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Abstract. We assess the land surface model JSBACHv4
(Jena Scheme for Biosphere Atmosphere Coupling in Ham-
burg version 4), which was recently developed at the Max
Planck Institute for Meteorology as part of the effort to build
the new Icosahedral Nonhydrostatic (ICON) Earth system
model (ESM), ICON-ESM. We assess JSBACHv4 in simula-
tions coupled with ICON-A, the atmosphere model of ICON-
ESM, hosting JSBACHv4 as land component to provide the
surface boundary conditions. The assessment is based on
a comparison of simulated albedo, land surface tempera-
ture (LST), leaf area index (LAI), terrestrial water storage
(TWS), fraction of absorbed photosynthetic active radiation
(FAPAR), net primary production (NPP), and water use ef-
ficiency (WUE) with corresponding observational data. JS-
BACHv4 is the successor of JSBACHv3; therefore, another
purpose of this study is to document how this step in model
development has changed model biases. This is achieved
by also assessing, in parallel, the results of coupled land–
atmosphere simulations with the preceding model ECHAM6
hosting JSBACHv3.

Large albedo biases appear in both models over ice sheets
and in central Asia. The temperate to boreal warm bias ob-
served in simulations with JSBACHv3 largely remained in
JSBACHv4, despite the very good agreement with observed
LST in the global mean. For the assessment of changes in
land water storage, a novel procedure is suggested to com-
pare the gravitational data from the Gravity Recovery And
Climate Experiment (GRACE) satellites to simulated TWS.
It turns out that the agreement of the changes in the seasonal
cycle of TWS is sensitive to the representation of precipita-

tion in the atmosphere model. The LAI is generally too high,
which is partly caused by too high soil moisture and also by
the parameterization of the phenology itself. The pattern of
WUE is, for both models, largely as observed. In India, WUE
is too high, probably because JSBACH does not incorporate
irrigation in our simulations. WUE differences between the
two models can be traced back to differences in precipitation
patterns in the two coupled land–atmosphere simulations.
For both models, most NPP biases can be associated with
biases in water stress, LAI, and FAPAR. In particular, the
NPP bias of the Eurasian steppes has switched from positive
in JSBACHv3 to negative in JSBACHv4. This difference is
mainly caused by weaker precipitation and lower FAPAR of
ICON-A–JSBACHv4 in July, which is most probably caused
by a feedback loop between too little soil moisture, evapo-
ration, and clouds. While the size and patterns of biases in
albedo and LST are largely similar between the two model
versions, they are less well correlated for precipitation- and
vegetation-related variables like FAPAR. Overall, the biases
found in the different assessment variables are either already
known from the previous implementation in the Max Planck
Institute Earth System Model (MPI-ESM) or have changed
because of the coupling with the new atmospheric compo-
nent ICON-A. Accordingly, this study demonstrates the tech-
nically successful completion of the re-implementation of
JSBACH into ICON-ESM-V1. As discussed, there is a good
perspective on mitigating the biases by an improved repre-
sentation of the processes.
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1 Introduction

With the massively increasing parallelism in high-
performance computing during the last 2 decades (TOP500
project, 2021), unstructured grids became a favoured choice
for the general circulation models of the atmosphere and the
ocean. Their usage offers good scalability, the prevention
of grid singularities at the poles, the exact conservation
of mass, and flexibility in resolution (e.g. for local refine-
ments). Accordingly, the utilization of unstructured grids
was the primary motivation for building the Icosahedral
Nonhydrostatic (ICON) modelling framework for a unified
next-generation numerical weather prediction and climate
modelling system, which is a joint development of the
German Weather Service (DWD) and the Max Planck
Institute for Meteorology (MPI-M).

ICON was successfully introduced into the operational
forecast system of the DWD in 2015 (Zängl et al., 2015;
DWD, 2014). The atmosphere model, ICON-A (Giorgetta
et al., 2018), and the ocean model, ICON-O (Korn, 2017;
Korn and Linardakis, 2018), were established for climate
simulations. Furthermore, a complex Earth system model
(ESM) named ICON-ESM is currently assembled based on
ICON and a coupled version of ICON-A and ICON-O (Jung-
claus et al., 2022a).

As part of this major effort, the ICON-Land framework
was developed at MPI-M to facilitate the implementation
of complex land surface models not only in ICON-ESM
but also into other modelling environments for global sim-
ulations. ICON-Land has a code structure following object-
oriented programming concepts. It offers the management of
processes and a hierarchical handling of tiles that represent
different types of land cover within a grid box. As a first ap-
plication of this framework, it now hosts JSBACHv4 (Jena
Scheme for Biosphere Atmosphere Coupling in Hamburg
version 4). As a consequence, JSBACHv4 is the land compo-
nent of ICON-A and thus also an integral part of the first ver-
sion of ICON-ESM. Technically, JSBACHv4 is a subroutine
of ICON-A and part of its scheme for the implicit solution
of vertical diffusion. Because of this intimate connection, the
assessment of JSBACHv4 performed in the present study is
done by means of coupled atmosphere–land simulations.

The base version of ICON-ESM – of which JSBACHv4
is part – has been described and evaluated in a recent study
by Jungclaus et al. (2022a). Their evaluation focuses on the
characterization of the main features of the new ICON-ESM
and its performance in simulating the Earth system in its
historical development. Our paper is a companion study to
amend this evaluation by a more detailed investigation of the
ability of its land component JSBACHv4 to represent land
surface processes for climate modelling and for Earth sys-
tem modelling. For this purpose, we focus on variables that
are, on the one hand, meaningful for the physical and biologi-
cal aspects of the overall model result and, on the other hand,
are available as an observation-based dataset for comparison.

For these reasons, we selected albedo, land surface temper-
ature (LST), terrestrial water storage (TWS), leaf area index
(LAI), fraction of absorbed photosynthetic active radiation
(FAPAR), net primary production (NPP), and water use effi-
ciency (WUE) for our assessment. These variables represent
processes that are fast compared to the cycling of carbon be-
tween land storage pools or climate-induced biogeographical
changes in land cover. Modules of JSBACHv4 representing
the latter two are switched off in our simulations and are thus
not part of the assessment.

JSBACHv4 is the successor of JSBACHv3 (Brovkin et al.,
2013; Reick et al., 2013; Schneck et al., 2013; Reick et al.,
2021), the land component of the Max Planck Institute Earth
System Model, MPI-ESM 1.2 (Mauritsen et al., 2019), that
participated in the Coupled Model Intercomparison Project
(CMIP) phase 5 (Giorgetta et al., 2013) and phase 6 (Tebaldi
et al., 2021). Most of the parameterizations of JSBACHv4 are
re-implementations from JSBACHv3. One aim of the present
study is to check if the new ICON-Land framework encom-
passing the implementation of JSBACHv4 is free of defects.
At the same time, we want to document the changes in the
quality of simulation results when stepping from ECHAM6–
JSBACHv3 to ICON-A–JSBACHv4. This is achieved by
performing the same assessment done for JSBACHv4 for JS-
BACHv3 as well, so that simulation biases can be compared.
Hence, the present study is in fact a parallel assessment of
the two JSBACH versions, although our main interest lies in
JSBACHv4.

We base our assessment on simulations with atmosphere
coupling performed in the AMIP configuration (Atmospheric
Model Intercomparison Project; Gates, 1992; Taylor et al.,
2000). For JSBACHv4, we perform AMIP simulations of
the last 3 decades with ICON-A that hosts JSBACHv4. For
JSBACHv3, we use an existing AMIP simulation that was
performed for the same period with the atmosphere model
ECHAM6.3 that hosts JSBACHv3 as a land component. The
key characteristic of the AMIP simulations is that the ob-
served historical development of monthly sea surface tem-
perature and sea ice cover is prescribed. Thereby, most of the
simulated interannual variability (e.g. related to the El Niño–
Southern Oscillation or the Pacific Decadal Oscillation) is in
phase with the real climate. Moreover, such a model con-
figuration prevents biases that arise in full ESM simulations
from internal variability and biases in the ocean model; such
biases would impede our discussion of land model perfor-
mance. Besides, alternatively driving the considered land sur-
face models by observed climate data in standalone mode
would not permit their assessment as proper ESM compo-
nents; such simulations would lack the interaction of the land
surface with the atmosphere and thereby presumably lead to
smaller biases than those that have to be coped with in ESM
simulations for which JSBACHv4 and JSBACHv3 were de-
signed. For JSBACHv3, such biases arising from the cou-
pling to atmosphere and ocean have been discussed for some
variables in Dalmonech et al. (2015).
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The structure of the paper is as follows. First, we describe
in Sect. 2 our methodology by introducing the considered
models and the simulation set-ups, and then we describe
each assessment variable, how it is calculated in JSBACH,
by which observational data it is assessed, and how obser-
vational data are pre-processed for this purpose. The sub-
sequent section, Sect. 3, contains our main results. There
we compare, for each assessment variable, simulation results
from the two JSBACH versions with observational data and
investigate the differences in the simulation results from the
two models. These results are summarized in Sect. 4, with
emphasis on the potential reasons for the emergence of sim-
ulation biases and their potential mitigation.

2 Methods

2.1 The models ICON-A–JSBACHv4 and
ECHAM6–JSBACHv3

To document the advancement from JSBACHv3 to
JSBACHv4, we compare ICON-A–JSBACHv4 with
ECHAM6–JSBACHv3 simulation results. As ICON-A
(Giorgetta et al., 2018) is the atmospheric component
of the Icosahedral Nonhydrostatic Earth System Model
(ICON-ESM), so ECHAM6 (Stevens et al., 2013; Giorgetta
et al., 2013) is the atmospheric component of the Max
Planck Institute Earth System Model (MPI-ESM), while
JSBACHv4 and JSBACHv3 are the respective land compo-
nents. ICON-A is the successor of ECHAM6 in the sense
that it is based on the ECHAM6 physics package with only
slight modifications (see Giorgetta et al., 2018). Besides the
technical infrastructure, the major difference concerns their
dynamical cores. While ICON-A employs a nonhydrostatic
solver for the primitive equations on an icosahedral grid
(Zängl et al., 2015), ECHAM6 invokes a spectral solver for
the hydrostatic approximation on a latitude–longitude grid
(Stevens et al., 2013). In both models, the dynamical core
solves for atmospheric motion, temperature, density, and
concentrations of water in the forms of vapour, clouds, and
cloud ice. The parameterizations of the physical processes,
like radiation and cloud condensation, alter these dynamical
variables. Crueger et al. (2018) found that, compared to
ECHAM6.3, the representation of climate has slightly
improved in ICON-A.

JSBACHv4 (Jena Scheme for Biosphere Atmosphere Cou-
pling in Hamburg) is the land component of ICON-A. It was
developed at MPI-M as the successor of JSBACHv3 (Reick
et al., 2013, 2021), with a completely renewed technical in-
frastructure. However, it applies the same parameterizations
as JSBACHv3 did (documented in Reick et al., 2021) and
includes the additional feature of frozen soil water and a
five-layer snow scheme (Ekici et al., 2014; de Vrese et al.,
2021). It comprises processes that are important for a land
surface scheme, including the surface energy balance, terres-

trial water budget and runoff, surface exchange fluxes (mois-
ture, heat, and carbon), phenology, surface albedo and rough-
ness, radiation in the canopy, plant productivity (photosyn-
thesis and gross and net primary productivity), anthropogenic
land cover change, and land cover disturbances by wind and
fire. The radiation fluxes in the canopy that are needed in the
photosynthesis routines to determine the fraction of absorbed
photosynthetically active radiation (FAPAR) are calculated
by employing a two-stream approximation (Sellers, 1985).
The hydrological soil scheme uses five soil layers ranging
9.8 m below the surface with increasing thickness towards
the bottom. The coupling to the atmosphere is identical in
ICON-A–JSBACHv4 and ECHAM6–JSBACHv3 and hap-
pens via the calculation of albedo, surface roughness, and
the surface fluxes of sensible and latent heat, where the latter
are obtained as part of the implicit numerical scheme solving
for the vertical diffusion of dry static energy and humidity in
the atmosphere (Reick et al., 2021).

2.2 Simulation set-up

For our assessment, we perform simulations with ICON-A–
JSBACHv4 and compare the results with data from an exist-
ing simulation with ECHAM6–JSBACHv3. For the present
study, we ran ICON-A–JSBACHv4 in the R2B4 resolution
(grid spacing ∼ 160 km) using 47 layers for the atmosphere.
The simulation employs the 11 plant functional types (PFTs)
of tropical broadleaf evergreen, tropical broadleaf decidu-
ous, extratropical evergreen, extratropical deciduous, rain-
green shrubs, deciduous shrubs, C3 grass, C4 grass, C3 pas-
ture, C4 pasture, and C3 crops. Land cover change is pre-
scribed by annual maps for the fractional cover of the PFTs
within each grid cell. These maps are derived, as described
in Mauritsen et al. (2019), from the Land-Use Harmonization
(LUH) project (Hurtt et al., 2011) version LUH2v2h (Hurtt
et al., 2020) dataset.

Both simulations were performed for the years 1979 to
2014 in a set-up according to the AMIP II protocol (Tay-
lor et al., 2000, 2012), prescribing monthly sea surface tem-
peratures (SSTs), sea ice concentrations (Durack and Taylor,
2017), observed solar irradiance, and historical greenhouse
gas concentrations (Meinshausen et al., 2017). The AMIP
simulations were started from the state of an existing his-
torical simulation with the respective full ESM (see below).

For ICON-A–JSBACHv4, the particular model versions
used are ICON-A of ICON-ESM-V1 and JSBACHv4.30. For
ECHAM6–JSBACHv3, we used published CMIP6 simula-
tions performed with the atmospheric component ECHAM-
6.3.05 of MPI-ESM1.2-HR that hosts JSBACHv3.20 as a
land model (Mauritsen et al., 2019; Müller et al., 2018).
These latter data are published as Max Planck Institute for
Meteorology (2020). We used ensemble member r1i1p1f1.
The ECHAM6–JSBACHv3 AMIP set-up is similar to our
ICON-A–JSBACHv4 run, except for the model grid (T127
∼ 100 km and 95 vertical levels), integer lake mask, no
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Table 1. Simulation differences between JSBACHv4 and JS-
BACHv3.

Parameterization JSBACHv4 JSBACHv3

Plant functional types 11 11 and C4 crops
Frozen soil Yes No
Number of snow layers 5 1
Fractional lakes Yes No

frozen soil, one snow layer, and the additional use of a C4
crop PFT (Table 1). In particular, it applies the same land
cover change scheme and input maps as our ICON-A exper-
iment.

In case of ICON-A–JSBACHv4, data from the year 1980
were taken for initialization from the respective historical
simulation (Jungclaus et al., 2022a), while the initialization
of ECHAM6–JSBACHv3 is based on the state of the year
1979 of the associated historical CMIP6 simulation (Max
Planck Institute for Meteorology, 2020). After model start,
the atmosphere equilibrates within days. Because land car-
bon and biogeographical components are not active in our
AMIP simulations, the slowest land variable in this set-up
is soil moisture. By the initialization from a historical sim-
ulation, the soil water reservoirs are, upon starting, already
filled to a realistic level. Soil water memory is typically a
few months, and only in desert regions does it lasts up to a
year (Hagemann and Stacke, 2015). But soil water memory
stems (in our model) mostly from below the root zone (Hage-
mann and Stacke, 2015), so that it is largely decoupled from
the active water cycle at the monthly scale that we consider
for our assessment.

2.3 Assessed variables and their representation in
JSBACH

Here we introduce the variables that we selected for our
model assessment. Only variables describing fast processes
(seconds to years) are considered. Slow processes (decades
and longer; e.g. climate-induced changes in biogeography
and wood or soil carbon turnover) are also implemented in
JSBACHv4 but are not activated in our simulations and are
thus not subject to assessment here. To shed some more
light on the origin of biases in the selected assessment vari-
ables, we consider also some auxiliary variables. These are
introduced below together with the respective assessment
variable. As process descriptions are largely similar in JS-
BACHv4 and JSBACHv3, in the following we distinguish
between those two versions only when necessary.

2.3.1 Albedo

Land surface albedo controls the balance of shortwave radi-
ation at the surface and thus the land energy uptake. It plays
a role for the land biosphere and for the climate of the lower

atmosphere. Its changes are shown to have positive feed-
back effects with climate (e.g. Claussen, 1997). Changes are
driven by natural seasonal and diurnal alterations and human
interventions like vegetation changes due to land use (Forster
et al., 2007). Surface albedo depends on the canopy proper-
ties (e.g. LAI), soil colour, the colour of litter covering the
soil, and on snow cover and changes in snow colour when
ageing. As all these properties and the surface albedo it-
self are typically calculated by the land surface scheme (land
model), and the albedo is one of the most common variables
for its evaluation. This is especially true in the consideration
that albedo results vary strongly among land models. For ex-
ample, Levine and Boos (2017) show, for the Northern Hemi-
sphere summer, that intermodel albedo variance in CMIP5
(Coupled Model Intercomparison Project Phase 5) simula-
tions is large compared to interannual albedo variance. Wang
et al. (2016) also show a strong intermodel albedo variabil-
ity in the CMIP5 simulations but for Northern Hemisphere
winter.

The albedo scheme of JSBACH computes temporal and
spatial albedo changes. The scheme differentiates between
the near-infrared (NIR) and visible range (VIS) albedo; only
for lakes is this differentiation not done. On lakes, the frac-
tion of lake ice and snow on lake ice is taken into ac-
count. The albedos for PFTs and bare soil and for snow are
computed separately. Snow albedo decreases with increas-
ing snow age and surface temperature. The overall albedo on
land is then calculated from the fractions of soil, canopy, and
the corresponding overlaying snow, considering the influ-
ence of the incoming solar radiation angle on their fractions.
Thereby, the coverage of the soil by stems and branches
within forest is considered. JSBACHv4 uses the same albedo
scheme as JSBACHv3, which is described in detail in Otto
et al. (2011).

As a benchmark for our assessment of the JSBACH albedo
results, we use the MODIS MCD43C3 Climate Modelling
Grid (CMG) Collection 6 Albedo product (Schaaf and Wang,
2015), which is suitable for climate model comparisons
(Cescatti et al., 2012; Schaaf et al., 2002). For our compari-
son, we exclude data flagged for minor quality from inversion
(quality flags 4 and 5).

The contributions from snow cover make a large contri-
bution to the albedo values in the extratropics. Therefore, as
part of the discussion of albedo results, we also discuss the
simulated distribution of snow cover and compare it with ob-
served snow cover from the same MODIS dataset.

2.3.2 Land surface temperatures (LSTs)

Virtually all land processes depend directly or indirectly on
LST. It is a key variable in the surface energy balance and
thus takes part in the control of thermal, radiative, and hy-
drological exchange fluxes at the interface between land and
atmosphere that shape the local climate and the state of the
lower atmosphere. It plays a central role in cryospheric pro-
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cesses (amount and duration of snow cover and formation of
soil ice) and determines local living conditions for fauna and
flora.

Atmospheric temperature is one of the most regarded
prognostic variables in climate models. Its calculation de-
pends over land on LST as lower boundary condition that
is provided by the respective land component. In JSBACH,
land surface temperature is obtained from the surface en-
ergy balance equation, whose solution is embedded in the
vertical diffusion scheme for heat and moisture fluxes in the
atmosphere (implicit coupling). LST is also used as an up-
per boundary condition to determine the vertical temperature
profile within the five-layer soil model that assumes vanish-
ing heat fluxes at the bottom (10 m depth).

For a comparison of the simulated LST with observations,
we use the MOD11C1 Moderate Resolution Imaging Spec-
troradiometer (MODIS) Terra Land Surface Temperature/E-
missivity V006 dataset (Wan et al., 2015). We excluded data
points where the quality flags indicate no retrieval because of
clouds.

As a part of the LST analysis, we regard the modelled to-
tal cloud cover (TCC) as compared to observed TCC from
the Collection 6.1 EOS-TERRA MODIS Atmosphere Level
3 Daily product (Platnick, 2017).

2.3.3 Terrestrial water storage (TWS)

TWS influences many surface properties connected to cli-
mate. In particular, its representation in land surface schemes
has a major impact on calculated evaporation, transpiration
(root water uptake), NPP, and LAI (water limitation). As a re-
sult, the latent heat flux into the atmosphere heavily depends
on TWS. On a global scale, its seasonality peaks in about
April and is lowest around September (Swenson and Milly,
2006). Due to the local seasonality of precipitation and evap-
otranspiration, TWS has a strongly site-dependent seasonal-
ity (Feng et al., 2012; Hickel and Zhang, 2006; Settin et al.,
2007). Even when TWS has a strong dependency on the at-
mosphere through precipitation and air temperature, it is still
determined by surface properties like the soil type and veg-
etation. Therefore, its depiction in climate models depends
largely on the particular land model. Koster et al. (2009)
drove a number of land surface models with the same atmo-
spheric forcing and concluded that soil moisture is highly
dependent on the particular land surface model.

TWS encompasses water in snow, vegetation, soil, runoff,
and aquifers. In JSBACH, TWS is the sum of water stored
as snow and water on the surface and the canopy, as soil wa-
ter and soil ice, and as runoff. Aquifer water impacts climate
only when it emerges as open water (runoff, lake, or ocean).
Therefore, aquifer water is not explicitly represented in JS-
BACH (as in most land models). JSBACH also has no ex-
plicit store for water in vegetation. Formally, this water is
part of the soil water pool because, for transpiration, the wa-
ter is taken directly from the soil water pool. The water bud-

get in JSBACH is calculated from processes aboveground,
the soil hydrology, and the river runoff. Aboveground pro-
cesses are the snow and water that fall on the surface or that
are intercepted by the canopy. The water that reaches the
surface (as rain, snowmelt, and dew) can infiltrate the soil.
From that only a part is taken up by the soil, and the re-
maining part enters the surface runoff. Vertical movements
of water in the soil are the result of its vertical diffusion and
its gravitational percolation. Water in- and output occur at
the surface in form of rain, evaporation, and snowmelt (on
the surface and the canopies). Water transpired by the veg-
etation is extracted from the soil water reservoir. The size
of transpiration depends on primary production, root depth,
and specific humidity of the lowest atmospheric layer. At the
bottom of the soil, water is lost as drainage which is added
to the overall runoff. Because TWS could not be calculated
from the ECHAM6–JSBACHv3 simulation output, we only
assess JSBACHv4.

The Gravity Recovery And Climate Experiment (GRACE)
is a project to accurately determine the Earth’s gravitational
field with detailed measurements from satellites. For our as-
sessment of simulated TWS, we use the ITSA_Grace2018s
unconstrained monthly TWS dataset (Kvas et al., 2019;
Mayer-Gürr et al., 2018). It is derived from the GRACE satel-
lite sensing of changes in the gravitational field of the Earth.
These changes are reprocessed to reduce the effects of mass
trends originating from glacial isostatic adjustment, postseis-
mic deformation after large earthquakes, and atmospheric
mass variability. Therefore, the dataset essentially senses wa-
ter mass anomalies independently of their surface exposure
and thus integrates all water mass changes in snow cover,
vegetation, soil, runoff, and aquifers.

Here we are mainly interested in the question of how JS-
BACHv4 performs in the context of climate and Earth sys-
tem modelling. For the fluxes to the atmosphere, a correct
reproduction of the seasonal cycle in TWS is essential. Thus,
only changes in TWS in the course of the year are analysed
and not long-term trends. Our comparison is based on the
assumption that the additional signal from the hydrology be-
low 10 m that is present in the observational data but not in
JSBACH does only contribute negligibly to monthly TWS
changes. We assume that, below 10 m depth, the hydrologi-
cal processes are already so slow that they do not add to the
phasing of the overall seasonal signal. This pertains in par-
ticular to potential signals from aquifers, whose recharging
times are much larger than the monthly timescale considered
in our comparison (typically decades to millennia).

As model results and GRACE data are derived by totally
different methods, we expect that the size of monthly TWS
change will systematically differ. For example, both datasets
are expected to have different standard deviations. Before
comparison, we therefore normalize the observed and sim-
ulated data according to their own size of the variation. For
the normalization, we use averaged absolute values instead
of the standard deviation. Using the standard deviation would
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put more weight on extreme values, which makes sense as it
lowers the impact of statistical outliers. However, here sta-
tistical outliers are unlikely as we regard multiyear averages.
Therefore we use, for each particular grid cell, the following:

1x =
1

12

12∑
m=1
|xm|, (1)

where xm is the average of observed TWS change for month
m calculated over the period of available observation data
(years 2003 to 2014). From this we calculate the normalized
month-to-month differences as follows:

1TWSm :=
xm+1− xm

1x
, (2)

with m= 1,2, . . .11. Denoting simulated values by TWS′

and applying to them the same calculations, we measure the
average mismatch between simulated and observed TWS in
month-to-month changes across a year by the following:

QTWS :=

11∑
m=1
|1TWS′m−1TWSm|. (3)

This value can reach a maximum of 22, and the closer to
zero it is, the more synchronous the observed and simulated
month-to-month changes will be.

Only the average seasonal changes in TWS are evaluated
by this method. The amplitude of TWS variations and long-
term trends in TWS are not considered. Therefore, a low
value of QTWS does not necessarily mean that variations in
TWS are simulated realistically in a quantitative sense, but it
shows that the seasonal phasing of TWS is captured by the
model.

2.3.4 Leaf area index (LAI)

The LAI strongly affects the exchange of energy and mat-
ter with the atmosphere through its impact on albedo and the
fluxes of water and carbon (Chase et al., 1996; Betts et al.,
1997; Piao et al., 2007). A high LAI typically enhances the
transpiration of water and, in general, also the primary pro-
ductivity. The LAI depends primarily on the climatic condi-
tions for a given biome. With the onset and eventual loss of
leaves at the beginning and end of the growing season, the
LAI reveals a strong seasonality. However, in contrast to soil
moisture, it remains unaffected by short precipitation spells.
In climate models, the LAI is time dependent and either pre-
scribed from observations or calculated by the corresponding
land surface scheme. How it is calculated strongly depends
on the particular land model (see, e.g., Wang et al., 2016).

JSBACHv3 provides different schemes to compute the
LAI (Reick et al., 2021). The default scheme, which is also
implemented in JSBACHv4, is the LoGro-P model (Logistic
Growth Phenology). In LoGro-P, the LAI is only coupled to
climate and not to a specific carbon allocation in leaves. The

advantage of this simplified approach is that, due to the miss-
ing feedback of the carbon pools to the LAI, it is possible to
run the carbon and vegetation dynamics submodels in dif-
ferent configurations without the phenology model and with
the same NPP. Each PFT is assigned to one of the follow-
ing phenology types, i.e. evergreen, summergreen, raingreen,
grasses, and tropical and extratropical crops. Each phenology
type has a maximum LAI, which represents its physiologi-
cal limit. Changes in the summergreen phenology are based
on three phases, namely growth (in spring), vegetative (in
summer), and rest phases (in autumn and winter). The rain-
green, grasses, and tropical crop phenology types only have
a growth phase; they grow whenever the environmental con-
ditions (soil moisture, temperature, and NPP) are favourable.
The evergreen and extratropical crop phenologies have no
vegetative phase. Dependent on the phenology type, different
environmental conditions determine the advancement from
one phase to the next. For example, the evergreen, summer-
green, and extratropical crop phenologies use accumulated
temperatures (heat sum) for entering the growth phase when
it reaches a PFT-specific threshold value. Overall, the LAI
increases when the soil is wet and temperatures and NPP are
high. A detailed description of the LoGro-P model is given
in Böttcher et al. (2016).

For the assessment, we compare our simulation results for
LAI with the MODIS MOD15A2Hv006 LAI product (My-
neni et al., 2015). We use only data where the primary or sec-
ondary quality flag reveal more than a 50 % fraction of mea-
surements with the best or good quality (primary/secondary
quality flags of 51–100 and 251–300).

2.3.5 Fraction of absorbed photosynthetic active
radiation (FAPAR)

The fraction of absorbed photosynthetically active radiation
(FAPAR) quantifies the fraction of the photosynthetically ac-
tive radiation (PAR; solar radiation in the 400–700 nm spec-
tral domain) absorbed by leaves for photosynthesis. FAPAR
depends on the LAI, the optical properties of the leaves and
their orientation, atmospheric conditions, the angle of incom-
ing radiation, and the albedo of the underlying soil. It deter-
mines the gross primary productivity (GPP) and plays a key
role in plant respiration and transpiration.

To solve the complicated radiation problem, JSBACH
uses a so-called two-stream approximation approach. This
approximation requires that the leaves are distributed ho-
mogeneously in the canopy and the radiation distribution
within the canopy is horizontally invariant. Hence, for closed
canopies, it is sufficient within the canopy to consider verti-
cally up- and downward radiation fluxes. However, the con-
crete implementation of this approach into JSBACH is rather
complex, and we refer the reader to Loew et al. (2014) for
details.
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For our assessment of FAPAR, we regard the differences
between our model and the MODIS MOD15A2Hv006 prod-
uct. We only took the data where the primary or secondary
quality flag have more than a 50 % fraction with the best or
good quality measurements.

2.3.6 Net primary production (NPP)

The exchanges of carbon between terrestrial ecosystems and
the atmosphere are dominated by GPP and plant respiration
(Houghton, 2007). NPP, as the net carbon flux from these
two, is therefore very important for the carbon balance be-
tween atmosphere and land. It depends on LAI, TWS, and
WUE, as well as on temperature and radiation. It varies sea-
sonally and annually, depending on the climatic conditions
(precipitation, temperature, and radiation). Globally, it peaks
in Northern Hemisphere summer and has its low point in
winter. As shown in Cramer et al. (1999), its representation
strongly depends on the land model.

In JSBACH, GPP is calculated from FAPAR under the
consideration of water stress. Water stress is quantified by
calculating the relative amount of water found in the root
zone, taking into account the wilting point below which
plants cannot extract any more water from the soils and above
which transpiration is largely unhindered. In JSBACH, car-
bon is respired, on the one hand, as maintenance respiration
(to cover the basic plant functions like photosynthesis, nu-
trient and water transport, repairs, and defence) and, on the
other hand, as growth respiration (to cover plant growth).
Note that autotrophic respiration is calculated as a prescribed
fraction of GPP instead of carbon allocated in the different
plant tissues. Accordingly, NPP belongs, as do the other vari-
ables considered here, to the fast variables of JSBACH that
can be assessed without considering the cycling of carbon
between different storage pools. In JSBACH, the net balance
of GPP and respired carbon is called potential NPP. In times
when more carbon is respired than gained from the assimi-
lation, potential NPP is negative. In this case, as much car-
bon as possible is taken from the reserve pool (representing
carbon in plants stored in sugars and starches) to obtain the
actual NPP. If potential NPP is positive and can be allocated
to the plant carbon pools or through root exudates to the soil
carbon, potential NPP equals actual NPP. However, if poten-
tial NPP cannot be allocated because of structural limits of
the plants (plants cannot grow infinitely large), then as much
carbon as possible is allocated (actual NPP is smaller than
the potential NPP), and the remaining carbon is added as root
exudates to the soil carbon.

We use the MODIS-C006_MOD17A2Hv006 dataset as
a benchmark for our actual NPP assessment (Running and
Zhao, 2019). We use only data with a confidence flag having
the values 0 (very best possible) and 1 (good, very usable,
but not the best).

2.3.7 Water use efficiency (WUE)

Continuous water uptake is a prerequisite for plant growth.
But how much they need to photosynthesize a unit of or-
ganic carbon is different between different plants and, at a
larger scale, different between ecosystems. This efficiency
by which plants use water is closely related to the way plants
operate their leaf stomata. By closing them, less leaf water
evaporates into the surrounding air, which reduces the risk
of desiccation, while their opening facilitate access to atmo-
spheric CO2 and thereby assimilation and growth. In dry ar-
eas, the growth of plants is typically limited by lack of wa-
ter, and they have developed means to use water to assimilate
carbon more efficiently than plants in wet regions (e.g. C4 in-
stead of C3 carbon fixation). But even under the same climate
conditions water use efficiency (WUE) can differ, depending
on the species (Niu et al., 2011), stand age, and ecosystem
structure. Overall, WUE strongly defines carbon and water
exchanges with the atmosphere (Sun et al., 2016).

WUE can be characterized in different ways (Beer et al.,
2009). In the context of land surface models with their large
grid cells, only a definition at biome or ecosystem level is
useful. Here we define WUE as the ratio between annual
GPP and annual evapotranspiration (ET) integrated over all
the PFTs in a grid cell. This characterizes WUE at ecosys-
tem level, as it employs evapotranspiration that not only in-
cludes transpiration but also evaporation from the ground.
Moreover, this definition has the advantage that, for GPP and
ET, global observational datasets exist from which this WUE
can be calculated.

In JSBACH, GPP is derived in a two-step approach.
First, potential GPP is calculated, assuming absence of water
stress, so that the plants photosynthesize at maximum rate.
Then the soil hydrology model computes the corresponding
potential water loss from transpiration. In a second step, ac-
tual GPP is calculated, accounting for a possible lack of soil
water. JSBACH differentiates between C3 and C4 photosyn-
thesis. For C3 plants, an implementation of the Farquhar et al.
(1980) model is used, and for C4 plants, an implementation
of the Collatz et al. (1992) model is used. Both models take
into account that the carboxylation and electron transport rate
depend on temperature.

We calculate the JSBACH WUE for each grid cell as the
total actual GPP from all PFTs divided by total evapotran-
spiration in that grid cell and average these quotients over
the years 2001 to 2014. We compare the JSBACH results
with the WUE calculated from MODIS data. For that, we
divide the MODIS-C006_MOD17A2Hv006 GPP (Running
and Zhao, 2019) with MODIS MOD16A3GF.061 evapotran-
spiration (Running and Zhao, 2019). For evapotranspiration,
we excluded data flagged with a minor quality above 80 %
(bad days/total days). We also compare the JSBACH re-
sults with the global distribution of WUE published by Sun
et al. (2016), which was partially calculated from different
observation-based data. To ease the visual comparison, we
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plotted our figures such that contour levels and colours are as
seen in Sun et al. (2016).

2.4 Data preparation

Table 2 summarizes the variables that are compared with cor-
responding observational data. The spatial resolution of the
MODIS data is 0.05◦× 0.05◦ (about 5.6 km at the Equator),
of the GRACE data is 2◦× 2◦ (about 220 km at the Equator),
and of the Global Precipitation Climatology Project (GPCP)
data is 2.5◦× 2.5◦ (about 280 km at the Equator). The ob-
servational data and our model results are interpolated with
a first-order conservative remapping to a Gaussian 96× 192
long–lat grid (T63; about 1.88◦, which is 210 km at the Equa-
tor). In the MODIS data, quality flags are included and indi-
cate issues from elicitation arising from atmospheric scatter-
ing and absorption, anisotropy, inadequate temporal, spatial
and spectral sampling, and narrowband to broadband conver-
sions. For the MODIS data, the interpolation is done after
the data points with minor quality are excluded (see the sub-
sections above for details). Except for TWS, we average our
model results, the MODIS data, and the GPCP data over the
years 2001 to 2014. The TWS and the corresponding model
data are averaged over the years 2003 to 2014 because the
GRACE dataset is missing 2001 and parts of 2002. For our
precipitation results, we use only grid cells where the differ-
ences between JSBACH and GPCP are larger than the GPCP
error bar. For the assessment of the seasonality, we selected
January and July to represent deep winter and high summer
in the two hemispheres. The respective maps were obtained
by averaging all Januaries and Julies in the considered time
range from 2001 to 2014. All presented spatial correlations
are weighted with the grid cell area.

To give a general overview of the agreement between the
model results and the observation data, we use the normal-
ized mean error (NME) of Kelley et al. (2013). It is calcu-
lated as follows:

NME=
∑n

i=1|Xmodel,i −Xobs,i |∑n
i=1|Xobs,i −Xobs|

, (4)

where n is the number of land grid cells, X is the actual value
of the assessment variable for the model or the observations,
and Xobs is the mean value of the observations over the grid
cells. The higher the value of NME, the stronger the model
bias as compared to the spatial variability in the observations.
Zero means a perfect agreement between the model and ob-
servations. One means that the model bias is as strong as the
spatial variability in the observations.

3 Results

Here we present our results from ICON-A–JSBACHv4 and
ECHAM6–JSBACHv3 simulations. One general tendency is
that simulation results from the two models are quite similar,

so that the discussion of the results often applies to both mod-
els, and in such cases we simply talk of JSBACH without a
version number. In all other cases, when we discuss specifics
of the results from a particular model version, the full model
name will be used. Because biospheric variables strongly de-
pend on environmental conditions, we discuss physical vari-
ables first.

3.1 General performance

Taylor (2001) proposed a graphical way to depict the overall
performance of a model. The corresponding Taylor diagram
for JSBACHv4 and JSBACHv3 is shown in Fig. 1. The LST
achieved by far the best agreement of the statistical metrics
with observations. These metrics remained nearly unchanged
from JSBACHv3 to JSBACHv4. Except for the LST, all stan-
dard deviations are reduced in JSBACHv4 (especially FA-
PAR). Overall, some statistical metrics of JSBACHv4 im-
proved, while others worsened as compared to JSBACHv3.
Thus, the overall performance remained more or less the
same. This is also visible in the NME in Tables A1 and A2,
where the NME magnitude is very similar between the as-
sessment variables of both models.

3.2 Albedo

Figure 2 shows, for both JSBACH versions, the albedo bi-
ases, which are given separately for the visible (VIS) and
near-infrared (NIR) range. The bias pattern is very similar
for JSBACHv3 and JSBACHv4, with exceptions only found
in central North America and some regions in northeastern
Europe (e.g. in the January values of the VIS albedo). The
similarity of bias patterns between the two model versions
is visible in Table 3. It is also visible from the scatterplots
in Fig. B2. The correlations (r and rho) are about 0.7 and
higher, except for r ∼ 0.6 for VIS albedo in January when a
larger scatter arises from polar regions.

For the biases seen in Fig. 2, three main causes can be
identified. First, the too low VIS albedo and the too high NIR
albedo over glaciers (Antarctica and Greenland) is likely a di-
rect result of the fixed minimum and maximum albedo values
used in the JSBACH calculations of glacier albedo. Second,
the strong negative VIS and NIR albedo bias seen for January
in western North America, eastern Europe, and large parts of
central Asia is most probably a result of the bias in the dy-
namically calculated snow cover fraction (compare Fig. 3).
And third, the biases in all other regions that are not covered
by glacier or snow are at least partly caused by old canopy
and soil albedo maps used in JSBACH. These biases will be
explained in the next paragraph.

Our analyses reveals that the reason for the too low NIR
albedo obtained for northern midlatitudes summer is the
static map used for soil albedo. The origin of the mostly
too large albedo values in other regions (South America,
Africa, India, and Australia) are not traceable to single causes
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Table 2. Variables and the observational data used for their assessment. Assessment variables are plotted in bold.

Variable Corresponding observational data Reference

Albedo and snow cover MODIS MCD43C3 CMG Collection 6 Albedo product Schaaf and Wang (2015)
LST MODIS MOD11C1 Terra Land Surface Temperature/Emissivity V006 Wan et al. (2015)
TCC Collection 6.1 EOS-TERRA MODIS Atmosphere Level-3 Daily product Platnick (2017)
Precipitation GPCP monthly precipitation dataset from 1979 to 2021 Adler et al. (2003)
TWS ITSA_Grace2018s unconstrained monthly TWS dataset Mayer-Gürr et al. (2018)
LAI MODIS MOD15A2Hv006 LAI product Myneni et al. (2015)
FAPAR MODIS MOD15A2Hv006 Myneni et al. (2015)
NPP MODIS-C006_MOD17A2Hv006 Running and Zhao (2019)
WUE See GPP and evapotranspiration Sun et al. (2016)
GPP MODIS-C006_MOD17A2Hv006 Running and Zhao (2019)
Evapotranspiration MODIS MOD16A3GF.061 Running et al. (2021)

Note: land surface temperature – LST; total cloud cover – TCC; terrestrial water storage – TWS; leaf area index – LAI; fraction of absorbed photosynthetic active
radiation – FAPAR; net primary production – NPP; water use efficiency – WUE; Moderate Resolution Imaging Spectroradiometer – MODIS; Gravity Recovery And
Climate Experiment – GRACE; and Global Precipitation Climatology Project – GPCP.

Table 3. Spatial Spearman rank correlations (rho) between the biases of JSBACHv4 against those of JSBACHv3 for all grid cells.

Albedo VIS Albedo NIR LST LAI FAPAR NPP

Annual – – 0.854 0.658 0.336 0.735
January 0.754 0.756 0.856 0.735 0.333 0.769
July 0.844 0.829 0.701 0.599 0.340 0.551

but must be a geographically complex result of the calcu-
lated superposition of the assumed values for canopy albedo
(which depend on vegetation type) and the static map for
soil albedo. A closer inspection (not shown) indicates that,
in the NIR range, JSBACH has too high a canopy and too
low a soil albedo, while, for VIS albedo, the converse must
be suspected. JSBACH uses the same canopy and soil albedo
maps for the whole year and does not incorporate seasonal-
ity. The canopy and soil albedo maps used in JSBACH are
derived from a fit (see the discussion in Sect. 4.2 for de-
tails) to the 2001 to 2004 mean of an older MODIS prod-
uct (MODIS MOD43C1 CMG Collection 4 Albedo product;
Strahler et al., 2021; Gao et al., 2005). As the version used
internally in JSBACH is a yearly mean, one would expect
strong differences in observations for January and July. In
Fig. 4 we show the difference between the version used in-
ternal in JSBACH and the MODIS observations for January
and July that we use here for our bias analysis. These differ-
ences explain a considerable part of the albedo biases seen
in Fig. 2. In Africa, for example, for both months considered
and both spectral ranges analysed, large parts of the JSBACH
biases are already visible as the bias of the older compared to
the newer MODIS product. The same holds for southeastern
Asia and for the NIR albedo in India. Accordingly, a consid-
erable part of the biases in albedo arises from the maps for
canopy and soil albedo. Note that the rather large differences
between the two albedo products seen in Fig. 4 at high lati-
tudes in the Northern Hemisphere winter in the visible range
are irrelevant for our analysis here because, in these regions

at that time of the year, the values from the static maps of soil
and canopy albedo do not enter the calculated albedo value
in JSBACH because of the snow there.

3.3 Land surface temperature (LST)

Global mean LST of 9.6 ◦C simulated by JSBACHv4
matches well with observational data (see Fig. 5 top). The
lower Northern Hemisphere winter values found for JS-
BACHv4 (Fig. 5 bottom) are the main reason for the over-
all about 1 ◦C colder climate compared to JSBACHv3 and
the better fit with the MODIS data. For JSBACHv4, the val-
ues for January are up to 2 ◦C lower than for JSBACHv3,
otherwise the seasonality is very similar for the two model
versions, and the phasing is consistent with MODIS obser-
vations.

In Fig. 6, we show the geographic distribution of temper-
ature biases with respect to MODIS; to the left we show the
biases for JSBACHv4 and to the right those for JSBACHv3.
For both models, the strong regional biases cancel each other
out in the global mean, leading to the relatively weak biases
in Fig. 5 (top). At the annual mean (Fig. 6; top row plots), the
geographic distribution of temperature biases is very similar
for the two models, and their difference is typically smaller
than the bias. The zonal plots to the left and right reveal that
the higher northern latitudes warm bias is also significant
when considered to be a large-scale phenomenon (for regions
north of 45◦ N, the uncertainty range seen in the zonal plots
lies off the line of the zero bias). This temperate to boreal
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Figure 1. Taylor diagram (Taylor, 2001) of the normalized pattern
statistics for annual means of our main evaluation variables of LST,
LAI, FAPAR, NPP, and WUE. The diagram contains no values for
albedo because, during polar winters, observations are missing. JS-
BACHv3 is shown with small dots and JSBACHv4 with big darker
dots. Arrows indicate the change from JSBACHv3 to JSBACHv4.
The centred pattern root mean square error (RMSE) and standard
deviations have been normalized by the observed standard devia-
tion of each field before plotting. Correlations are depicted by lines
from the origin representing angles relative to the horizontal base
line. Standard deviations are represented as arcs around the origin.
Normalized centred pattern RMSE values are seen as circular arcs
around the value 1 of the baseline (normalization on standard devi-
ation 1.0).

warm bias is, for both model versions, visible during North-
ern Hemisphere winter (see the middle row plots for January)
but less strong for JSBACHv4. In July, the bias is much more
pronounced in JSBACHv4 (mainly around 50◦ N; also vis-
ible in Fig. B3) and, in contrast to JSBACHv3, significant
in the zonal mean (see Fig. 6). In January, the above-named
snow–albedo feedback surely contributes to the warm bias
in JSBACH. In July, the negatively biased JSBACHv4 pre-
cipitation (Fig. 8) obviously supports the warm bias in Eura-
sia through the associated evaporation reduction (Table A3
shows a correlation of ∼−0.6). Table 4 also shows a high
correlation (∼−0.8) between the JSBACHv4 July LST bias
in Eurasia and a weaker total cloud cover (TCC; see Fig. 7).
It seems obvious that the JSBACHv4 biases in this area are
the result of a feedback loop, as too few clouds and too little
precipitation result in too low soil moisture (SM) and evap-
oration, which feeds back to precipitation and is associated
with the too high LST. In the following, this will be called
the precipitation–SM feedback. It is probably caused by the

frozen soil and five-layer snow scheme implemented in JS-
BACHv4 (see the discussion in Sect. 4.3 for details). In con-
trast, in JSBACHv3, the precipitation–SM feedback seems to
have no importance in this region. Instead, the January warm-
ing effect of the TCC is more pronounced in JSBACHv3
(see Table 4). However, for both models, a higher TCC has
a warming effect in January – as expected from the general
rule that a cloud cover tends to warm the surface in winter
(Chen et al., 2000).

The Antarctic and Greenland ice sheets tend to be warm
biased (see the annual averages in Fig. 6). Only JSBACHv4
in January in Greenland shows no uniform pattern. Cold bi-
ases are seen in the northern and southern subtropics and
are more evident for JSBACHv4. These two observations to-
gether – lower high-latitude warm bias and stronger subtrop-
ical cold bias – are the reason for the globally lower temper-
ature seen for JSBACHv4 in the plot of Fig. 5 (top). This is
somewhat more pronounced for January, which is visible in
the zonal averages and in Fig. 5 (bottom).

The differences in bias patterns between the two model
versions are also visible in the scatterplots of Fig. B3. The
low July correlation (r = 0.653) is caused by JSBACHv4 be-
ing warmer in the temperate zone and colder in the polar zone
(for a definition of the zones, see Fig. B1). For January and
also for the whole year, LSTs are much more strongly corre-
lated (r > 0.84). This is also true when we regard the corre-
sponding rank correlations of Spearman (Table 3).

Overall, for both models, the bias pattern is very zonal,
showing a warm bias at northern and southern higher lati-
tudes, a cold bias in the northern and southern subtropics,
and an insignificant bias in the equatorial regions (Fig. 6).
The north–south symmetry of this zonal bias pattern hints at
an atmospheric origin in the simulated climate, since, for bi-
ases caused by land processes, one would not expect a north–
south symmetry because of the very different continental dis-
tribution in the two hemispheres.

In summary, we find that (1) the global mean LSTs of
JSBACH only fit the MODIS data because regional biases
cancel each other out. The global mean LSTs of JSBACHv4
fit better with the MODIS data because of its lower January
values in the subtropics. (2) Because of the overall zonal bias
pattern of both models, a strong atmospheric contribution has
to be assumed. (3) Both models exhibit a higher northern lat-
itude warm bias. In January, especially in JSBACHv3, the
TCC partly causes this warming, and both models show a
strong amplification by the snow–albedo feedback. In July,
but only in JSBACHv4, a feedback between precipitation and
SM causes a warm bias. (4) Except for Greenland in January
for JSBACHv4, the Antarctic and Greenland ice sheets tend
to be warm biased.

3.4 Terrestrial water storage (TWS)

Figure 9 shows the agreement between JSBACHv4 and
GRACE in the alterations in TWS changes in the course of
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Figure 2. Bias in white sky albedo (WSA) for JSBACHv4 (left) and JSBACHv3 (right) compared to MODIS data averaged over the years
2001 to 2014. Shown are the biases in the near-infrared (NIR) and visible (VIS) range for January and July. Because of polar night, no
observation data are available for the Arctic and Antarctic winter. Note that significance is not shown because nearly all differences are
significant (p = 0.05), according to an independent two-sample t test.

Table 4. Spatial Spearman rank correlations (rho) between the JSBACHv4 and JSBACHv3 biases of TCC against those of LST and FAPAR.

JSBACHv4 JSBACHv3

TCC vs. LST (Eurasia) TCC vs. FAPAR TCC vs. LST (Eurasia) TCC vs. FAPAR

Annual 0.027 0.217 0.596 −0.016
January 0.141 0.218 0.593 0.134
July −0.797 0.138 −0.329 −0.060

Eurasia refers to the square between longitude 0–184◦ and latitude 35–90◦.
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Figure 3. Bias in snow cover for JSBACHv4 (a, c) and JSBACHv3 (b, d) compared to MODIS data. Shown are the averages of January (a,
b) and July (c, d), which have been averaged over the years 2001 to 2014. The yellow dots indicate the grid boxes where the bias is significant
(p = 0.05) according to an independent two-sample t test.

Figure 4. Difference in white sky albedo (WSA) between the two versions of MODIS data averaged over the years 2001 to 2014. The older
one, from which the soil albedo maps used in JSBACH were derived, and the newer one, used for our bias analysis in Fig. 2, are shown.
Also shown are NIR and VIS. As JSBACH does not account for seasonality in the soil albedo maps, the old version is a yearly mean. From
this version, we subtracted the January and July values of the newer version. The differences shown here can be interpreted as the bias of
JSBACH compared to the observations for January and July.

the year. The strongest differences occur in dry regions with
small TWS changes. In these regions, precipitation is very
sensitive to the exact atmosphere dynamics, and thus, small
shortcomings result in strong effects in Fig. 9. At the same
time, in regions where precipitation is not very sensitive to
exact atmospheric conditions, the model is in better agree-
ment. For example, this includes the inner tropics with strong
deep convection (central Africa, central South America, and
northern Australia), regions that are strongly affected by the
monsoon (India and Africa), and regions that are dominated
by the westerlies (Europe and eastern Europe). Also north-
eastern Asia reveals relatively good agreements, despite the
fact that the amount of TWS change is not high there. In
contrast to this general rule, quite the opposite applies for

the Indonesian islands. This is probably due to the resolution
of the model, which cannot depict precipitation very exactly
for small land areas surrounded by ocean. We find the same
problem also for all extratropical islands.

3.5 Leaf area index (LAI)

In Fig. 10, we show the bias in LAI for JSBACHv4 and JS-
BACHv3 compared to MODIS LAI data. The bias patterns
between both models are strongly correlated (see Table 3).
In the tropics, the bias pattern is quite similar. Differences
between the models are mainly seen in the northern extra-
tropics, where in July the LAI is too large for JSBACHv4
across the high northern latitudes (Canada, Alaska, and Nor-
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Figure 5. Global mean LST for JSBACHv3, JSBACHv4, and obser-
vation values from MODIS. (a) Annual averages from 2001 to 2014.
The vertical grid lines indicate 15 January of the respective year. (b)
Monthly mean values over the time period form 2001 to 2014. The
vertical grid lines indicate the 15th of the respective month.

way) and for JSBACHv3 too large along the Eurasian steppe
belt. For the latter region, this may be related to the slightly
longer growth period in JSBACHv3 because of the earlier
rise in Northern Hemisphere spring temperatures (see Fig. 5
bottom). The widespread and very similar significance pat-
tern between the JSBACH versions reveals that JSBACH is
systematically biased independent of the atmosphere model.

Overall, the bias is small in regions that are only sparsely
covered with vegetation (e.g. northern Africa, Middle East,
northeastern Asia, and central North America), and in re-
gions with strong bias, the LAI is generally too large, as is
also seen in the scatterplots of Fig. B5, where the centre data
cloud is at an LAI bias of about 1. Clearly visible, particu-
larly for JSBACHv3, is a positive LAI bias in tropical and
subtropical regions with high relative soil water levels (com-
pare Fig. 11), which is plausible insofar as it is only for good
growing conditions that the LAI may overshoot. In other re-
gions, a spatial correlation between LAI bias and relative soil
water level is not as clear. The general higher relative soil

moisture (RSM) in JSBACHv3 as compared to JSBACHv4 is
obviously a consequence of its higher precipitation (Fig. 8).

For a more detailed analysis of the bias patterns, one must
note that JSBACH uses different parameterizations for its
vegetation types to calculate the seasonal and multiannual
dynamics of the LAI, i.e. to describe their phenology. These
parameterizations differ in particular by their dependence
on growth conditions (temperature, relative soil water, and
NPP). To analyse the origin of the biases, it is therefore
necessary to consider each region with its prevailing veg-
etation types separately. Such analysis (not shown) reveals
only weak correlations between growth conditions and the
diagnosed LAI biases (except for the above-named RSM). It
seems unlikely that this is caused by several environmental
conditions affecting the LAI dynamics simultaneously in a
way that correlations cancel. It is more likely that the LAI
biases are caused by shortcomings in the parameterizations
of the phenology, for example, by an unlucky choice for
the combination of the many parameter values, like spring
growth rate for LAI and maximum length of growth sea-
son, or by more structural deficiencies, like the missing cou-
pling between LAI and leaf biomass in this type of phenology
model.

However, for the LAI bias of JSBACHv4 in Australia, we
can indeed identify environmental causes. Australia’s canopy
is, especially in the areas with too high LAI, dominated by
shrubs and C4 pasture, whose phenology is calculated by the
parameterizations of raingreen phenology and grass phenol-
ogy, respectively. The LAI of both phenology parameteriza-
tions depends on the relative soil water level and the NPP of
the model vegetation. The grass phenology additionally de-
pends on the air temperature of the lowest atmospheric level.
As the surface temperature in this area is too low through-
out the year (Fig. 6), this is most likely not the cause for the
positive LAI bias. In terms of simulated relative soil mois-
ture (Fig. 11), Australia is not particularly dry. There is suffi-
cient soil water available for plant growth in the annual aver-
age and for January and July (values range between 0.4 and
0.5). Particularly in July, the dry season of central and north-
ern Australia is not at all represented in the simulations. As
the model bias in NPP is rather weak for July (see Fig. 13),
the overly wet soils should be the main reason for the too
high LAI. For January, however, in reality the soil water does
not limit plant growth as in July. Therefore, even though our
models exhibit too much soil moisture in January, this might
not cause the too high LAI. Hence, in this case, the positive
NPP bias could be the cause for the LAI bias, and not vice
versa.

In summary, we find that (1) the LAI bias pattern are
strongly correlated between JSBACHv4 and JSBACHv3. (2)
The LAI is, in general, highly biased, which occurs in re-
gions with strong vegetation cover. (3) In Australia, for JS-
BACHv4, the main reasons for the high biases might be the
overly wet soils in July and the too high NPP in January.
(4) Except for Australia, the LAI biases are probably caused
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Figure 6. Bias in land surface temperature (LST) compared to MODIS data averaged over the years 2001 to 2014. Shown are the annual
averages (top row) and the averages of the Januaries (middle row) and Julies (bottom row). The zonal and spatial plots in the left two columns
refer to JSBACHv4, while those in the right two columns refer to JSBACHv3. The grey range in the zonal plots indicates the 95 % uncertainty
range calculated from a Student t distribution, so that zonal values are significantly different when the zero-bias line is found outside this
grey range. Note that the significance for the grid cells, from an independent two-sample t test, is not shown because nearly all biases are
significant worldwide (p = 0.05).

by shortcomings in the parameterizations of the phenology
themselves and not by the growth conditions.

3.6 Fraction of absorbed photosynthetic active
radiation (FAPAR)

In general, FAPAR biases are strongly correlated with the
LAI biases (see Table 5). For JSBACHv3, the FAPAR bias
pattern follows in the tropics and in regions of austral and
boreal summer largely the bias pattern of LAI (compare
Figs. 10 and 12), as can be expected due to the FAPAR be-
ing typically larger for deeper canopies. For JSBACHv4, this
correlation is weaker but still strong in the yearly average
(see Table 5). Other possible sources of FAPAR deviations
are clouds because they might alter the incoming PAR or
the fraction between its direct and diffuse parts. However,
the comparison with the bias in total cloud cover (TCC; see
Fig. 7 and Table 4) reveals no general clues for that. FAPAR
deviations could also be caused by the VIS soil albedo, which
is used in the JSBACH canopy radiation model as the lower
boundary condition. (The biases in the JSBACH soil albedo
maps were already discussed above).

The deviations in FAPAR of the two JSBACH versions
(Fig. 12) clearly differ from each other, as also reflected
in the medium correlation values around 0.4 (see Fig. B6).
The main differences occur over Kazakhstan, India, south-

ern China, and central Africa. The difference over Kaza-
khstan (around 50◦ N) is obviously caused by the above-
described precipitation–SM feedback in July. Differences in
India, southern China, and central Africa occur because the
high biased LAI in JSBACHv4 does not cause the same FA-
PAR high bias in these regions as in JSBACHv3. As the VIS
soil albedo is the same in both model versions, this cannot
be the explanation. Unfortunately, our simulation outputs do
not provide the necessary information about incoming PAR
to verify an atmospheric origin.

3.7 Net primary production (NPP)

Except for the northern mid latitudes in the Northern Hemi-
sphere summer, the patterns in NPP biases are very similar
between the two JSBACH versions (Figs. 13 and B7). This is
also demonstrated by the rather high correlations in Table 3
for the Januaries (∼ 0.8) and throughout the year (∼ 0.75),
while there are lower correlation values for the Julies (∼ 0.5).
In general, NPP shows strong correlations with relative soil
moisture (RSM; Table 6). Only for JSBACHv3 in January are
they nearly uncorrelated, which is due to the fact that, north
of 60◦, there is no NPP at that time, but JSBACHv3 has a lot
of RSM. However, in general, the bias correlation between
NPP and LAI is much weaker.
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Figure 7. Bias in total cloud cover (TCC) for ICON-A (JSBACHv4) and ECHAM6 (JSBACHv3) compared to MODIS data. Shown are the
annual, January, and July means over the years 2001 to 2014.

Table 5. Spatial Spearman rank correlations (rho) between the JSBACHv4 and JSBACHv3 biases of LAI against those of FAPAR. The
corresponding Pearson coefficients are in parentheses.

JSBACHv4 JSBACHv3

LAI vs. FAPAR (Kazakhstan) LAI vs. FAPAR LAI vs. FAPAR (Kazakhstan) LAI vs. FAPAR

Annual 0.784 (0.766) 0.640 (0.683) 0.831 (0.835) 0.784 (0.798)
January 0.324 (0.285) 0.505 (0.579) 0.413 (0.329) 0.780 (0.818)
July 0.925 (0.939) 0.732 (0.725) 0.879 (0.888) 0.539 (0.632)

Kazakhstan refers to the square between longitude 46–87◦ and latitude 40–54◦ N.

The shift in NPP bias from JSBACHv3 to JSBACHv4 seen
in northern mid latitudes in July has several reasons. For JS-
BACHv4, it is obvious that too low precipitation and FAPAR
lead to the strong negative NPP bias (compare with Figs. 8
and 12). This bias is a side effect of the precipitation–SM
feedback already explained above (similar to the LST bias
for this region and time). For JSBACHv3, the bias is caused
by too high LAI leading to too high FAPAR (compare with
Figs. 10 and 12).

That the NPP bias is vanishing in winter for regions with
seasonal vegetation is trivial, so only the patterns in summer
need an explanation. For both JSBACHv4 and JSBACHv3 in

the tropics and in the regions of boreal and austral summer,
the bias pattern in NPP largely follows that of LAI (compare
Figs. 10 and 13), which is plausible in view of the already-
diagnosed positive LAI bias. The correlations between the
NPP and LAI biases are not high (Table 6), as there are no
correlations for the respective winter part of the globe (com-
pare Figs. 10 and 13). The same accounts for the correlations
between the NPP and FAPAR biases, although primary pro-
duction directly depends on FAPAR.

In summary, we find that (1) the NPP bias pattern highly
agree between JSBACHv4 and JSBACHv3, and the strongest
mismatch is caused by the July precipitation–SM feedback of
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Figure 8. Bias in precipitation for JSBACHv4 (left) and JSBACHv3 (right) compared to GPCP precipitation. Shown are the annual, January,
and July means over the years 2001 to 2014. Note that land areas, where the bias is smaller than the GPCP error bar, are not plotted. The
yellow dots indicate grid boxes where the bias is significant (p = 0.05), according to an independent two-sample t test.

Table 6. Spatial Spearman rank correlations (rho) between the JSBACHv4 and JSBACHv3 biases of NPP against those of LAI, FAPAR, and
RSM.

JSBACHv4 JSBACHv3

NPP vs. LAI NPP vs. FAPAR NPP vs. RSM NPP vs. LAI NPP vs. FAPAR NPP vs. RSM

Annual 0.197 0.270 0.823 0.397 0.550 0.739
January 0.279 0.348 0.573 0.506 0.553 0.026
July 0.400 0.362 0.789 0.435 0.366 0.793

JSBACHv4. (2) The NPP deviations are strongly correlated
with RSM.

3.8 Water use efficiency (WUE)

To discuss WUE as simulated by JSBACHv3 and JS-
BACHv4, we show simulation results in two ways, namely
as geographic distribution (Fig. 14) and in climate space
(Fig. 15). In both plots, colours are chosen to be consistent
with the colour coding of the respective Figs. 1 and 2 of Sun
et al. (2016) that show WUE obtained from observation data
and also from simulations with other land models.

Looking first at the geographical distribution (Fig. 14),
WUE turns out to be slightly weaker worldwide in JS-
BACHv4 than in JSBACHv3, but otherwise, the pattern is
similar. A major difference between the model versions is
the rather low WUE of JSBACHv4 found in the agricultural
belt along the Eurasian steppe regions, where, in the mod-
els, vegetation consists of crops. (Note that there is no cor-
relation with the additional C4 crops PFT of JSBACHv3.)
Causal for this is the lower GPP of JSBACHv4 in this region
(not shown but also visible and somewhat less pronounced in
NPP; Fig. 13).

The large-scale pattern is best characterized by noting
that JSBACH reveals low values for WUE in western North
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Figure 9. Normalized TWS change differences in the course of the
year between the JSBACHv4 and GRACE data. Note that, due to
the statistics, only the relative agreement between different regions
can be rated but not the amount of water mass change agreement in
absolute terms. However, the higher the value, the stronger the dif-
ference in the course of the year between JSBACHv4 and GRACE
will be.

America, northeastern Canada, and in the broad belt ranging
from the Sahara deep into inner Eurasia; elsewhere, WUE
is considerably larger. The reason for this pattern is obvious
from Fig. 11, showing the relative soil water content above
wilting point. RSM is therefore a measure of the water stress
experienced by the vegetation in JSBACH, and regions of
high water stress broadly match the regions of low WUE.
Accordingly, it is the low plant productivity that determines
the regions of low WUE. Nevertheless, in the hot deserts –
which make up large parts of the regions of low WUE – high
potential evaporation surely adds to WUE being small there.

This large-scale pattern is also broadly consistent with the
MODIS WUE (Fig. 14 bottom left). In contrast to JSBACH
MODIS exhibits the highest global values over the dry ar-
eas in northern and southern Africa and in Australia. Sun
et al. (2016) calculated the WUE from MODIS GPP and
JUNG GPP (their Fig. 1a and b; the invoked evapotranspi-
ration data are the same). The WUE calculated from their
MODIS dataset is unsurprisingly very similar to our MODIS
WUE and shows the same high values in these dry areas.
However, the JUNG data (Sun et al., 2016; Fig. 1b) show
rather low values for these regions and are therefore in much
better agreement with JSBACH. A general disagreement be-
tween all observation-based datasets and JSBACH occurs in
India. The too high WUE simulated for India is caused by
the PFT C3 crops. In this region, C3 types (C3 grass, C3 pas-
ture, and C3 crops) are the most productive PFTs, and among
these C3 crops are, in terms of area, the most dominant PFTs.

Regarding the distribution of our WUE in a climate
space spanned by temperature and precipitation (Fig. 15),
the results of JSBACHv3 are very similar to JSBACHv4.
ECHAM6 (JSBACHv3) shows much higher precipitation in
the temperature range around −15 and 15 ◦C. As a conse-

quence, JSBACHv4 fits much better in this range than JS-
BACHv3 when compared to our MODIS data or to Sun
et al. (2016, their Fig. 2a and b). The above-mentioned much
higher global values over dry areas in MODIS as compared
to JSBACH are also visible here. MODIS has its highest val-
ues in the high temperature low precipitation corner, which
is the opposite in both JSBACH versions. The JSBACH In-
dian high bias is visible at 25 ◦C and precipitation above
1000 mm yr−1.

4 Summary and conclusions

4.1 General performance

The Taylor diagram shown in Fig. 1 and the comparison of
the NME for our assessment variables (see Appendix A1 and
A2) reveal that the overall performance of JSBACHv4 re-
mains more or less as in JSBACHv3. In the context of its
totally new infrastructure and the new ICON-A atmosphere,
this is a good achievement and lays the groundwork for a
further development of JSBACH.

4.2 Albedo

As compared to the JSBACHv3 results, JSBACHv4 shows
very similar biases (and significances). Overall, the repre-
sentation of the albedo in JSBACHv4 is as good as for JS-
BACHv3.

Nearly all albedo deviations of JSBACH are significant.
In Antarctica and Greenland, the albedo deviations are uni-
formly too high for NIR and uniformly too low for VIS.
Therefore, these deviations can be mitigated without side ef-
fects within the JSBACH calculations of the glacier albedo.
For glacier albedo, values are used that vary as a function of
temperature continuously between fixed minimum and maxi-
mum values. Adapting these minimum and maximum values
alone should already reduce the bias, and tuning the temper-
ature dependency could further improve the results. In the
northern mid latitudes, the January albedo of JSBACH is low
biased and is largely caused by a too small snow cover. It is
probable that the already existing initial warm bias of ICON-
A in these areas (see LST) is enhanced by the snow–albedo
feedback. Tuning the snow scheme in JSBACH towards more
snow might compensate the warm bias of ICON-A. However,
there could be undesired side effects, such as a cold bias in
eastern North America, a delay of the spring point, or too
little soil water.

The JSBACH albedo bias in other regions is at least partly
caused by canopy or soil albedo biases. Another source could
be that the scheme merging them to the overall albedo causes
additional deviations. For example, this may be related to the
wrong fractions of bare ground below vegetation that are vis-
ible for the Sun or the wrong fraction of soil below the veg-
etation which is covered by stems but not by the LAI. How-
ever, we found that the JSBACH albedo bias in these regions
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Figure 10. Bias in leaf area index (LAI) compared to MODIS data for JSBACHv4 (left) and JSBACHv3 (right) averaged over the years 2001
to 2014. Shown are the annually averaged bias and those for January and July. Pink dots indicate grid boxes where the bias is significant
(p = 0.05), according to an independent two-sample t test.

can be largely explained by the canopy and soil albedo of
the model. In the present model configuration, the values for
the canopy are calculated from PFT-specific leaf albedo val-
ues, which themselves do not account for seasonality. The
NIR and VIS soil albedos in the present model configuration
are taken from prescribed maps, which also do not account
for seasonality. The albedo values for the leaves and for the
soil are derived by the linear regression of the FAPAR on
total surface albedo (described in Otto et al., 2011). Thus,
both the canopy and soil albedo values within JSBACH are
based on the 2001 to 2004 average of the MODIS MOD43C1
CMG Collection 4 Albedo product. We showed that the dif-
ferences between this product and the January/July values of
the MODIS product used for our assessment already explain
large parts of the JSBACHv4 albedo deviations. Therefore,
as a first mitigation step, the MODIS database for JSBACH
should be updated, and a seasonality for leaves and soil
should be introduced in the JSBACH albedo scheme. Only
after that would it make sense to investigate improvements
in the scheme that merges snow, canopy, and soil albedo to
the overall albedo.

4.3 Land surface temperatures

Overall, JSBACHv3 and JSBACHv4 show very similar tem-
perature biases. The global mean LST simulated by JS-
BACH match well with observational data, especially for
JSBACHv4 (see Fig. 5 top). However, this is only because
strong regional biases mutually cancel each other out. The
overall zonal bias pattern of both models hints at a strong
atmospheric bias contribution. We find, for both models, a
large-scale warm bias throughout the year over central Asia,
which is also significant in the zonal averages. One reason
for this is the warming effect of the TCC in January, which
is enforced by too small snow cover and the snow–albedo
feedback in this region. For JSBACHv4, an additional feed-
back between low precipitation and low RSM causes a strong
warm bias in July. It is almost certain that this feedback is
caused by the combination of the five-layer snow and soil
water freezing schemes implemented in JSBACHv4. The ef-
fect of this scheme on the JSBACH results is analysed in de-
tail by Hagemann et al. (2016) and is in very good agreement
with our results. For the predecessor model ECHAM5, simi-
lar Northern Hemisphere winter and summer warm biases to
those in our results are already shown in Ozturk et al. (2012),
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Figure 11. Relative soil moisture (RSM) in JSBACHv4 (left) and JSBACHv3 (right). Shown are the annual, January, and July means over
the years 2001 to 2014. RSM is calculated as the ratio between the amount of soil water above wilting point and the amount of water between
field capacity and wilting point. RSM thus characterizes the soil conditions concerning water stress of plants (the plant usable field capacity).

while the January and July biases shown in Piani et al. (2010)
agree only partly (Kazakhstan and northern China). We also
find too high temperatures over the Antarctic and Greenland
ice sheets and cold-biased regions in South America, north-
ern and southern Africa, Australia, India, and China (all sig-
nificant). These biases are at least partly caused by albedo
deviations. As the central Asian, Antarctic, and Greenland
warm biases are directly connected to albedo deviations, they
might be mitigated by the model adaptations proposed above
for the albedo.

4.4 Terrestrial water storage

We analysed the agreement of the alterations in TWS
changes in the course of the year between JSBACHv4 and
GRACE. We found that the agreement is best for regions
where precipitation is not very sensitive to the exact rep-
resentation of atmospheric conditions in the model (i.e. re-
gions where precipitation underlies dominant atmospheric
processes like deep convection). An implication of this re-
sult is that the representation of TWS changes in the course
of the year is less dependent on soil properties like field ca-
pacity or porosity than on the atmospheric conditions. Thus,

from this point of view, the enhancement of soil properties is
not a main focus for the development of JSBACHv4.

4.5 Leaf area index

The patterns in LAI biases are very similar between both
model versions. In general, the LAI is significantly too high
in JSBACH. This is not unique for our model (see Seiler
et al., 2022). For JSBACHv4 in Australia, the LAI devia-
tions for July are probably caused by too much soil moisture
and for January by too high NPP. Therefore, for July, when
our model does not represent a dry season in Australia, the
LAI bias would be fixed by improving relative soil moisture.
For January, the LAI bias might be reduced with a mitigation
of the NPP bias. Except for JSBACHv4 in Australia and the
general too high RSM, the LAI biases and the corresponding
growth conditions are correlated only weakly. However, as
our growth conditions (temperature, relative soil water, and
NPP) exhibit strong shortcomings, a first step is to enhance
them. As a second step, one could reduce the LAI by adapt-
ing the parameters for the phenology growth and death rates.
As the LAI has a strong influence on other processes (sen-
sible and latent heat flux, GPP and dark respiration, canopy
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Figure 12. Bias in the fraction of absorbed photosynthetic active radiation (FAPAR) of JSBACHv4 (left) and JSBACHv3 (right) compared
to the MODIS FAPAR. Shown are the annual, January, and July means over the years 2001 to 2014 (in percent) to MODIS FAPAR.

albedo), it would be at the same time necessary to adapt these
processes to the lower LAI. Nabel et al. (2020) show that the
introduction of forest age classes in JSBACHv4 also reduces
the LAI bias. However, this comes with additional computa-
tional costs for the model.

4.6 Fraction of absorbed photosynthetic active
radiation and net primary production

We find, for both model versions, that FAPAR deviations are
mainly caused by LAI biases. Overall, all NPP deviations
in JSBACHv4 can be associated with water stress problems,
FAPAR, and LAI. The high biased NPP would be bettered
nearly everywhere with the above-named reduction in the
LAI. With this reduction, the FAPAR biases would also be
reduced and contribute to an improved NPP (e.g. in south-
ern Africa and India). Our NPP biases are strongly corre-
lated with RSM, respectively, with water stress. Higher wa-
ter stress in southern and eastern North America and central
Africa would further reduce our NPP deviations. However,
to avoid the strong JSBACH4 low bias in July for the mid
latitudes, it would be necessary to enhance the ICON-A pre-
cipitation in this area, which is a consequence of the above-
named precipitation–SM feedback.

4.7 Water use efficiency

Overall, the WUE of our models looks very reasonable. In
the Sahel zone, JSBACH WUE seems to be too low com-
pared to MODIS data, but it is possible that MODIS is too
high here, especially as neither the JUNG data nor the mod-
els used in Sun et al. (2016) show the same high bias. In
India, our WUE is too high. One reason for this is the strong
assimilation from C3 crops. This is also visible in the NPP
high bias for India. However, a high biased productivity of
C3 crops cannot be found elsewhere. Another reason might
be that JSBACH does not incorporate irrigation in our sim-
ulations, which is substantial in India, and enhances evapo-
transpiration. As a result, WUE in JSBACH should be higher
than observed. For JSBACHv3, an irrigation scheme was al-
ready implemented (de Vrese and Stacke, 2020) and could
be transferred to JSBACHv4. JSBACHv4 WUE is low biased
in central Asia, which is probably caused by our low biased
FAPAR. WUE in JSBACHv4 is generally somewhat weaker
than in JSBACHv3, but the geographical patterns are similar.
The overall temperature and precipitation range of ICON-
A–JSBACHv4 and ECHAM6–JSBACHv3 is similar to the
observational data, but especially ECHAM6–JSBACHv3 re-
veals too high precipitation in the temperature range −15
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Figure 13. Bias in net primary production (NPP) for JSBACHv4 (left) and JSBACHv3 (right) compared to MODIS NPP. Shown are the
annual, January, and July means over the years 2001 to 2014. Note that significance is not shown because, except for the Sahara region, all
biases are significant worldwide (p = 0.05), according to an independent two-sample t test.

Figure 14. Water use efficiency (WUE). JSBACHv4 (top left), JSBACHv3 (top right), and MODIS (bottom left) are shown. All values are
averaged over the years 2001 to 2014. The colour scale is chosen to match the one used in Figs. 1 and 2 in the study by Sun et al. (2016).

https://doi.org/10.5194/gmd-15-8581-2022 Geosci. Model Dev., 15, 8581–8611, 2022



8602 R. Schneck et al.: Assessment of JSBACHv4.30 compared to JSBACHv3.2

Figure 15. Water use efficiency (WUE). JSBACHv4 (a), JSBACHv3 (b), and MODIS (c) are shown for each grid cell plotted against annual
2 m temperature and precipitation. All values are averaged over the years 2001 to 2014. Colour scale as in Fig. 14.

to 15 ◦C. Therefore, JSBACHv4 performs better than JS-
BACHv3 when compared to observations. With a general re-
duction in the LAI, as proposed above, and the associated
reduction in GPP, the WUE of JSBACH might become low
biased.

4.8 Perspectives of JSBACHv4

Our comparison with JSBACHv3 shows that the perfor-
mance of JSBACHv4 is overall quite similar to JSBACHv3.
Differences can partly be attributed to the different atmo-
spheric conditions generated from and in interaction with the
atmospheric host models ICON-A and ECHAM6, e.g. dif-
ferences in WUE could be traced back to differences in pre-
cipitation. In terms of process descriptions, JSBACHv3 and
JSBACHv4 are almost identical. The only notable differ-
ence in simulation results arising from such structural differ-
ences concerns regional differences in surface temperature
via modified feedbacks with the atmosphere that we attribute
to the implementation of a multilayer snow model and freez-

ing soil water in JSBACHv4. A few options to improve JS-
BACHv4 have been outlined in this paper. It should be noted
that the versions of ICON-A and ICON-Land/JSBACHv4
used for this study constitute the first milestone in the devel-
opment of the new ICON-ESM. The flexibility of the ICON-
Land infrastructure provides the basis for further develop-
ments and improvements as the land component of ICON-
ESM. The model configuration of the AMIP experiments de-
scribed in this paper only use the physical and biogeophys-
ical components of JSBACHv4. The carbon cycle and dy-
namic vegetation processes of JSBACHv3 have also already
been ported to JSBACHv4 and can already be used to model
the fully closed carbon cycle within ICON-ESM, together
with the ocean biogeochemistry module. The evaluation of
these processes will be addressed in future work.
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Appendix A

This section provides additional tables with statistical infor-
mation.

Table A1. Normalized mean error (NME) of JSBACHv4 relative to observations.

Albedo VIS Albedo NIR LST LAI FAPAR NPP WUE

Annual – – 0.138 1.294 0.796 0.783 1.341
January 0.267 0.410 0.149 1.266 0.604 0.569 –
July 0.411 0.508 0.193 1.102 0.757 0.777 –

Table A2. Normalized mean error (NME) of JSBACHv3 relative to observations.

Albedo VIS Albedo NIR LST LAI FAPAR NPP WUE

Annual – – 0.147 1.430 0.669 0.658 1.406
January 0.232 0.415 0.164 1.304 0.687 0.576 –
July 0.400 0.452 0.176 1.310 0.688 0.653 –

Table A3. Spatial Spearman rank correlations (rho) between the JSBACHv4 and JSBACHv3 biases of precipitation against those of LST.

JSBACHv4 JSBACHv3

Precip. vs. LST (Eurasia) Precip. vs. LST Precip. vs. LST (Eurasia) Precip. vs. LST

Annual −0.416 −0.543 0.283 0.262
January −0.090 −0.403 0.278 0.312
July −0.638 −0.413 −0.169 −0.031

Eurasia refers here to the square between longitude 0 to 184◦ and latitude 35 to 90◦.

Appendix B

For a direct comparison of the simulation bias of the two
model versions, we plot the difference in the observations
of the various assessment variables for each grid cell of one
model against that of the other here (see, e.g., the scatter-
plot in Fig. B3). The statistical values noted in these plots
are the intercept and slope of the linear regression, the Pear-
son correlation r , its square R2 (also called the coefficient
of determination), and the Spearman rank correlation (rho).
In addition, to obtain a rough idea of how the differences in
simulation bias vary with region, we colourize the data points
according to their broad geographical origin. For this, we dis-
tinguish the following four regions (Fig. B1):

– Polar zone (black), which is 90 to 60◦ and−90 to−60◦

– Temperate zone (red), which is 59.9 to 37.9◦ and−59.9
to −37.9◦

– Subtropical zone (yellow), which is 38 to 15◦ and −38
to −15◦

– Tropical zone (green), which is 14.9 to −14.9◦.
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Figure B1. Zones of the scatterplots.

Figure B2. Comparison of simulated albedo bias (1 albedo) between the two JSBACH versions. Plotted for each grid cell is the albedo bias
of JSBACHv3 against that of JSBACHv4. The bias data are the same as in Fig. 2. Shown are the averages of the Januaries (a, b) and Julies
(c, d) for VIS (a, c) and NIR (b, d) albedo. For more details, see Sect. 2.4.
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Figure B3. Comparison of simulated LST bias (1LST) between the
two JSBACH versions. Plotted for each grid cell is the LST bias of
JSBACHv3 against that of JSBACHv4. The bias data are the same
as in Fig. 6. Shown are the annual averages (a) and the averages of
the Januaries (b) and Julies (c). For more details, see Sect. 2.4.

Figure B4. Comparison of simulated precipitation bias (1 pre-
cipitation) between the two JSBACH versions. For each grid cell,
the precipitation bias of JSBACHv3 is plotted against that of JS-
BACHv4. The bias data are the same as in Fig. 8. Shown are the
annual averages (a) and the averages of the Januaries (b) and Julies
(c). For more details, see Sect. 2.4.
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Figure B5. Comparison of simulated LAI bias (1 LAI) between
the two JSBACH versions. For each grid cell, the LAI bias of JS-
BACHv3 is plotted against that of JSBACHv4. The bias data are
the same as in Fig. 10. Shown are the annual averages (a) and the
averages of the Januaries (b) and Julies (c). For more details, see
Sect. 2.4.

Figure B6. Comparison of simulated FAPAR bias (1 FAPAR) be-
tween the two JSBACH versions. For each grid cell, the FAPAR bias
of JSBACHv3 is plotted against that of JSBACHv4. The bias data
are the same as in Fig. 12. Shown are the annual averages (a) and
the averages of the Januaries (b) and Julies (c). For more details, see
Sect. 2.4.
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Figure B7. Comparison of simulated NPP bias (1 NPP) between
the two JSBACH versions. For each grid cell, the NPP bias of JS-
BACHv3 is plotted against that of JSBACHv4. The bias data are
the same as in Fig. 13. Shown are the annual averages (a) and the
averages of the Januaries (b) and Julies (c). For more details, see
Sect. 2.4.

Code and data availability. The source code, scripts, and neces-
sary forcing and boundary data of ICON-ESM-V1.0 used in this
study for AMIP simulations with ICON-A are accessible via https:
//doi.org/10.35089/WDCC/RUBY-0_ICON-_ESM_V1.0_Model
(Jungclaus et al., 2022b) and directly downloadable from https:
//www.wdc-climate.de/ui/q?query=*:*&page=0&hierarchy_steps_
ss=RUBY-0_ICON-_ESM_V1.0_Model&entry_type_s=Dataset
(last access: 10 November 2022). Note that, by down-
loading, the included license agreement (see https:
//mpimet.mpg.de/en/science/modeling-with-icon/code-availability,
last access: 10 November 2022) is accepted. The primary data and
scripts used to produce the figures are downloadable from http://hdl.
handle.net/21.14106/d24df375f487e20f57a2ab07b42c6ffc0af3f8c2
(Schneck et al., 2021). The data from the MPI-
ESM1.2-HR AMIP simulations can be accessed via
https://doi.org/10.22033/ESGF/CMIP6.6463 (Jungclaus et al.,
2019) or directly via https://data.ceda.ac.uk/badc/cmip6/data/
CMIP6/CMIP/MPI-M/MPI-ESM1-2-HR/amip/r1i1p1f1 (last
access: 11 November 2022).
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