study highlights the main limitations in correctly representing vegetation variability. These tools still need further development to improve our understanding of future changes.
Pin-Hsin Hu, Christian H. Reick, Reiner Schnur, Axel Kleidon, and Martin Claussen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-111, https://doi.org/10.5194/gmd-2024-111, 2024
Revised manuscript under review for GMD
Short summary
Short summary
We introduce the new plant functional diversity model JeDi-BACH, a novel tool that integrates the Jena Diversity Model (JeDi) within the land component of the ICON Earth System Model. JeDi-BACH captures a richer set of plant trait variations based on environmental filtering and functional tradeoffs without a priori knowledge of the vegetation types. JeDi-BACH represents a significant advancement in modeling the complex interactions between plant functional diversity and climate.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024, https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Short summary
We study the timescale dependence of airborne fraction and underlying feedbacks by a theory of the climate–carbon system. Using simulations we show the predictive power of this theory and find that (1) this fraction generally decreases for increasing timescales and (2) at all timescales the total feedback is negative and the model spread in a single feedback causes the spread in the airborne fraction. Our study indicates that those are properties of the system, independently of the scenario.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Shakirudeen Lawal, Stephen Sitch, Danica Lombardozzi, Julia E. M. S. Nabel, Hao-Wei Wey, Pierre Friedlingstein, Hanqin Tian, and Bruce Hewitson
Hydrol. Earth Syst. Sci., 26, 2045–2071, https://doi.org/10.5194/hess-26-2045-2022, https://doi.org/10.5194/hess-26-2045-2022, 2022
Short summary
Short summary
To investigate the impacts of drought on vegetation, which few studies have done due to various limitations, we used the leaf area index as proxy and dynamic global vegetation models (DGVMs) to simulate drought impacts because the models use observationally derived climate. We found that the semi-desert biome responds strongly to drought in the summer season, while the tropical forest biome shows a weak response. This study could help target areas to improve drought monitoring and simulation.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Nonlin. Processes Geophys., 28, 501–532, https://doi.org/10.5194/npg-28-501-2021, https://doi.org/10.5194/npg-28-501-2021, 2021
Short summary
Short summary
Linear response functions are a powerful tool to both predict and investigate the dynamics of a system when subjected to small perturbations. In practice, these functions must often be derived from perturbation experiment data. Nevertheless, current methods for this identification require a tailored perturbation experiment, often with many realizations. We present a method that instead derives these functions from a single realization of an experiment driven by any type of perturbation.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Nonlin. Processes Geophys., 28, 533–564, https://doi.org/10.5194/npg-28-533-2021, https://doi.org/10.5194/npg-28-533-2021, 2021
Short summary
Short summary
We apply a new identification method to derive the response functions that characterize the sensitivity of the land carbon cycle to CO2 perturbations in an Earth system model. By means of these response functions, which generalize the usually employed single-valued sensitivities, we can reliably predict the response of the land carbon to weak perturbations. Further, we demonstrate how by this new method one can robustly derive and interpret internal spectra of timescales of the system.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Ana Bastos, Kerstin Hartung, Tobias B. Nützel, Julia E. M. S. Nabel, Richard A. Houghton, and Julia Pongratz
Earth Syst. Dynam., 12, 745–762, https://doi.org/10.5194/esd-12-745-2021, https://doi.org/10.5194/esd-12-745-2021, 2021
Short summary
Short summary
Fluxes from land-use change and management (FLUC) are a large source of uncertainty in global and regional carbon budgets. Here, we evaluate the impact of different model parameterisations on FLUC. We show that carbon stock densities and allocation of carbon following transitions contribute more to uncertainty in FLUC than response-curve time constants. Uncertainty in FLUC could thus, in principle, be reduced by available Earth-observation data on carbon densities at a global scale.
Kerstin Hartung, Ana Bastos, Louise Chini, Raphael Ganzenmüller, Felix Havermann, George C. Hurtt, Tammas Loughran, Julia E. M. S. Nabel, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Earth Syst. Dynam., 12, 763–782, https://doi.org/10.5194/esd-12-763-2021, https://doi.org/10.5194/esd-12-763-2021, 2021
Short summary
Short summary
In this study, we model the relative importance of several contributors to the land-use and land-cover change (LULCC) flux based on a LULCC dataset including uncertainty estimates. The uncertainty of LULCC is as relevant as applying wood harvest and gross transitions for the cumulative LULCC flux over the industrial period. However, LULCC uncertainty matters less than the other two factors for the LULCC flux in 2014; historical LULCC uncertainty is negligible for estimates of future scenarios.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021, https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Short summary
Global climate models are the scientist’s tools used for studying past, present, and future climate conditions. This work examines the ability of a group of our tools in reproducing and capturing the right timing and length of the season when plants show their green leaves. This season, indeed, is fundamental for CO2 exchanges between land, atmosphere, and climate. This work shows that discrepancies compared to observations remain, demanding further polishing of these tools.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Tea Thum, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, and Sönke Zaehle
Biogeosciences, 17, 5721–5743, https://doi.org/10.5194/bg-17-5721-2020, https://doi.org/10.5194/bg-17-5721-2020, 2020
Short summary
Short summary
Global vegetation models are important tools in estimating the impacts of global climate change. The fate of soil carbon is of the upmost importance as its emissions will enhance the atmospheric carbon dioxide concentration. To evaluate the skill of global vegetation models to model the soil carbon and its responses to environmental factors, it is important to use different data sources. We evaluated two different soil carbon models by using atmospheric carbon dioxide concentrations.
Cited articles
Adler, R., Huffman, G., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf,
B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and
Arkin, P.: The Version 2 Global Precipitation Climatology Project (GPCP)
Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167,
2003. a
Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B., Papale, D.,
Soussana, J.-F., Ammann, C., Buchmann, N., Frank, D., Gianelle, D., Janssens, I., Knohl, A., Köstner, B., Moors, E., Roupsard, O., Verbeeck, H., Vesala, T., Williams,
C. A., and Wohlfahrt, G.: Temporal and
among-site variability of inherent water use efficiency at the ecosystem
level, Global Biogeochem. Cy., 23, GB2018, https://doi.org/10.1029/2008GB003233,
2009. a
Betts, R., Cox, P., Lee, S., and Woodward, F.: Contrasting physiological and
structural vegetation feedback in climate change simulations, Nature, 387,
796–799, 1997. a
Böttcher, K., Markkanen, T., Thum, T., Aalto, T., Aurela, M., Reick, C. H.,
Kolari, P., Arslan, A. N., and Pulliainen, J.: Evaluating Biosphere Model
Estimates of the Start of the Vegetation Active Season in Boreal Forests by
Satellite Observations, Remote Sensing, 8, 580, https://doi.org/10.3390/rs8070580, 2016. a
Brovkin, V., Boysen, Raddatz, T., Gayler, V., Loew, A., and Claussen, M.:
Evaluation of vegetation cover and land‐surface albedo in MPI‐ESM CMIP5
simulations, J. Adv. Model. Earth Sy., 5, 48–57,
https://doi.org/10.1029/2012MS000169, 2013. a
Cescatti, A., Marcolla, B., Vannan, S. K. S., Pan, J. Y., Román, M. O.,
Yang, X., Ciais, P., Cook, R. B., Law, B. E., Matteucci, G., Migliavacca, M., Moors, E., Richardson, A. D., Seufert, G., and Schaaf, C. B.:
Intercomparison of MODIS albedo retrievals and in situ measurements across
the global FLUXNET network, Remote sensing of environment, 121, 323–334,
https://doi.org/10.1016/j.rse.2012.02.019, 2012. a
Chase, T., Pielke, R., Kittel, T., Nemani, R., and Running, S.: Sensitivity of
a general circulation model to global changes in leaf area index, J. Geophys.
Res., 101, 7393–7408, 1996. a
Chen, T., Rossow, W. B., and Zhang, Y.: Radiative Effects of Cloud-Type
Variations, J. Climate, 13, 264 – 286,
https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2, 2000. a
Claussen, M.: Modeling bio-geophysical feedbacks in the African and Indian
monsoon region, Clim. Dynam., 13, 247–257, 1997. a
Collatz, G. J., Ribas-Carbo, M., and Berry, J.: Coupled photosynthesis-stomatal
conductance model for leaves of C4 plants, Funct. Plant Biol., 19,
519–538, 1992. a
Cramer, W., Kicklighter, D., Bondeau, A., Iii, B., Churkina, G., Nemry, B.,
Ruimy, A., Schloss, A., and Intercomparison, T.: Comparing global models of
terrestrial net primary productivity (NPP): overview and key results, Glob.
Change Biol., 5, 1–15, https://doi.org/10.1046/j.1365-2486.1999.00009.x, 1999. a
Crueger, T., Giorgetta, M., Brokopf, R., Esch, M., Fiedler, S., Hohenegger, C.,
Kornblueh, L., Mauritsen, T., Nam, C., Naumann, A. K., Peters, K., Rast, S.,
Roeckner, E., Sakradzija, M., Schmidt, H., Vial, J., Vogel, R., and Stevens,
B.: ICON-A, The Atmosphere Component of the ICON Earth System Model: II.
Model Evaluation, J. Adv. Model. Earth Sy., 10,
1638–1662, https://doi.org/10.1029/2017MS001233, 2018. a
Dalmonech, D., Zaehle, S., Schürmann, G. J., Brovkin, V., Reick, C., and
Schnur, R.: Separation of the effects of land and climate model errors on
simulated contemporary land carbon cycle trends in the MPI Earth System Model
version 1, J. Climate, 28, 272–291, https://doi.org/10.1175/JCLI-D-13-00593.1,
2015. a
de Vrese, P. and Stacke, T.: Irrigation and hydrometeorological extremes,
Clim. Dynam., 55, 1521–1537, https://doi.org/10.1007/s00382-020-05337-9, 2020. a
de Vrese, P., Stacke, T., Kleinen, T., and Brovkin, V.: Diverging responses of high-latitude CO2 and CH4 emissions in idealized climate change scenarios, The Cryosphere, 15, 1097–1130, https://doi.org/10.5194/tc-15-1097-2021, 2021. a
Durack, P. J. and Taylor, K. E.: PCMDI AMIP SST and sea-ice boundary conditions
version 1.1.2, WCRP [data set], https://doi.org/10.22033/ESGF/input4MIPs.1161, 2017. a
DWD: Operationelle Einführung des neuen nichthydrostatischen Globalmodells
ICON, Tech. Rep., Deutscher Wetterdienst,
http://www.dwd.de/DE/fachnutzer/forschung_lehre/numerische_wettervorhersage/nwv_aenderungen/_functions/DownloadBox_modellaenderungen/icon/pdf_2015/pdf_icon_17_12_2014.pdf?__blob=publicationFile&v=6 (last
access: 10 February 2021), 2014. a
Ekici, A., Beer, C., Hagemann, S., Boike, J., Langer, M., and Hauck, C.: Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model, Geosci. Model Dev., 7, 631–647, https://doi.org/10.5194/gmd-7-631-2014, 2014. a
Farquhar, G. D., von Caemmerer, S. v., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149,
78–90, 1980. a
Feng, X., Vico, G., and Porporato, A.: On the effects of seasonality on soil
water balance and plant growth, Water Resour. Res., 48, W05543,
https://doi.org/10.1029/2011WR011263, 2012. a
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., Lean, J.,
Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes in atmospheric constituents and in radiative
forcing, in: Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K., Tignor, M., and Miller, H.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 131–234, ISBN 9780521705967,
2007. a
Gao, F., Schaaf, C. B., Strahler, A. H., Roesch, A., Lucht, W., and Dickinson,
R.: MODIS bidirectional reflectance distribution function and albedo Climate
Modeling Grid products and the variability of albedo for major global
vegetation types, J. Geophys. Res., 110, D01104,
https://doi.org/10.1029/2004JD005190, 2005. a
Gates, W. L.: AMIP: The Atmospheric Model Intercomparison Project, B. Am. Meteorol. Soc., 73, 1962–1970, 1992. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W.,
Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause, M.,Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Sy., 5, 572–597, 2013. a, b
Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J.,
Hohenegger, C., Kornblueh, L., Köhler, M., Manzini, E., Mauritsen, T., Nam,
C., Raddatz, T., Rast, S., Reinert, D., Sakradzija, M., Schmidt, H., Schneck,
R., Schnur, R., Silvers, L., Wan, H., Zängl, G., and Stevens, B.: ICON-A,
the Atmosphere Component of the ICON Earth System Model: I. Model
Description, J. Adv. Model. Earth Sy., 10, 1613–1637,
https://doi.org/10.1029/2017MS001242, 2018. a, b, c
Hagemann, S., Blome, T., Ekici, A., and Beer, C.: Soil-frost-enabled soil-moisture–precipitation feedback over northern high latitudes, Earth Syst. Dynam., 7, 611–625, https://doi.org/10.5194/esd-7-611-2016, 2016. a
Hickel, K. and Zhang, L.: Estimating the impact of rainfall seasonality on mean
annual water balance using a top‐down approach, J. Hydrol., 331, 409–424,
2006. a
Houghton, R.: Balancing the global carbon budget, Annu. Rev. Earth
Pl. Sc., 35, 313–347, 2007. a
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer,
G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C. D.,
Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova,
E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P.,
and Wang, Y. P.: Harmonization of land‐use scenarios for the period
1500–2100: 600 years of global gridded annual land‐use transitions, wood
harvest, and resulting secondary land, Climatic Change, 109, 117–161,
https://doi.org/10.1007/s10584-011-0153-2, 2011. a
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020. a
Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M., Legutke, S., Giorgetta, M., Reick, C., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Esch, M., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP amip, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6463, 2019. a
Jungclaus, J., Lorenz, S., Schmidt, H., Brovkin, V., Brüggemann, N.,
Chegini, F., T. Crüger1, P. D.-V., Gayler, V., Giorgetta, M., Gutjahr,
O., Haak, H., Hagemann, S., Hanke, M., Ilyina, T., Korn, P., Kröger, J.,
Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W., Nabel, J.,
Notz, D., Pohlmann, H., Putrasahan, D., Raddatz, T., Ramme, L., Redler, R.,
Reick, C., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., von
Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F., Stevens, B.,
Marotzke, J., and Claussen, M.: The ICON Earth System Model Version 1.0,
Journal of Advances in Modeling Earth Systems, p. e2021MS002813,
https://doi.org/10.1029/2021MS002813, 2022a. a, b, c
Jungclaus, J., Lorenz, S., Chegini, F., Schnur, R., Esch, M., Haak, H., and Putrasahan, D.: Jungclaus_etal_james2021_source_code_and_suppl_material, World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.35089/WDCC/RUBY-0_ICON-_ESM_V1.0_Model, 2022b. a
Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M., Fisher, J. B., and Willis, K. O.: A comprehensive benchmarking system for evaluating global vegetation models, Biogeosciences, 10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, 2013. a
Korn, P.: Formulation of an unstructured grid model for global ocean dynamics,
J. Comp. Phys., 339, 525–552, https://doi.org/10.1016/j.jcp.2017.03.009, 2017. a
Korn, P. and Linardakis, L.: A conservative discretizations of the
shallow-water equations on triangular grids, J. Comp. Phys., 375, 871–900,
2018. a
Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., and Puma,
M. J.: On the Nature of Soil Moisture in Land Surface Models, J. Climate, 22,
4322–4335, https://doi.org/10.1175/2009JCLI2832.1, 2009. a
Kvas, A., Behzadpour, S., Ellmer, M., Klinger, B., Strasser, S., Zehentner, N.,
and Mayer-Gürr, T.: ITSG-Grace2018: Overview and evaluation of a new
GRACE-only gravity field time series, J. Geophys. Res.-Sol.
Ea., 124, 9332–9344, https://doi.org/10.1029/2019JB017415, 2019. a
Levine, X. J. and Boos, W. R.: Land surface albedo bias in climate models and
its association with tropical rainfall, Geophys. Res. Lett., 44, 6363–6372,
https://doi.org/10.1002/2017GL072510, 2017. a
Loew, A., van Bodegom, P. M., Widlowski, J.-L., Otto, J., Quaife, T., Pinty, B., and Raddatz, T.: Do we (need to) care about canopy radiation schemes in DGVMs? Caveats and potential impacts, Biogeosciences, 11, 1873–1897, https://doi.org/10.5194/bg-11-1873-2014, 2014. a
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D., Haak, H., Hagemann, S.,
Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S.,
Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S.,
Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R.,
Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B.,
von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI‐M Earth System Model version
1.2 (MPI‐ESM1.2) and its response to increasing CO2, J. Adv.
Model. Earth Sy., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019. a, b, c
Max Planck Institute for Meteorology: CRP CMIP6: Max Planck
Institute for Meteorology (MPI-M) MPI-ESM1-2-HR model output for the “amip”
experiment, Centre for Environmental Data Analysis [data set],
https://catalogue.ceda.ac.uk/uuid/348138bb004242238bfc6979e8b8e55f (last access: 13 February 2021),
2020. a, b
Mayer-Gürr, T., Behzadpur, S., Ellmer, M., Kvas, A., Klinger, B., Strasser,
S., and Zehentner, N.: ITSG-Grace2018 – Monthly, Daily and Static Gravity
Field Solutions from GRACE, GFZ Data Services [data set], https://doi.org/10.5880/ICGEM.2018.003,
2018. a, b
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017. a
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M.,
Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E.,
Stemmler, I., Tian, F., and Marotzke, J.: A
Higher-resolution Version of the Max Planck Institute Earth System Model
(MPI-ESM1. 2-HR), J. Adv. Model. Earth Sy., 10,
1383–1413, https://doi.org/10.1029/2017MS001217, 2018. a
Myneni, R., Knyazikhin, Y., and Park, T.: MOD15A2H MODIS/Terra Leaf Area
Index/FPAR 8-Day L4 Global 500m SIN Grid V006 dataset, distributed by the
Land Processes Distributed Active Archive Center (LP DAAC), located at the
U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS)
Center [data set], https://doi.org/10.5067/MODIS/MOD15A2H.006, 2015. a, b, c
Nabel, J. E. M. S., Naudts, K., and Pongratz, J.: Accounting for forest age in the tile-based dynamic global vegetation model JSBACH4 (4.20p7; git feature/forests) – a land surface model for the ICON-ESM, Geosci. Model Dev., 13, 185–200, https://doi.org/10.5194/gmd-13-185-2020, 2020. a
Niu, S., Xing, X., Zhang, Z., Xia, J., Zhou, X., Song, B., Li, L., and Wan, S.:
Water-use efficiency in response to climate change: from leaf to ecosystem in
a temperate steppe, Glob. Change Biol., 17, 1073–1082, 2011. a
Otto, J., Raddatz, T., and Claussen, M.: Strength of forest-albedo feedback in mid-Holocene climate simulations, Clim. Past, 7, 1027–1039, https://doi.org/10.5194/cp-7-1027-2011, 2011. a, b
Ozturk, T., Hamza, A., Murat, T., and Levent, K. M.: Simulation of temperature
and precipitation climatology for the Central Asia CORDEX domain using RegCM
4.0, Clim. Res., 52, 63–76, https://doi.org/10.3354/cr01082, 2012. a
Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., and
Haerter, J.: Statistical bias correction of global simulated daily
precipitation and temperature for the application of hydrological models,
J. Hydrol., 395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024,
2010. a
Piao, S., Friedlingstein, P., Ciais, P., Viovy, N., and Demarty, J.: Growing
season extension and its impact on terrestrial carbon cycle in the Northern
Hemisphere over the past 2 decades, Glob. Biogeochem. Cy., 21, GB3018, https://doi.org/10.1029/2006GB002888,
2007. a
Platnick, S. E. A.: MODIS Atmosphere L3 Daily Product. NASA MODIS Adaptive
Processing System, Tech. Rep., Goddard Space Flight Center, USA,
https://doi.org/10.5067/MODIS/MOD08_D3.061, 2017. a, b
Reick, C., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of natural
and anthropogenic land cover change in MPI-ESM, J. Adv.
Model. Earth Sy., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013. a, b
Reick, C. H., Gayler, V., Goll, D., Hagemann, S., Heidkamp, M., Nabel, J. E.
M. S., Raddatz, T., Roeckner, E., Schnur, R., and Wilkenskjeld, S.: JSBACH 3
– The land component of the MPI Earth System Model: Documentation of version
3.2, Berichte zur Erdsystemforschung, 240, https://doi.org/10.17617/2.3279802, 2021. a, b, c, d, e
Running, S. and Zhao, M. S.: MOD17A2H MODIS/Terra Gross Primary Productivity
8-Day L4 Global 500m SIN Grid V006 dataset, Distributed as globally gridded
MODIS GPP and net photosynthesis data at 0.5 resolution in netCDF format by
the Integrated Climate Data Center, University
of Hamburg, Hamburg, Germany, NASA [data set], https://doi.org/10.5067/MODIS/MOD17A2H.006, 2019. a, b, c, d, e
Running, S., Mu, Q., Zhao, M., and Moreno, A.: MODIS/Terra Net
Evapotranspiration Gap-Filled Yearly L4 Global 500m SIN Grid V061, NASA [data set],
https://doi.org/10.5067/MODIS/MOD16A3GF.061, 2021. a
Schaaf, C. and Wang, Z.: MCD43C3 MODIS/Terra+Aqua BRDF/Albedo Albedo Daily L3
Global 0.05 Deg CMG V006 Dataset, NASA [data set],
https://doi.org/10.5067/MODIS/MCD43C3.006, 2015. a, b
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T.,
Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M.,
Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., d’Entremont,
R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D. P.: First
operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148, 2002. a
Schneck, R., Gayler, V., Nabel, J. E. M. S., Raddatz, T., Reick, C. H., and Schnur, R.: Assessment of JSBACH Primary Data, DOKU at DKRZ [data set], http://hdl.handle.net/21.14106/d24df375f487e20f57a2ab07b42c6ffc0af3f8c2 (last access: 1 August 2022), 2021. a
Schneck, R., Reick, C., and Raddatz, T.: Land contribution to natural CO2
variability on time scales of centuries, J. Adv. Model. Earth Syst., 5,
354–365, https://doi.org/10.1002/jame.20029, 2013. a
Seiler, C., Melton, J. R., Arora, V. K., Sitch, S., Friedlingstein, P.,
Anthoni, P., Goll, D., Jain, A. K., Joetzjer, E., Lienert, S., Lombardozzi,
D., Luyssaert, S., Nabel, J. E. M. S., Tian, H., Vuichard, N., Walker, A. P.,
Yuan, W., and Zaehle, S.: Are Terrestrial Biosphere Models Fit for Simulating
the Global Land Carbon Sink?, J. Adv. Model. Earth Sy.,
14, e2021MS002946, https://doi.org/10.1029/2021MS002946, 2022. a
Sellers, P.: Canopy reflectance, photosynthesis and transpiration, Int. J.
Remote Sensing, 6, 1335–1372, 1985. a
Settin, T., Botter, G., Rodriguez-Iturbe, I., and Rinaldo, A.: Numerical
studies on soil moisture distributions in heterogeneous catchments, Water
Resour. Res., 43, W05425, https://doi.org/10.1029/2006WR005737, 2007. a
Strahler, A., Schaaf, C., Gao, F., Li, X., and Lucht, W.: MODIS MOD43 Product
User Guide V004, Tech. Rep., Boston University, https://www.umb.edu/editor_uploads/images/school_for_the_environment_cs/mod43_user_guide_v4.pdf (last access: 16 November 2022),
2021. a
Sun, Y., Piao, S., Huang, M., Ciais, P., Zeng, Z., Cheng, L., Li, X., Zhang,
X., Mao, J., Peng, S., Poulter, B., Shi, X., Wang, X., Wang, Y.-P., and Zeng,
H.: Global patterns and climate drivers of water-use efficiency in
terrestrial ecosystems deduced from satellite-based datasets and carbon cycle
models, Global Ecol. Biogeogr., 25, 311–323, 2016. a, b, c, d, e, f, g, h, i, j
Swenson, S. C. and Milly, P. C. D.: Climate model biases in seasonality of
continental water storage revealed by satellite gravimetry, Water Resour.
Res., 42, W03201, https://doi.org/10.1029/2005WR004628, 2006. a
Taylor, K., Stouffer, R., and Meehl, G.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O'Neill, B., Sanderson, B., van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Tokarska, K. B., Hurtt, G., Kriegler, E., Lamarque, J.-F., Meehl, G., Moss, R., Bauer, S. E., Boucher, O., Brovkin, V., Byun, Y.-H., Dix, M., Gualdi, S., Guo, H., John, J. G., Kharin, S., Kim, Y., Koshiro, T., Ma, L., Olivié, D., Panickal, S., Qiao, F., Rong, X., Rosenbloom, N., Schupfner, M., Séférian, R., Sellar, A., Semmler, T., Shi, X., Song, Z., Steger, C., Stouffer, R., Swart, N., Tachiiri, K., Tang, Q., Tatebe, H., Voldoire, A., Volodin, E., Wyser, K., Xin, X., Yang, S., Yu, Y., and Ziehn, T.: Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6, Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, 2021.
a
TOP500 project: Performance Development,
https://www.top500.org/statistics/ (last access: 1 August 2022), 2021. a
Wan, Z., Hook, S., and Hulley, G.: MOD11C1 MODIS/Terra Land Surface
Temperature/Emissivity Daily L3 Global 0.05Deg CMG V006 data set, distributed
in netCDF format by the Integrated Climate Data Center, University of Hamburg, Hamburg, Germany,
https://www.cen.uni-hamburg.de/icdc/data/land/modis-landsurfacetemperature.html
(last access date: 6 January 2020), 2015. a, b
Wang, L., Cole, J. N. S., Bartlett, P., Verseghy, D., Derksen, C., Brown, R.,
and von Salzen, K.: Investigating the spread in surface albedo for
snow-covered forests in CMIP5 models, J. Geophys. Res.-Atmos., 121,
1104–1119, https://doi.org/10.1002/2015JD023824, 2016. a, b
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Non‐hydrostatic) modelling framework of DWD and MPI‐M:
Description of the non‐hydrostatic dynamical core, Q. J. Roy. Meteor. Soc.,
141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a, b
Short summary
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone in the development of the new ICON Earth System Model ICON-ESM. JSBACHv4 is the successor of JSBACHv3, and most of the parameterizations of JSBACHv4 are re-implementations from JSBACHv3. We assess and compare the performance of JSBACHv4 and JSBACHv3. Overall, the JSBACHv4 results are as good as JSBACHv3, but both models reveal the same main shortcomings, e.g. the depiction of the leaf area index.
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone...