Articles | Volume 15, issue 20
https://doi.org/10.5194/gmd-15-7593-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7593-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CANOPS-GRB v1.0: a new Earth system model for simulating the evolution of ocean–atmosphere chemistry over geologic timescales
Department of Earth and Planetary Sciences, Tokyo Institute of
Technology, Tokyo 152-8551, Japan
Nexus for Exoplanet System Science (NExSS), National Aeronautics and
Space Administration, Washington, D.C. 20546, USA
Alternative Earths Team, Interdisciplinary Consortia for Astrobiology
Research, National Aeronautics and Space Administration, Riverside, CA
92521, USA
Devon B. Cole
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Atlanta, GA 30332, USA
Christopher T. Reinhard
Nexus for Exoplanet System Science (NExSS), National Aeronautics and
Space Administration, Washington, D.C. 20546, USA
Alternative Earths Team, Interdisciplinary Consortia for Astrobiology
Research, National Aeronautics and Space Administration, Riverside, CA
92521, USA
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Atlanta, GA 30332, USA
Eiichi Tajika
Department of Earth and Planetary Science, The University of Tokyo,
Tokyo 113-0033, Japan
Related authors
No articles found.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
Yoshiki Kanzaki, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 15, 4959–4990, https://doi.org/10.5194/gmd-15-4959-2022, https://doi.org/10.5194/gmd-15-4959-2022, 2022
Short summary
Short summary
Increasing carbon dioxide in the atmosphere is an urgent issue in the coming century. Enhanced rock weathering in soils can be one of the most efficient C capture strategies. On the basis as a weathering simulator, the newly developed SCEPTER model implements bio-mixing by fauna/humans and enables organic matter and crushed rocks/minerals at the soil surface with an option to track their particle size distributions. Those features can be useful for evaluating the carbon capture efficiency.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Christopher T. Reinhard, Stephanie L. Olson, Sandra Kirtland Turner, Cecily Pälike, Yoshiki Kanzaki, and Andy Ridgwell
Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, https://doi.org/10.5194/gmd-13-5687-2020, 2020
Short summary
Short summary
We provide documentation and testing of new developments for the oceanic and atmospheric methane cycles in the cGENIE Earth system model. The model is designed to explore Earth's methane cycle across a wide range of timescales and scenarios, in particular assessing the mean climate state and climate perturbations in Earth's deep past. We further document the impact of atmospheric oxygen levels and ocean chemistry on fluxes of methane to the atmosphere from the ocean biosphere.
Related subject area
Biogeosciences
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
China Wildfire Emission Dataset (ChinaWED v1) for the period 2012–2022
Process-based modeling of solar-induced chlorophyll fluorescence with VISIT-SIF version 1.0
Including the phosphorus cycle into the LPJ-GUESS dynamic global vegetation model (v4.1, r10994) – global patterns and temporal trends of N and P primary production limitation
A comprehensive land-surface vegetation model for multi-stream data assimilation, D&B v1.0
Sources of uncertainty in the SPITFIRE global fire model: development of LPJmL-SPITFIRE1.9 and directions for future improvements
Spatially varying parameters improve carbon cycle modeling in the Amazon rainforest with ORCHIDEE r8849
The unicellular NUM v.0.91: a trait-based plankton model evaluated in two contrasting biogeographic provinces
FESOM2.1-REcoM3-MEDUSA2: an ocean–sea ice–biogeochemistry model coupled to a sediment model
Satellite-based modeling of wetland methane emissions on a global scale (SatWetCH4 1.0)
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Systematic underestimation of type-specific ecosystem process variability in the Community Land Model v5 over Europe
pyVPRM: A next-generation Vegetation Photosynthesis and Respiration Model for the post-MODIS era
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Simulating the drought response of European tree species with the dynamic vegetation model LPJ-GUESS (v4.1, 97c552c5)
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
BIOPERIANT12: a mesoscale resolving coupled physics-biogeochemical model for the Southern Ocean
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
Development and assessment of the physical-biogeochemical ocean regional model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)
TROLL 4.0: representing water and carbon fluxes, leaf phenology and intraspecific trait variation in a mixed-species individual-based forest dynamics model – Part 1: Model description
The biogeochemical model Biome-BGCMuSo v6.2 provides plausible and accurate simulations of the carbon cycle in central European beech forests
TROLL 4.0: representing water and carbon fluxes, leaf phenology, and intraspecific trait variation in a mixed-species individual-based forest dynamics model – Part 2: Model evaluation for two Amazonian sites
Estimation of above- and below-ground ecosystem parameters for the DVM-DOS-TEM v0.7.0 model using MADS v1.7.3: a synthetic case study
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Impacts of land-use change on biospheric carbon: an oriented benchmark using the ORCHIDEE land surface model
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
ML4Fire-XGBv1.0: Improving North American wildfire prediction by integrating a machine-learning fire model in a land surface model
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Exploring the potential of history matching for land surface model calibration
EAT v1.0.0: a 1D test bed for physical–biogeochemical data assimilation in natural waters
Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon
Modelling boreal forest's mineral soil and peat C dynamics with the Yasso07 model coupled with the Ricker moisture modifier
Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0
In silico calculation of soil pH by SCEPTER v1.0
Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes
A global behavioural model of human fire use and management: WHAM! v1.0
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Modeling boreal forest soil dynamics with the microbially explicit soil model MIMICS+ (v1.0)
Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025, https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Short summary
Developing scientific software and making sure it functions properly requires a significant effort. As we advance our understanding of natural systems, however, there is the need to develop yet more complex models and codes. In this work, we present a piece of software that facilitates this work, specifically with regard to reactive processes. Existing tried-and-true codes are made available via this new interface, freeing up resources to focus on the new aspects of the problems at hand.
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025, https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Short summary
Nitrous oxide (N2O) is a powerful greenhouse gas mainly released from natural and agricultural soils. This study examines how global soil N2O emissions changed from 1961 to 2020 and identifies key factors driving these changes using an ecological model. The findings highlight croplands as the largest source, with factors like fertilizer use and climate change enhancing emissions. Rising CO2 levels, however, can partially mitigate N2O emissions through increased plant nitrogen uptake.
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025, https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
Short summary
Parameterization is key in modeling to reproduce observations well but is often done manually. This study presents a particle-swarm-optimizer-based toolbox for marine ecosystem models, compatible with the Framework for Aquatic Biogeochemical Models, thus enhancing its reusability. Applied to the Sylt ecosystem, the toolbox effectively (1) identified multiple parameter sets that matched observations well, providing different insights into ecosystem dynamics, and (2) optimized model complexity.
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025, https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
Short summary
We use an innovative approach to studying the Earth's water cycle by integrating advanced machine learning techniques with a traditional water cycle model. Our model is designed to learn from observational data, with a particular emphasis on understanding the influence of vegetation on water movement. By closely aligning with real-world observations, our model offers new possibilities for enhancing our understanding of the water cycle and its interactions with vegetation.
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025, https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary
Short summary
Our research uses deep learning to predict organic carbon stocks in ocean sediments, which is crucial for understanding their role in the global carbon cycle. By analysing over 22 000 samples and various seafloor characteristics, our model gives more accurate results than traditional methods. We estimate that the top 10 cm of ocean sediments hold about 156 Pg of carbon. This work enhances carbon stock estimates and helps plan future sampling strategies to better understand oceanic carbon burial.
Zhengyang Lin, Ling Huang, Hanqin Tian, Anping Chen, and Xuhui Wang
Geosci. Model Dev., 18, 2509–2520, https://doi.org/10.5194/gmd-18-2509-2025, https://doi.org/10.5194/gmd-18-2509-2025, 2025
Short summary
Short summary
The China Wildfire Emission Dataset (ChinaWED v1) estimated wildfire emissions in China during 2012–2022 as 78.13 Tg CO2, 279.47 Gg CH4, and 6.26 Gg N2O annually. Agricultural fires dominated emissions, while forest and grassland emissions decreased. Seasonal peaks occurred in late spring, with hotspots in northeast, southwest, and east China. The model emphasizes the importance of using localized emission factors and high-resolution fire estimates for accurate assessments.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025, https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they changed from 1901 to 2018. We find that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation increased, especially in the tropics, while N limitation decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
Geosci. Model Dev., 18, 2021–2050, https://doi.org/10.5194/gmd-18-2021-2025, https://doi.org/10.5194/gmd-18-2021-2025, 2025
Short summary
Short summary
Under climate change, the conditions necessary for wildfires to form are occurring more frequently in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a basis for future improvements.
Lei Zhu, Philippe Ciais, Yitong Yao, Daniel Goll, Sebastiaan Luyssaert, Isabel Martínez Cano, Arthur Fendrich, Laurent Li, Hui Yang, Sassan Saatchi, and Wei Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-397, https://doi.org/10.5194/egusphere-2025-397, 2025
Short summary
Short summary
This study enhances the accuracy of modeling the carbon dynamics of Amazon rainforest by optimizing key model parameters based on satellite data. Using spatially varying parameters for tree mortality and photosynthesis, we improved predictions of biomass, productivity, and tree mortality. Our findings highlight the critical role of wood density and water availability in forest processes, offering insights to refine global carbon cycle models.
Trine Frisbæk Hansen, Donald Eugene Canfield, Ken Haste Andersen, and Christian Jannik Bjerrum
Geosci. Model Dev., 18, 1895–1916, https://doi.org/10.5194/gmd-18-1895-2025, https://doi.org/10.5194/gmd-18-1895-2025, 2025
Short summary
Short summary
We describe and test the size-based Nutrient-Unicellular-Multicellular model, which defines unicellular plankton using a single set of parameters, on a eutrophic and oligotrophic ecosystem. The results demonstrate that both sites can be modeled with similar parameters and robust performance over a wide range of parameters. The study shows that the model is useful for non-experts and applicable for modeling ecosystems with limited data. It holds promise for evolutionary and deep-time climate models.
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev., 18, 977–1000, https://doi.org/10.5194/gmd-18-977-2025, https://doi.org/10.5194/gmd-18-977-2025, 2025
Short summary
Short summary
Many biogeochemistry models assume all material reaching the seafloor is remineralized and returned to solution, which is sufficient for studies on short-term climate change. Under long-term climate change, the carbon storage in sediments slows down carbon cycling and influences feedbacks in the atmosphere–ocean–sediment system. This paper describes the coupling of a sediment model to an ocean biogeochemistry model and presents results under the pre-industrial climate and under CO2 perturbation.
Juliette Bernard, Elodie Salmon, Marielle Saunois, Shushi Peng, Penélope Serrano-Ortiz, Antoine Berchet, Palingamoorthy Gnanamoorthy, Joachim Jansen, and Philippe Ciais
Geosci. Model Dev., 18, 863–883, https://doi.org/10.5194/gmd-18-863-2025, https://doi.org/10.5194/gmd-18-863-2025, 2025
Short summary
Short summary
Despite their importance, uncertainties remain in the evaluation of the drivers of temporal variability of methane emissions from wetlands on a global scale. Here, a simplified global model is developed, taking advantage of advances in remote-sensing data and in situ observations. The model reproduces the large spatial and temporal patterns of emissions, albeit with limitations in the tropics due to data scarcity. This model, while simple, can provide valuable insights into sensitivity analyses.
Carolina Natel, David Martin Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
EGUsphere, https://doi.org/10.5194/egusphere-2024-4064, https://doi.org/10.5194/egusphere-2024-4064, 2025
Short summary
Short summary
Complex models predict forest carbon responses to future climate change but are slow and computationally intensive, limiting large-scale analyses. We used machine learning to accelerate predictions from the LPJ-GUESS vegetation model. Our emulators, based on random forests and neural networks, achieved 97 % faster simulations. This approach enables rapid exploration of climate mitigation strategies and supports informed policy decisions.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie A. Fisher, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 18, 287–317, https://doi.org/10.5194/gmd-18-287-2025, https://doi.org/10.5194/gmd-18-287-2025, 2025
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land surface models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes of and variability in carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research into these processes.
Theo Glauch, Julia Marshall, Christoph Gerbig, Santiago Botía, Michał Gałkowski, Sanam N. Vardag, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3692, https://doi.org/10.5194/egusphere-2024-3692, 2025
Short summary
Short summary
The Vegetation Photosynthesis and Respiration Model (VPRM) estimates carbon exchange between the atmosphere and biosphere by modeling gross primary production and respiration using satellite data and weather variables. Our new version, pyVPRM, supports diverse satellite products like Sentinel-2, MODIS, VIIRS and new land cover maps, enabling high spatial and temporal resolution. This improves flux estimates, especially in complex landscapes, and ensures continuity as MODIS nears decommissioning.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024, https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
Short summary
In this study, we incorporate sea surfactants and wave-breaking processes into MITgcm-ECCOv4-Hg. The updated model shows increased fluxes in high-wind-speed and high-wave regions and vice versa, enhancing spatial heterogeneity. It shows that elemental mercury (Hg0) transfer velocity is more sensitive to wind speed. These findings may elucidate the discrepancies in previous estimations and offer insights into global Hg cycling.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024, https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from fertilizer use and also taking into account how the environment influences these NH3 emissions. It is estimated that about 17 % of applied N in fertilizers was lost due to NH3 emissions. Hot and dry conditions and regions with high-pH soils can expect higher NH3 emissions.
Benjamin Franklin Meyer, João Paulo Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2024-3352, https://doi.org/10.5194/egusphere-2024-3352, 2024
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show it's capability at capturing species-specific evapotranspiration responses to drought and reproducing flux observations of both gross primary production and evapotranspiration.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024, https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Short summary
This research looks at how climate change influences forests, and particularly how altered wind and insect activities could make forests emit instead of absorb carbon. We have updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, such as insect outbreaks, can dramatically affect carbon storage, offering crucial insights into tackling climate change.
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Nicolette Chang, Sarah-Anne Nicholson, Marcel du Plessis, Alice D. Lebehot, Thulwaneng Mashifane, Tumelo C. Moalusi, N. Precious Mongwe, and Pedro M. S. Monteiro
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-182, https://doi.org/10.5194/gmd-2024-182, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Mesoscale features (10's to 100's of km) in the Southern Ocean (SO) are crucial for global heat and carbon transport, but often unresolved in models due to high computational costs. To address this source of uncertainty, we use a regional, NEMO model of the SO at 8 km resolution with coupled ocean, ice, and biogeochemistry, BIOPERIANT12. This serves as an experimental platform to explore physical-biogeochemical interactions, model parameters/formulations, and configuring future models.
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024, https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
Short summary
Social–ecological systems are the subject of many sustainability problems. Because of the complexity of these systems, we must be careful when intervening in them; otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation and simulated an intervention measure to save a forest from infestation.
Daehyuk Kim, Hyun-Chae Jung, Jae-Hong Moon, and Na-Hyeon Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-1509, https://doi.org/10.5194/egusphere-2024-1509, 2024
Short summary
Short summary
Physical–biogeochemical ocean global models is difficult to analyze oceanic environmental systems. To accurately understand the physical–biogeochemical processes at the regional scale, physical and biogeochemical models were coupled at a high resolution. The results successfully simulated the seasonal variations of chlorophyll and nutrients, particularly in the marginal seas, which were not captured by global models. The model is an important tool for studying physical–biogeochemical processes.
Isabelle Maréchaux, Fabian Jörg Fischer, Sylvain Schmitt, and Jérôme Chave
EGUsphere, https://doi.org/10.5194/egusphere-2024-3104, https://doi.org/10.5194/egusphere-2024-3104, 2024
Short summary
Short summary
We describe TROLL 4.0, a simulator of forest dynamics that represents trees in a virtual space at one-meter resolution. Tree birth, growth, death and the underlying physiological processes such as carbon assimilation, water transpiration and leaf phenology depend on plant traits that are measured in the field for many individuals and species. The model is thus capable of jointly simulating forest structure, diversity and ecosystem functioning, a major challenge in modelling vegetation dynamics.
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošel'a, Doroteja Bitunjac, Maša Zorana Ostrogović Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev., 17, 7317–7346, https://doi.org/10.5194/gmd-17-7317-2024, https://doi.org/10.5194/gmd-17-7317-2024, 2024
Short summary
Short summary
We developed a multi-objective calibration approach leading to robust parameter values aiming to strike a balance between their local precision and broad applicability. Using the Biome-BGCMuSo model, we tested the calibrated parameter sets for simulating European beech forest dynamics across large environmental gradients. Leveraging data from 87 plots and five European countries, the results demonstrated reasonable local accuracy and plausible large-scale productivity responses.
Sylvain Schmitt, Fabian Fischer, James Ball, Nicolas Barbier, Marion Boisseaux, Damien Bonal, Benoit Burban, Xiuzhi Chen, Géraldine Derroire, Jeremy Lichstein, Daniela Nemetschek, Natalia Restrepo-Coupe, Scott Saleska, Giacomo Sellan, Philippe Verley, Grégoire Vincent, Camille Ziegler, Jérôme Chave, and Isabelle Maréchaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3106, https://doi.org/10.5194/egusphere-2024-3106, 2024
Short summary
Short summary
We evaluate the capability of TROLL 4.0, a simulator of forest dynamics, to represent tropical forest structure, diversity and functioning in two Amazonian forests. Evaluation data include forest inventories, carbon and water fluxes between the forest and the atmosphere, and leaf area and canopy height from remote-sensing products. The model realistically predicts the structure and composition, and the seasonality of carbon and water fluxes at both sites.
Elchin E. Jafarov, Helene Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-158, https://doi.org/10.5194/gmd-2024-158, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Thawing permafrost could greatly impact global climate. Our study improves modeling of carbon cycling in Arctic ecosystems. We developed an automated method to fine-tune a model that simulates carbon and nitrogen flows, using computer-generated data. Using computer-generated data, we tested our method and found it enhances accuracy and reduces the time needed for calibration. This work helps make climate predictions more reliable in sensitive permafrost regions.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev., 17, 6725–6744, https://doi.org/10.5194/gmd-17-6725-2024, https://doi.org/10.5194/gmd-17-6725-2024, 2024
Short summary
Short summary
The study assesses the performance of the dynamic global vegetation model (DGVM) ORCHIDEE in capturing the impact of land-use change on carbon stocks across Europe. Comparisons with observations reveal that the model accurately represents carbon fluxes and stocks. Despite the underestimations in certain land-use conversions, the model describes general trends in soil carbon response to land-use change, aligning with the site observations.
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024, https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Short summary
Coral reefs are crucial for biodiversity, but they also play a role in the carbon cycle on long time scales of a few thousand years. To better simulate the future and past evolution of coral reefs and their effect on the global carbon cycle, hence on atmospheric CO2 concentration, it is necessary to include coral reefs within a climate model. Here we describe the inclusion of coral reef carbonate production in a carbon–climate model and its validation in comparison to existing modern data.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-151, https://doi.org/10.5194/gmd-2024-151, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study integrates machine learning with a land surface model to improve wildfire predictions in North America. Traditional models struggle with accurately simulating burned areas due to simplified processes. By combining the predictive power of machine learning with a land model, our hybrid framework better captures fire dynamics. This approach enhances our understanding of wildfire behavior and aids in developing more effective climate and fire management strategies.
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024, https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Short summary
A new scheme is developed to model the surface ozone damage to vegetation in regional and global process-based models. Based on 4210 data points from ozone experiments, it accurately reproduces statistically significant linear or nonlinear photosynthetic and stomatal responses to ozone in observations for all vegetation types. It also enables models to implicitly capture the variability in plant ozone tolerance and the shift among species within a vegetation type.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Nina Raoult, Simon Beylat, James M. Salter, Frédéric Hourdin, Vladislav Bastrikov, Catherine Ottlé, and Philippe Peylin
Geosci. Model Dev., 17, 5779–5801, https://doi.org/10.5194/gmd-17-5779-2024, https://doi.org/10.5194/gmd-17-5779-2024, 2024
Short summary
Short summary
We use computer models to predict how the land surface will respond to climate change. However, these complex models do not always simulate what we observe in real life, limiting their effectiveness. To improve their accuracy, we use sophisticated statistical and computational techniques. We test a technique called history matching against more common approaches. This method adapts well to these models, helping us better understand how they work and therefore how to make them more realistic.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024, https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
Short summary
Wildfire is often presented in the media as a danger to human life. Yet globally, millions of people’s livelihoods depend on using fire as a tool. So, patterns of fire emerge from interactions between humans, land use, and climate. This complexity means scientists cannot yet reliably say how fire will be impacted by climate change. So, we developed a new model that represents globally how people use and manage fire. The model reveals the extent and diversity of how humans live with and use fire.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Elin Ristorp Aas, Heleen A. de Wit, and Terje K. Berntsen
Geosci. Model Dev., 17, 2929–2959, https://doi.org/10.5194/gmd-17-2929-2024, https://doi.org/10.5194/gmd-17-2929-2024, 2024
Short summary
Short summary
By including microbial processes in soil models, we learn how the soil system interacts with its environment and responds to climate change. We present a soil process model, MIMICS+, which is able to reproduce carbon stocks found in boreal forest soils better than a conventional land model. With the model we also find that when adding nitrogen, the relationship between soil microbes changes notably. Coupling the model to a vegetation model will allow for further study of these mechanisms.
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
Geosci. Model Dev., 17, 2705–2725, https://doi.org/10.5194/gmd-17-2705-2024, https://doi.org/10.5194/gmd-17-2705-2024, 2024
Short summary
Short summary
Soil microbes provide a strong link for elemental fluxes in the earth system. The SESAM model applies an optimality assumption to model those linkages and their adaptation. We found that a previous heuristic description was a special case of a newly developed more rigorous description. The finding of new behaviour at low microbial biomass led us to formulate the constrained enzyme hypothesis. We now can better describe how microbially mediated linkages of elemental fluxes adapt across decades.
Cited articles
Alcott, L. J., Mills, B. J. W., and Poulton, S. W.: Stepwise Earth
oxygenation is an inherent property of global biogeochemical cycling,
Science, 366, 1333–1337, https://doi.org/10.1126/science.aax6459, 2019.
Algeo, T. J. and Ingall, E.: Sedimentary Corg:P ratios, paleocean
ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr.
Palaeocl., 256, 130–155, https://doi.org/10.1016/j.palaeo.2007.02.029, 2007.
Anderson, L. D., Delaney, M. L., and Faul, K. L.: Carbon to phosphorus
ratios in sediments: Implications for nutrient cycling, Global Biogeochem.
Cycles, 15, 65–79, https://doi.org/10.1029/2000GB001270, 2001.
Archer, D., Kheshgi, H., and Maier-Reimer, E.: Dynamics of fossil fuel
CO2 neutralization by marine CaCO3, Global Biogeochem. Cycles, 12,
259–276, https://doi.org/10.1029/98GB00744, 1998.
Archer, D. E., Eshel, G., Winguth, A., Broecker, W., Pierrehumbert, R.,
Tobis, M., and Jacob, R.: Atmospheric pCO2 sensitivity to the biological
pump in the ocean, Global Biogeochem. Cycles, 14, 1219–1230, https://doi.org/10.1029/1999GB001216, 2000.
Archer, D. E., Morford, J. L., and Emerson, S. R.: A model of suboxic
sedimentary diagenesis suitable for automatic tuning and gridded global
domains, Global Biogeochem. Cycles, 16, 17-11–17-21, https://doi.org/10.1029/2000gb001288,
2002.
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A
new, mechanistic model for organic carbon fluxes in the ocean based on the
quantitative association of POC with ballast minerals, Deep-Sea Res.
Pt. II, 49, 219–236, https://doi.org/10.1016/S0967-0645(01)00101-1, 2001.
Arndt, S., Regnier, P., Goddéris, Y., and Donnadieu, Y.: GEOCLIM reloaded (v 1.0): a new coupled earth system model for past climate change, Geosci. Model Dev., 4, 451–481, https://doi.org/10.5194/gmd-4-451-2011, 2011.
Baturin, G. N.: Issue of the relationship between primary productivity of
organic carbon in ocean and phosphate accumulation (Holocene-Late Jurassic),
Lithol. Min. Resour., 42, 318–348, https://doi.org/10.1134/s0024490207040025,
2007.
Beal, E. J., Claire, M. W., and House, C. H.: High rates of anaerobic
methanotrophy at low sulfate concentrations with implications for past and
present methane levels, Geobiology, 9, 131–139,
https://doi.org/10.1111/j.1472-4669.2010.00267.x, 2011.
Belcher, C. M. and McElwain, J. C.: Limits for combustion in low O2
redefine paleoatmospheric predictions for the Mesozoic, Science, 321,
1197–1200, https://doi.org/10.1126/science.1160978, 2008.
Bellefroid, E. J., Hood, A. v. S., Hoffman, P. F., Thomas, M. D., Reinhard,
C. T., and Planavsky, N. J.: Constraints on Paleoproterozoic atmospheric
oxygen levels, P. Natl Acad. Sci. USA, 115, 8104–8109,
https://doi.org/10.1073/pnas.1806216115, 2018.
Benitez-Nelson, C. R.: The biogeochemical cycling of phosphorus in marine
systems, Earth-Sci. Rev., 51, 109–135, https://doi.org/10.1016/S0012-8252(00)00018-0, 2000.
Berelson, W. M.: Particle settling rates increase with depth in the ocean,
Deep-Sea Res. Pt. II, 49, 237–251,
https://doi.org/10.1016/S0967-0645(01)00102-3, 2001a.
Berelson, W. M.: The Flux of Particulate Organic Carbon Into the Ocean
Interior: A Comparison of Four U.S. JGOFS Regional Studies, Oceanography,
14, 59–67, 2001b.
Berelson, W. M., Balch, W. M., Najjar, R., Feely, R. A., Sabine, C., and
Lee, K.: Relating estimates of CaCO3 production, export, and
dissolution in the water column to measurements of CaCO3 rain into
sediment traps and dissolution on the sea floor: A revised global carbonate
budget, Global Biogeochem. Cycles, 21, GB1024, https://doi.org/10.1029/2006GB002803, 2007.
Bergman, N. M., Lenton, T. M., and Watson, A. J.: COPSE: A new model of
biogeochemical cycling over Phanerozoic time, Am. J. Sci., 304, 397–437,
https://doi.org/10.2475/ajs.304.5.397, 2004.
Berner, R. A.: Early diagenesis: A theoretical
approach, Princeton University Press, Princeton, 256 pp., ISBN 0-691-08258-8, 1980.
Berner, R. A.: Burial of organic carbon and pyrite sulfur in the modern
ocean; its geochemical and environmental significance, Am. J. Sci., 282,
451–473, https://doi.org/10.2475/ajs.282.4.451, 1982.
Berner, R. A.: Biogeochemical cycles of carbon and sulfur and their effect
on atmospheric oxygen over phanerozoic time, Palaeogeogr. Palaeocl., 75, 97–122, https://doi.org/10.1016/0031-0182(89)90186-7, 1989.
Berner, R. A.: The Phanerozoic Carbon Cycle: CO2 and O2, Oxford
University Press, ISBN 0-19-517333-3, 2004a.
Berner, R. A.: A model for calcium, magnesium and sulfate in seawater over
Phanerozoic time, Am. J. Sci., 304, 438–453, https://doi.org/10.2475/ajs.304.5.438, 2004b.
Berner, R. A.: GEOCARBSULF: A combined model for Phanerozoic atmospheric
O2 and CO2, Geochim. Cosmochim. Ac., 70, 5653–5664, https://doi.org/10.1016/j.gca.2005.11.032, 2006.
Berner, R. A.: Phanerozoic atmospheric oxygen: New results using the
GEOCARBSULF model, Am. J. Sci., 309, 603–606, https://doi.org/10.2475/07.2009.03, 2009.
Berner, R. A. and Canfield, D. E.: A new model for atmospheric oxygen over
Phanerozoic time, Am. J. Sci., 289, 333–361, https://doi.org/10.2475/ajs.289.4.333, 1989.
Berner, R. A. and Westrich, J. T.: Bioturbation and the early diagenesis of
carbon and sulfur, Am. J. Sci., 285, 193–206, https://doi.org/10.2475/ajs.285.3.193, 1985.
Betts, J. N. and Holland, H. D.: The oxygen content of ocean bottom waters,
the burial efficiency of organic carbon, and the regulation of atmospheric
oxygen, Palaeogeogr. Palaeocl., 97, 5–18, https://doi.org/10.1016/0031-0182(91)90178-T, 1991.
Bohlen, L., Dale, A. W., and Wallmann, K.: Simple transfer functions for
calculating benthic fixed nitrogen losses and regeneration ratios in
global biogeochemical models, Global Biogeochem. Cycles, 26, GB3029,
https://doi.org/10.1029/2011gb004198, 2012.
Bolton, E. W., Berner, R. A., and Petsch, S. T.: The Weathering of
Sedimentary Organic Matter as a Control on Atmospheric O2: II.
Theoretical Modeling, Am. J. Sci., 306, 575–615, https://doi.org/10.2475/08.2006.01, 2006.
Bottrell, S. H. and Newton, R. J.: Reconstruction of changes in global
sulfur cycling from marine sulfate isotopes, Earth-Sci. Rev., 75,
59–83, https://doi.org/10.1016/j.earscirev.2005.10.004, 2006.
Boudreau, B. P.: A method-of-lines code for carbon and nutrient diagenesis
in aquatic sediments, Comput. Geosci., 22, 479–496, https://doi.org/10.1016/0098-3004(95)00115-8, 1996.
Bowles, M. W., Mogollón, J. M., Kasten, S., Zabel, M., and Hinrichs,
K.-U.: Global rates of marine sulfate reduction and implications for
sub–sea-floor metabolic activities, Science, 344, 889–891,
https://doi.org/10.1126/science.1249213, 2014.
Bradley, J. A., Arndt, S., Amend, J. P., Burwicz, E., Dale, A. W., Egger,
M., and LaRowe, D. E.: Widespread energy limitation to life in global
subseafloor sediments, Sci. Adv., 6, eaba0697,
https://doi.org/10.1126/sciadv.aba0697, 2020.
Brandes, J. A. and Devol, A. H.: A global marine-fixed nitrogen isotopic
budget: Implications for Holocene nitrogen cycling, Global Biogeochem.
Cycles, 16, GB001856, https://doi.org/10.1029/2001gb001856, 2002.
Broecker, W. S. and Peng, T.-H.: Tracers in the sea, Eldigio Pr, New
York,
690 pp., ISBN 9993186724, 1982.
Burdige, D. J.: Burial of terrestrial organic matter in marine sediments: A
re-assessment, Global Biogeochem. Cycles, 19, GB4011, https://doi.org/10.1029/2004gb002368, 2005.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments:
Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?,
Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Canfield, D. E.: Sulfate reduction and oxic respiration in marine sediments:
implications for organic carbon preservation in euxinic environments, Deep-Sea Res. Pt. A., 36, 121–138, https://doi.org/10.1016/0198-0149(89)90022-8, 1989.
Canfield, D. E.: Sulfate reduction in deep-sea sediments, Am. J. Sci., 291,
177–188, https://doi.org/10.2475/ajs.291.2.177, 1991.
Canfield, D. E.: Organic Matter Oxidation in Marine Sediments, in:
Interactions of C, N, P and S Biogeochemical Cycles and Global Change,
edited by: Wollast, R., Mackenzie, F. T., and Chou, L., Springer Berlin
Heidelberg, Berlin, 333–363, ISBN 978-3-642-76066-2, 1993.
Canfield, D. E.: The evolution of the Earth surface sulfur reservoir, Am. J.
Sci., 304, 839–861, https://doi.org/10.2475/ajs.304.10.839, 2004.
Canfield, D. E. and Farquhar, J.: Animal evolution, bioturbation, and the
sulfate concentration of the oceans, P. Natl Acad. Sci. USA, 106,
8123–8127, https://doi.org/10.1073/pnas.0902037106, 2009.
Canfield, D. E., Zhang, S., Frank, A. B., Wang, X., Wang, H., Su, J., Ye,
Y., and Frei, R.: Highly fractionated chromium isotopes in
Mesoproterozoic-aged shales and atmospheric oxygen, Nat. Commun., 9, 2871,
https://doi.org/10.1038/s41467-018-05263-9, 2018.
Carr, M.-E., Friedrichs, M. A. M., Schmeltz, M., Noguchi Aita, M., Antoine,
D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M.,
Bidigare, R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H.,
Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S.,
Hoepffner, N., Ishizaka, J., Kameda, T., Le Quéré, C., Lohrenz, S.,
Marra, J., Mélin, F., Moore, K., Morel, A., Reddy, T. E., Ryan, J.,
Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka,
Y.: A comparison of global estimates of marine primary production from ocean
color, Deep-Sea Res. Pt. II, 53,
741–770, https://doi.org/10.1016/j.dsr2.2006.01.028, 2006.
Catling, D. C. and Kasting, J. F.: Atmospheric Evolution on Inhabited and
Lifeless Worlds, Cambridge University Press, ISBN 978-0-521-84412-3, 2017.
Catling, D. C. and Zahnle, K. J.: The Archean atmosphere, Sci. Adv.,
6, eaax1420, https://doi.org/10.1126/sciadv.aax1420, 2020.
Cha, H. J., Lee, C. B., Kim, B. S., Choi, M. S., and Ruttenberg, K. C.:
Early diagenetic redistribution and burial of phosphorus in the sediments of
the southwestern East Sea (Japan Sea), Marine Geol., 216, 127–143,
https://doi.org/10.1016/j.margeo.2005.02.001, 2005.
Claire, M. W., Catling, D. C., and Zahnle, K. J.: Biogeochemical modelling
of the rise in atmospheric oxygen, Geobiology, 4, 239–269,
https://doi.org/10.1111/j.1472-4669.2006.00084.x, 2006.
Cole, D. B., Reinhard, C. T., Wang, X., Gueguen, B., Halverson, G. P.,
Gibson, T., Hodgskiss, M. S. W., McKenzie, N. R., Lyons, T. W., and
Planavsky, N. J.: A shale-hosted Cr isotope record of low atmospheric oxygen
during the Proterozoic, Geology, 44, 555–558, https://doi.org/10.1130/g37787.1, 2016.
Cole, D. B., Ozaki, K., and Reinhard, C. T.: Atmospheric Oxygen Abundance,
Marine Nutrient Availability, and Organic Carbon Fluxes to the Seafloor,
Global Biogeochem. Cycles, 36, e2021GB007052, https://doi.org/10.1029/2021GB007052, 2022.
Colman, A. S. and Holland, H. D.: The global diagenetic flux of phosphorus
from marine sediments to the oceans: redox sensitivity and the control of
atmosphreic oxygen levels, in: Marine authigenesis: from global to
microbial, edited by: Glenn, C. R., Prevot-Lucas, L., and Lucas, J., SEPM
(Society for Sedimentary Geology), 53–75,
ISBN 1-56576-064-6, 2000.
Compton, J., Mallinson, D., Glenn, C. R., Filippelli, G., Follmi, K.,
Shields, G. A., and Zanin, Y.: Variations in the global phosphorus cycle,
in: Marine authigenesis: from global to microbial, edited by: Glenn, C. R.,
Prevot-Lucas, L., and Lucas, J., SEPM (Society for Sedimentary Geology),
21–33, 2000.
Crichton, K. A., Wilson, J. D., Ridgwell, A., and Pearson, P. N.: Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model, Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, 2021.
Crockford, P. W., Hayles, J. A., Bao, H., Planavsky, N. J., Bekker, A.,
Fralick, P. W., Halverson, G. P., Bui, T. H., Peng, Y., and Wing, B. A.:
Triple oxygen isotope evidence for limited mid-Proterozoic primary
productivity, Nature, 559, 613–616, https://doi.org/10.1038/s41586-018-0349-y, 2018.
Daines, S. J., Mills, B. J. W., and Lenton, T. M.: Atmospheric oxygen
regulation at low Proterozoic levels by incomplete oxidative weathering of
sedimentary organic carbon, Nat. Commun., 8, 14379, https://doi.org/10.1038/ncomms14379,
2017.
Dale, A. W., Meyers, S. R., Aguilera, D. R., Arndt, S., and Wallmann, K.:
Controls on organic carbon and molybdenum accumulation in Cretaceous marine
sediments from the Cenomanian–Turonian interval including Oceanic Anoxic
Event 2, Chem. Geol., 324–325, 28–45, https://doi.org/10.1016/j.chemgeo.2011.10.004, 2012.
Delaney, M. L.: Phosphorus accumulation in marine sediments and the oceanic
phosphorus cycle, Global Biogeochem. Cycles, 12, 563–572, https://doi.org/10.1029/98gb02263,
1998.
Dellwig, O., Leipe, T., März, C., Glockzin, M., Pollehne, F., Schnetger,
B., Yakushev, E. V., Böttcher, M. E., and Brumsack, H.-J.: A new
particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins, Geochim.
Cosmochim. Ac., 74, 7100–7115, https://doi.org/10.1016/j.gca.2010.09.017, 2010.
Derry, L. A.: Causes and consequences of mid-Proterozoic anoxia, Geophys.
Res. Lett., 42, 2015GL065333, https://doi.org/10.1002/2015gl065333, 2015.
Des Marais, D. J., Harwit, M. O., Jucks, K. W., Kasting, J. F., Lin, D. N.,
Lunine, J. I., Schneider, J., Seager, S., Traub, W. A., and Woolf, N. J.:
Remote Sensing of Planetary Properties and Biosignatures on Extrasolar
Terrestrial Planets, Astrobiology, 2, 153–181, https://doi.org/10.1089/15311070260192246,
2002.
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N., and Dunne, J. P.:
Spatial coupling of nitrogen inputs and losses in the ocean, Nature, 445,
163, https://doi.org/10.1038/nature05392,
2007.
Devol, A. and Christensen, J. P.: Benthic fluxes and nitrogen cycling in
sediments of the continental margin of the eastern North Pacific, J.
Marine Res., 51, 345–372, 1993.
Devol, A. H.: Denitrification, Anammox, and N2 Production in Marine
Sediments, Ann. Rev. Mar. Sci., 7, 403–423,
https://doi.org/10.1146/annurev-marine-010213-135040, 2015.
DeVries, T., Deutsch, C., Primeau, F., Chang, B., and Devol, A.: Global
rates of water-column denitrification derived from nitrogen gas
measurements, Nat. Geosci., 5, 547, https://doi.org/10.1038/ngeo1515,
2012.
DeVries, T., Deutsch, C., Rafter, P. A., and Primeau, F.: Marine denitrification rates determined from a global 3-D inverse model, Biogeosciences, 10, 2481–2496, https://doi.org/10.5194/bg-10-2481-2013, 2013.
Doney, S. C., Lindsay, K., Caldeira, K., Campin, J. M., Drange, H., Dutay,
J. C., Follows, M., Gao, Y., Gnanadesikan, A., Gruber, N., Ishida, A., Joos,
F., Madec, G., Maier-Reimer, E., Marshall, J. C., Matear, R. J., Monfray,
P., Mouchet, A., Najjar, R., Orr, J. C., Plattner, G. K., Sarmiento, J.,
Schlitzer, R., Slater, R., Totterdell, I. J., Weirig, M. F., Yamanaka, Y.,
and Yool, A.: Evaluating global ocean carbon models: The importance of
realistic physics, Global Biogeochem. Cycles, 18, GB3017,
https://doi.org/10.1029/2003gb002150, 2004.
Donis, D., McGinnis, D. F., Holtappels, M., Felden, J., and Wenzhofer, F.:
Assessing benthic oxygen fluxes in oligotrophic deep sea sediments
(HAUSGARTEN observatory), Deep-Sea Res. Pt. I, 111, 1–10, https://doi.org/10.1016/j.dsr.2015.11.007, 2016.
Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone,
D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R.
J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M.,
Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T.,
Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M.,
Ulloa, O., Voss, M., Ward, B., and Zamora, L.: Impacts of Atmospheric
Anthropogenic Nitrogen on the Open Ocean, Science, 320, 893–897,
https://doi.org/10.1126/science.1150369, 2008.
Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of global
particle export from the surface ocean and cycling through the ocean
interior and on the seafloor, Global Biogeochem. Cycles, 21, GB4006,
https://doi.org/10.1029/2006gb002907, 2007.
Eguchi, J., Seales, J., and Dasgupta, R.: Great Oxidation and Lomagundi
events linked by deep cycling and enhanced degassing of carbon, Nat.
Geosci., 13, 71–76, https://doi.org/10.1038/s41561-019-0492-6, 2020.
Etheridge, D. M., Steele, L. P., Francey, R. J., and Langenfelds, R. L.:
Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic
emissions and climatic variability, J. Geophys. Res., 103, 15979–15993,
https://doi.org/10.1029/98JD00923, 1998.
Eugster, O. and Gruber, N.: A probabilistic estimate of global marine
N-fixation and denitrification, Global Biogeochem. Cycles, 26, GB4013,
https://doi.org/10.1029/2012gb004300, 2012.
Fakhraee, M., Planavsky, N. J., and Reinhard, C. T.: The role of
environmental factors in the long-term evolution of the marine biological
pump, Nat. Geosci., 13, 812–816, https://doi.org/10.1038/s41561-020-00660-6, 2020.
Fiebig, J., Woodland, A. B., D'Alessandro, W., and Püttmann, W.: Excess
methane in continental hydrothermal emissions is abiogenic, Geology, 37,
495–498, https://doi.org/10.1130/g25598a.1, 2009.
Filippelli, G. M.: Carbon and phosphorus cycling in anoxic sediments of the
Saanich Inlet, British Columbia, Marine Geol., 174, 307–321, https://doi.org/10.1016/S0025-3227(00)00157-2, 2001.
Föllmi, K. B.: The phosphorus cycle, phosphogenesis and marine
phosphate-rich deposits, Earth-Sci. Rev., 40, 55–124, https://doi.org/10.1016/0012-8252(95)00049-6, 1996.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S.,
Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P.,
Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D.,
Amann, M., and Voss, M.: The global nitrogen cycle in the twenty-first
century, Phil. Trans. R. Soc. B, 368, 20130164, https://doi.org/10.1098/rstb.2013.0164, 2013.
Francois, R., Honjo, S., Krishfield, R., and Manganini, S.: Factors
controlling the flux of organic carbon to the bathypelagic zone of the
ocean, Global Biogeochem. Cycles, 16, 1087, https://doi.org/10.1029/2001gb001722, 2002.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath,
G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.:
Early oxidation of organic matter in pelagic sediments of the eastern
equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43,
1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4,
1979.
Galbraith, E. D. and Martiny, A. C.: A simple nutrient-dependence mechanism
for predicting the stoichiometry of marine ecosystems, P. Natl Acad. Sci.
USA, 112, 8199–8204, https://doi.org/10.1073/pnas.1423917112, 2015.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A.,
Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A.
R., and Vöosmarty, C. J.: Nitrogen Cycles: Past, Present, and Future,
Biogeochemistry, 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better
fitting equations, Limnol. Oceanogr., 37, 1307–1312,
https://doi.org/10.4319/lo.1992.37.6.1307, 1992.
Garrels, R. M. and Lerman, A.: Phanerozoic cycles of sedimentary carbon and
sulfur, P. Natl Acad. Sci. USA, 78, 4652–4656, 1981.
Garrels, R. M. and Perry, J. E. A.: Cycling of carbon, sulfur, and oxygen
through geologic time, The Sea, Wiley-Interscience, New York, edited by: Goldberg, E. D.,
303–336,
ISBN 067401734X, 1974.
Goldblatt, C., Lenton, T. M., and Watson, A. J.: Bistability of atmospheric
oxygen and the Great Oxidation, Nature, 443, 683–686, 2006.
Graham, W. F. and Duce, R. A.: Atmospheric pathways of the phosphorus cycle,
Geochim. Cosmochim. Ac., 43, 1195–1208, https://doi.org/10.1016/0016-7037(79)90112-1, 1979.
Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M.
M. M., Lavik, G., Schmitz, R. A., Wallace, D. W. R., and LaRoche, J.:
Doubling of marine dinitrogen-fixation rates based on direct measurements,
Nature, 488, 361, https://doi.org/10.1038/nature11338,
2012.
Gruber, N.: Chapter 1 – The Marine Nitrogen Cycle: Overview and Challenges,
in: Nitrogen in the Marine Environment, 2nd edn., Academic Press, San
Diego, 1–50, https://doi.org/10.1016/B978-0-12-372522-6.00001-3, 2008.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation
and denitrification, Global Biogeochem. Cycles, 11, 235–266,
https://doi.org/10.1029/97gb00077, 1997.
Gruber, N. and Sarmiento, J. L.: Biogeochemical/physical interactions in
elemental cycles, in: THE SEA: Biological-Physical Interactions in the
Oceans, edited by: Robinson, A. R., McCarthy, J. J., and Rothschild, B. J.,
John Wiley and Sons, New York, 337–399, 2002.
Guidry, M. W., Mackenzie, F. T., and Arvidson, R. S.: Role of tectonics in
phosphorus distribution and cycling, in: Marine Authigenesis: From Global to
Microbial, edited by: Glenn, C. R., Prevot-Lucas, L., and Lucas, J., SEPM,
35–51, 2000.
Gundersen, J. K. and Jorgensen, B. B.: Microstructure of diffusive boundary
layers and the oxygen uptake of the sea floor, Nature, 345, 604,
https://doi.org/10.1038/345604a0, 1990.
Halevy, I., Peters, S. E., and Fischer, W. W.: Sulfate Burial Constraints on
the Phanerozoic Sulfur Cycle, Science, 337, 331–334,
https://doi.org/10.1126/science.1220224, 2012.
Handoh, I. C. and Lenton, T. M.: Periodic mid-Cretaceous oceanic anoxic
events linked by oscillations of the phosphorus and oxygen biogeochemical
cycles, Global Biogeochem. Cycles, 17, 1092, https://doi.org/10.1029/2003gb002039, 2003.
Hartnett, H. E. and Devol, A. H.: Role of a strong oxygen-deficient zone in
the preservation and degradation of organic matter: a carbon budget for the
continental margins of northwest Mexico and Washington State, Geochim.
Cosmochim. Ac., 67, 247–264, https://doi.org/10.1016/S0016-7037(02)01076-1, 2003.
Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. H.: Influence of
oxygen exposure time on organic carbon preservation in continental margin
sediments, Nature, 391, 572–575, 1998.
Hayes, C. T., Costa, K. M., Anderson, R. F., Calvo, E., Chase, Z., Demina,
L. L., Dutay, J.-C., German, C. R., Heimbürger-Boavida, L.-E., Jaccard,
S. L., Jacobel, A., Kohfeld, K. E., Kravchishina, M. D., Lippold, J., Mekik,
F., Missiaen, L., Pavia, F. J., Paytan, A., Pedrosa-Pamies, R., Petrova, M.
V., Rahman, S., Robinson, L. F., Roy-Barman, M., Sanchez-Vidal, A., Shiller,
A., Tagliabue, A., Tessin, A. C., van Hulten, M., and Zhang, J.: Global
Ocean Sediment Composition and Burial Flux in the Deep Sea, Global
Biogeochem. Cycles, 35, e2020GB006769, https://doi.org/10.1029/2020GB006769, 2021.
Hayes, J. M. and Waldbauer, J. R.: The carbon cycle and associated redox
processes through time, Phil. Trans. R. Soc. B, 361, 931–950,
https://doi.org/10.1098/rstb.2006.1840, 2006.
Hedges, J. I., Hu, F. S., Devol, A. H., Hartnett, H. E., Tsamakis, E., and
Keil, R. G.: Sedimentary organic matter preservation; a test for selective
degradation under oxic conditions, Am. J. Sci., 299, 529–555,
https://doi.org/10.2475/ajs.299.7-9.529, 1999.
Heinze, C., Kriest, I., and Maier-Reimer, E.: Age offsets among different
biogenic and lithogenic components of sediment cores revealed by numerical
modeling, Paleoceanography, 24, PA4214, https://doi.org/10.1029/2008pa001662, 2009.
Henrichs, S. M. and Reeburgh, W. S.: Anaerobic mineralization of marine
sediment organic matter: Rates and the role of anaerobic processes in the
oceanic carbon economy, Geomicrobiol. J., 5, 191–237,
https://doi.org/10.1080/01490458709385971, 1987.
Hensen, C., Landenberger, H., Zabel, M., and Schulz, H. D.: Quantification
of diffusive benthic fluxes of nitrate, phosphate, and silicate in the
southern Atlantic Ocean, Global Biogeochem. Cycles, 12, 193–210,
https://doi.org/10.1029/97gb02731, 1998.
Hitchcock, D. R. and Lovelock, J. E.: Life detection by atmospheric
analysis, Icarus, 7, 149–159, https://doi.org/10.1016/0019-1035(67)90059-0, 1967.
Holland, H. D.: The Chemistry of the Atmosphere and Oceans, John Wiley &
Sons, New York, ISBN 0471035092, 1978.
Holser, W. T., Maynard, J. B., and Cruikshank, K. M.: Modelling the natural
cycle of sulphur through Phanerozoic time, in: Evolution of the Global
Biogeochemical Sulphur Cycle, edited by: Brimblecombe, P., and Lein, A. Y.,
John Wiley & Sons Ltd, New York, 21–56, 1989.
Honjo, S.: Material fluxes and modes of sedimentation in the mesopelagic and
bathypelagic zones, J. Marine Res., 38, 53–97, 1980.
Honjo, S. and Manganini, S. J.: Annual biogenic particle fluxes to the
interior of the North Atlantic Ocean; studied at 34∘ N
21∘ W and 48∘ N 21∘ W, Deep-Sea Res. Pt.
II, 40, 587–607, https://doi.org/10.1016/0967-0645(93)90034-K, 1993.
Hotinski, R. M., Kump, L. R., and Najjar, R. G.: Opening Pandora's Box: The
impact of open system modeling on interpretations of anoxia,
Paleoceanography, 15, 267–279, https://doi.org/10.1029/1999pa000408, 2000.
Hyacinthe, C., Anschutz, P., Carbonel, P., Jouanneau, J. M., and Jorissen,
F. J.: Early diagenetic processes in the muddy sediments of the Bay of
Biscay, Marine Geol., 177, 111–128, https://doi.org/10.1016/S0025-3227(01)00127-X, 2001.
Ingall, E. and Jahnke, R.: Evidence for enhanced phosphorus regeneration
from marine sediments overlain by oxygen depleted waters, Geochim.
Cosmochim. Ac., 58, 2571–2575, https://doi.org/10.1016/0016-7037(94)90033-7, 1994.
Ingall, E. and Jahnke, R.: Influence of water-column anoxia on the elemental
fractionation of carbon and phosphorus during sediment diagenesis, Marine
Geol., 139, 219–229, https://doi.org/10.1016/S0025-3227(96)00112-0, 1997.
Ingall, E. D. and Cappellen, P. V.: Relation between sedimentation rate and
burial of organic phosphorus and organic carbon in marine sediments,
Geochim. Cosmochim. Ac., 54, 373–386, https://doi.org/10.1016/0016-7037(90)90326-G, 1990.
Ingall, E. D., Bustin, R. M., and Van Cappellen, P.: Influence of water
column anoxia on the burial and preservation of carbon and phosphorus in
marine shales, Geochim. Cosmochim. Ac., 57, 303–316, https://doi.org/10.1016/0016-7037(93)90433-W, 1993.
Ittekkot, V.: The abiotically driven biological pump in the ocean and
short-term fluctuations in atmospheric CO2 contents, Global
Planet. Change, 8, 17–25, https://doi.org/10.1016/0921-8181(93)90060-2, 1993.
Jahnke, R. A.: The global ocean flux of particulate organic carbon: Areal
distribution and magnitude, Global Biogeochem. Cycles, 10, 71–88, https://doi.org/10.1029/95GB03525, 1996.
Joos, F., Sarmiento, J. L., and Siegenthaler, U.: Estimates of the effect of
Southern Ocean iron fertilization on atmospheric CO2 concentrations,
Nature, 349, 772–775, https://doi.org/10.1038/349772a0, 1991.
Jørgensen, B. B.: Mineralization of organic matter in the sea bed—the
role of sulphate reduction, Nature, 296, 643, https://doi.org/10.1038/296643a0, 1982.
Jørgensen, B. B. and Kasten, S.: Sulfur cycling and methane oxidation,
in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer Berlin Heidelberg, 271–309, https://doi.org/10.1007/3-540-32144-6_8, 2006.
Kagoshima, T., Sano, Y., Takahata, N., Maruoka, T., Fischer, T. P., and
Hattori, K.: Sulphur geodynamic cycle, Sci. Rep.-UK, 5, 8330, https://doi.org/10.1038/srep08330,
2015.
Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier,
R., Lipschultz, F., Paerl, H., Sigman, D., and Stal, L.: Dinitrogen fixation
in the world's oceans, in: The Nitrogen Cycle at Regional to Global Scales,
edited by: Boyer, E. W., and Howarth, R. W., Springer Netherlands,
Dordrecht, 47–98, https://doi.org/10.1007/978-94-017-3405-9_2, 2002.
Karl, D. M., Beversdorf, L., Björkman, K. M., Church, M. J., Martinez,
A., and Delong, E. F.: Aerobic production of methane in the sea, Nat.
Geosci., 1, 473–478, https://doi.org/10.1038/ngeo234, 2008.
Karthäuser, C., Ahmerkamp, S., Marchant, H. K., Bristow, L. A., Hauss,
H., Iversen, M. H., Kiko, R., Maerz, J., Lavik, G., and Kuypers, M. M. M.:
Small sinking particles control anammox rates in the Peruvian oxygen minimum
zone, Nat. Commun., 12, 3235, https://doi.org/10.1038/s41467-021-23340-4, 2021.
Kashiyama, Y., Ozaki, K., and Tajika, E.: Impact of the Evolution of
Carbonate Ballasts on Marine Biogeochemistry in the Mesozoic and Associated
Changes in Energy Delivery to Subsurface Waters, Paleontol. Res.,
15, 89–99, https://doi.org/10.2517/1342-8144-15.2.089, 2011.
Katsev, S. and Crowe, S. A.: Organic carbon burial efficiencies in
sediments: The power law of mineralization revisited, Geology, 43, 607–610,
https://doi.org/10.1130/g36626.1, 2015.
Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., and Suzuki, T.:
Global Ocean Data Analysis Project, Version 2 (GLODAPv2),
https://doi.org/10.3334/CDIAC/OTG. NDP093_GLODAPv2, 2015.
Kharecha, P., Kasting, J., and Siefert, J.: A coupled atmosphere–ecosystem
model of the early Archean Earth, Geobiology, 3, 53–76,
https://doi.org/10.1111/j.1472-4669.2005.00049.x, 2005.
Klaas, C. and Archer, D. E.: Association of sinking organic matter with
various types of mineral ballast in the deep sea: Implications for the rain
ratio, Global Biogeochem. Cycles, 16, 63-61–63-14, https://doi.org/10.1029/2001gb001765,
2002.
Knox, F. and McElroy, M. B.: Changes in atmospheric CO2: Influence of
the marine biota at high latitude, J. Geophys. Res., 89, 4629–4637,
https://doi.org/10.1029/JD089iD03p04629, 1984.
Krissansen-Totton, J., Garland, R., Irwin, P., and Catling, D. C.:
Detectability of Biosignatures in Anoxic Atmospheres with the James Webb
Space Telescope: A TRAPPIST-1e Case Study, The Astronom. J., 156,
114, https://doi.org/10.3847/1538-3881/aad564, 2018.
Kump, L. R.: Chemical stability of the atmosphere and ocean, Palaeogeogr.
Palaeocl., 75, 123–136, https://doi.org/10.1016/0031-0182(89)90187-9, 1989.
Kump, L. R.: The rise of atmospheric oxygen, Nature, 451, 277–278, https://doi.org/10.1038/nature06587, 2008.
Kuypers, M. M. M., Lavik, G., Woebken, D., Schmid, M., Fuchs, B. M., Amann,
R., Jørgensen, B. B., and Jetten, M. S. M.: Massive nitrogen loss from
the Benguela upwelling system through anaerobic ammonium oxidation, P.
Natl. Acad. Sci. USA, 102, 6478–6483, https://doi.org/10.1073/pnas.0502088102, 2005.
Kuznetsov, I., Neumann, T., and Burchard, H.: Model study on the ecosystem
impact of a variable ratio for cyanobacteria in the Baltic Proper,
Ecol. Model., 219, 107–114, https://doi.org/10.1016/j.ecolmodel.2008.08.002, 2008.
Laakso, T. A. and Schrag, D. P.: Regulation of atmospheric oxygen during the
Proterozoic, Earth Planet. Sc. Lett., 388, 81–91, https://doi.org/10.1016/j.epsl.2013.11.049, 2014.
Larsson, U., Hajdu, S., Walve, J., and Elmgren, R.: Baltic Sea nitrogen
fixation estimated from the summer increase in upper mixed layer total
nitrogen, Limnol. Oceanogr., 46, 811–820, https://doi.org/10.4319/lo.2001.46.4.0811, 2001.
Lasaga, A. C.: A new approach to isotopic modeling of the variation of
atmospheric oxygen through the Phanerozoic, Am. J. Sci., 289, 411–435,
https://doi.org/10.2475/ajs.289.4.411, 1989.
Lasaga, A. C. and Ohmoto, H.: The oxygen geochemical cycle: dynamics and
stability, Geochim. Cosmochim. Ac., 66, 361–381, https://doi.org/10.1016/S0016-7037(01)00685-8, 2002.
Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and McCarthy, J.
J.: Temperature effects on export production in the open ocean, Global
Biogeochem. Cycles, 14, 1231–1246, https://doi.org/10.1029/1999gb001229, 2000.
Ledwell, J. R., Watson, A. J., and Law, C. S.: Mixing of a tracer in the
pycnocline, J. Geophys. Res., 103, 21499–21529, https://doi.org/10.1029/98JC01738, 1998.
Lenton, T. M.: Fire Feedbacks on Atmospheric Oxygen, in: Fire Phenomena and
the Earth System, edited by: Belcher, C. M., 289–308, https://doi.org/10.1002/9781118529539.ch15, 2013.
Lenton, T. M.: On the use of models in understanding the rise of complex
life, Interface Focus, 10, 20200018, https://doi.org/10.1098/rsfs.2020.0018, 2020.
Lenton, T. M. and Watson, A. J.: Redfield revisited: 1. Regulation of
nitrate, phosphate, and oxygen in the ocean, Global Biogeochem. Cycles, 14,
225–248, https://doi.org/10.1029/1999gb900065, 2000a.
Lenton, T. M. and Watson, A. J.: Redfield revisited: 2. What regulates the
oxygen content of the atmosphere?, Global Biogeochem. Cycles, 14, 249–268,
https://doi.org/10.1029/1999gb900076, 2000b.
Lenton, T. M., Daines, S. J., and Mills, B. J. W.: COPSE reloaded: An
improved model of biogeochemical cycling over Phanerozoic time,
Earth-Sci. Rev., 178, 1–28, https://doi.org/10.1016/j.earscirev.2017.12.004, 2018.
Lenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J. W., Ozaki, K.,
Saltzman, M. R., and Porada, P.: Earliest land plants created modern levels
of atmospheric oxygen, P. Natl Acad. Sci. USA, 113, 9704–9709,
https://doi.org/10.1073/pnas.1604787113, 2016.
Lin, S. and Morse, J. W.: Sulfate reduction and iron sulfide mineral
formation in Gulf of Mexico anoxic sediments, Am. J. Sci., 291, 55–89,
https://doi.org/10.2475/ajs.291.1.55, 1991.
Liss, P. S. and Slater, P. G.: Flux of Gases across the Air-Sea Interface,
Nature, 247, 181–184, 1974.
Lord, N. S., Ridgwell, A., Thorne, M. C., and Lunt, D. J.: An impulse
response function for the “long tail” of excess atmospheric CO2 in an
Earth system model, Global Biogeochem. Cycles, 30, 2–17, https://doi.org/10.1002/2014GB005074, 2016.
Lovelock, J. E.: A Physical Basis for Life Detection Experiments, Nature,
207, 568–570, https://doi.org/10.1038/207568a0, 1965.
Lovelock, J. E.: Gaia as seen through the atmosphere, Atmos.
Environ., 6, 579–580, https://doi.org/10.1016/0004-6981(72)90076-5, 1972.
Lovelock, J. E.: Thermodynamics and the recognition of alien biospheres,
P. Roy. Soc. Lond. B,
189, 167–181, https://doi.org/10.1098/rspb.1975.0051, 1975.
Lumpkin, R. and Speer, K.: Global Ocean Meridional Overturning, J.
Phys. Oceanogr., 37, 2550–2562, https://doi.org/10.1175/jpo3130.1, 2007.
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73, https://doi.org/10.5194/essd-4-47-2012, 2012.
Lutz, M., Dunbar, R., and Caldeira, K.: Regional variability in the vertical
flux of particulate organic carbon in the ocean interior, Global Biogeochem.
Cycles, 16, 11-11–11-18, https://doi.org/10.1029/2000gb001383, 2002.
Lyons, T. W. and Gill, B. C.: Ancient Sulfur Cycling and Oxygenation of the
Early Biosphere, Elements, 6, 93–99, https://doi.org/10.2113/gselements.6.2.93, 2010.
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.: The rise of oxygen in
Earth's early ocean and atmosphere, Nature, 506, 307–315,
https://doi.org/10.1038/nature13068, 2014.
Mackenzie, F. T., Ver, L. M., Sabine, C., Lane, M., and Lerman, A.: C, N, P,
S Global Biogeochemical Cycles and Modeling of Global Change, in:
Interactions of C, N, P and S Biogeochemical Cycles and Global Change,
edited by: Wollast, R., Mackenzie, F. T., and Chou, L., Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–61, 1993.
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model.
Preindustrial tracer distributions, Global Biogeochem. Cycles, 7, 645–677,
https://doi.org/10.1029/93gb01355, 1993.
Markovic, S., Paytan, A., and Wortmann, U. G.: Pleistocene sediment offloading and the global sulfur cycle, Biogeosciences, 12, 3043–3060, https://doi.org/10.5194/bg-12-3043-2015, 2015.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX:
carbon cycling in the northeast Pacific, Deep-Sea Res. Pt. A, 34, 267–285, https://doi.org/10.1016/0198-0149(87)90086-0, 1987.
Martin, W. R. and Sayles, F. L.: The Recycling of Biogenic Material at the
Sea Floor, in: Treatise on Geochemistry (Second Edition), edited by:
Turekian, K. K., Elsevier, Oxford, 33–59, https://doi.org/10.1016/B978-0-08-095975-7.00702-6, 2014.
Mayor, M. and Queloz, D.: A Jupiter-mass companion to a solar-type star,
Nature, 378, 355–359, https://doi.org/10.1038/378355a0, 1995.
McManus, J., Berelson, W. M., Coale, K. H., Johnson, K. S., and Kilgore, T.
E.: Phosphorus regeneration in continental margin sediments, Geochim.
Cosmochim. Ac., 61, 2891–2907, https://doi.org/10.1016/S0016-7037(97)00138-5, 1997.
McManus, J., Berelson, W. M., Klinkhammer, G. P., Hammond, D. E., and Holm,
C.: Authigenic uranium: Relationship to oxygen penetration depth and organic
carbon rain, Geochim. Cosmochim. Ac., 69, 95–108, https://doi.org/10.1016/j.gca.2004.06.023, 2005.
Meadows, V. S.: Reflections on O2 as a Biosignature in Exoplanetary
Atmospheres, Astrobiology, 17, 1022–1052, https://doi.org/10.1089/ast.2016.1578, 2017.
Meadows, V. S., Reinhard, C. T., Arney, G. N., Parenteau, M. N.,
Schwieterman, E. W., Domagal-Goldman, S. D., Lincowski, A. P., Stapelfeldt,
K. R., Rauer, H., DasSarma, S., Hegde, S., Narita, N., Deitrick, R.,
Lustig-Yaeger, J., Lyons, T. W., Siegler, N., and Grenfell, J. L.: Exoplanet
Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its
Environment, Astrobiology, 18, 630–662, https://doi.org/10.1089/ast.2017.1727, 2018.
Middelburg, J. J., Soetaert, K., Herman, P. M. J., and Heip, C. H. R.:
Denitrification in marine sediments: A model study, Global Biogeochem.
Cycles, 10, 661–673, https://doi.org/10.1029/96gb02562, 1996.
Middelburg, J. J., Soetaert, K., and Herman, P. M. J.: Empirical
relationships for use in global diagenetic models, Deep-Sea Res. Pt. I, 44, 327–344, https://doi.org/10.1016/S0967-0637(96)00101-X, 1997.
Millero, F. J.: The oxidation of H2S in Black Sea waters, Deep-Sea Res. Pt. A, 38, S1139–S1150, https://doi.org/10.1016/S0198-0149(10)80028-7, 1991.
Millero, F. J.: Chemical Oceanography, 3rd edn., Taylor & Francis Group
CRC Press, Boca Raton, 496 pp., 2006.
Millero, F. J., Plese, T., and Fernandez, M.: The dissociation of
hydrogen-sulfide in seawater, Limnol. Oceanogr., 33, 269–274, 1988.
Morford, J. L. and Emerson, S.: The geochemistry of redox sensitive trace
metals in sediments, Geochim. Cosmochim. Ac., 63, 1735–1750, https://doi.org/10.1016/S0016-7037(99)00126-X, 1999.
Muller-Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., and
Walsh, J. J.: The importance of continental margins in the global carbon
cycle, Geophys. Res. Lett., 32, L01602, https://doi.org/10.1029/2004gl021346, 2005.
National Academies of Sciences, E. and Medicine: An Astrobiology Strategy
for the Search for Life in the Universe, The National Academies Press,
Washington, D.C., 188 pp., https://doi.org/10.17226/25252, 2019.
Nierop, K. G. J., Reichart, G.-J., Veld, H., and Sinninghe Damsté, J.
S.: The influence of oxygen exposure time on the composition of
macromolecular organic matter as revealed by surface sediments on the Murray
Ridge (Arabian Sea), Geochim. Cosmochim. Ac., 206, 40–56,
https://doi.org/10.1016/j.gca.2017.02.032, 2017.
Oguz, T., Ducklow, H. W., and Malanotte-Rizzoli, P.: Modeling distinct
vertical biogeochemical structure of the Black Sea: Dynamical coupling of
the oxic, suboxic, and anoxic layers, Global Biogeochem. Cycles, 14,
1331–1352, https://doi.org/10.1029/1999GB001253, 2000.
Oguz, T., Murray, J. W., and Callahan, A. E.: Modeling redox cycling across
the suboxic–anoxic interface zone in the Black Sea, Deep-Sea Res. Pt.
I, 48, 761–787, https://doi.org/10.1016/S0967-0637(00)00054-6, 2001.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S. M. A. C., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.: Global Ocean Data Analysis Project version 2.2019 (GLODAPv2.2019) (NCEI Accession 0186803), version 2.2019, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/xnme-wr20, 2019.
Olson, S. L., Reinhard, C. T., and Lyons, T. W.: Limited role for methane in
the mid-Proterozoic greenhouse, P. Natl Acad. Sci. USA, 113, 11447–11452,
https://doi.org/10.1073/pnas.1608549113, 2016.
Oschlies, A., Schulz, K. G., Riebesell, U., and Schmittner, A.: Simulated
21st century's increase in oceanic suboxia by CO2-enhanced biotic
carbon export, Global Biogeochem. Cycles, 22, GB4008, https://doi.org/10.1029/2007gb003147,
2008.
Ozaki, K.: kazumi-ozaki/CANOPS-GRBv1: CANOPS-GRBv1 (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.5893804, 2022.
Ozaki, K. and Reinhard, C. T.: The future lifespan of Earth's oxygenated
atmosphere, Nat. Geosci., 14, 138–142, https://doi.org/10.1038/s41561-021-00693-5, 2021.
Ozaki, K. and Tajika, E.: Biogeochemical effects of atmospheric oxygen
concentration, phosphorus weathering, and sea-level stand on oceanic redox
chemistry: Implications for greenhouse climates, Earth Planet. Sc. Lett.,
373, 129–139, https://doi.org/10.1016/j.epsl.2013.04.029,
2013.
Ozaki, K., Tajima, S., and Tajika, E.: Conditions required for oceanic
anoxia/euxinia: Constraints from a one-dimensional ocean biogeochemical
cycle model, Earth Planet. Sc. Lett., 304, 270–279, https://doi.org/10.1016/j.epsl.2011.02.011, 2011.
Ozaki, K., Tajika, E., Hong, P. K., Nakagawa, Y., and Reinhard, C. T.:
Effects of primitive photosynthesis on Earth's early climate system, Nat.
Geosci., 11, 55–59, https://doi.org/10.1038/s41561-017-0031-2, 2018.
Ozaki, K., Reinhard, C. T., and Tajika, E.: A sluggish mid-Proterozoic
biosphere and its effect on Earth's redox balance, Geobiology, 17, 3–11,
https://doi.org/10.1111/gbi.12317, 2019a.
Ozaki, K., Thompson, K. J., Simister, R. L., Crowe, S. A., and Reinhard, C.
T.: Anoxygenic photosynthesis and the delayed oxygenation of Earth's
atmosphere, Nat. Commun., 10, 3026, https://doi.org/10.1038/s41467-019-10872-z, 2019b.
Pallud, C. and Van Cappellen, P.: Kinetics of microbial sulfate reduction in
estuarine sediments, Geochim. Cosmochim. Ac., 70, 1148–1162, https://doi.org/10.1016/j.gca.2005.11.002, 2006.
Papadomanolaki, N. M., Lenstra, W. K., Wolthers, M., and Slomp, C. P.:
Enhanced phosphorus recycling during past oceanic anoxia amplified by low
rates of apatite authigenesis, Sci, Adv,, 8, eabn2370,
https://doi.org/10.1126/sciadv.abn2370, 2022.
Petsch, S. T. and Berner, R. A.: Coupling the geochemical cycles of C, P,
Fe, and S; the effect on atmospheric O2 and the isotopic records of
carbon and sulfur, Am. J. Sci., 298, 246–262, https://doi.org/10.2475/ajs.298.3.246, 1998.
Petsch, S. T., Eglinton, T. I., and Edwards, K. J.: 14C-Dead Living
Biomass: Evidence for Microbial Assimilation of Ancient Organic Carbon
During Shale Weathering, Science, 292, 1127–1131,
https://doi.org/10.1126/science.1058332, 2001.
Pfeifer, K., Hensen, C., Adler, M., Wenzhfer, F., Weber, B., and Schulz, H.
D.: Modeling of subsurface calcite dissolution, including the respiration
and reoxidation processes of marine sediments in the region of equatorial
upwelling off Gabon, Geochim. Cosmochim. Ac., 66, 4247–4259, https://doi.org/10.1016/S0016-7037(02)01073-6, 2002.
Planavsky, N. J., Cole, D. B., Reinhard, C. T., Diamond, C., Love, G. D.,
Luo, G., Zhang, S., Konhauser, K. O., and Lyons, T. W.: No evidence for high
atmospheric oxygen levels 1,400 million years ago, P. Natl Acad. Sci.
USA, 113, E2550–E2551, https://doi.org/10.1073/pnas.1601925113, 2016.
Planavsky, N. J., Cole, D. B., Isson, T. T., Reinhard, C. T., Crockford, P.
W., Sheldon, N. D., and Lyons, T. W.: A case for low atmospheric oxygen
levels during Earth's middle history, Emerging Topics in Life Sciences, 2,
149–159, https://doi.org/10.1042/etls20170161, 2018.
Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann,
M., Jaramillo, V. J., Kheshgi, H. S., Le Quere, C., Scholes, R. J., and
Wallace, D. W. R.: The carbon cycle and atmospheric carbon dioxide, in:
Climate Change 2001: the Scientific Basis, edited by: Houghton, J. T., Ding,
Y., Griggs, D. J., Noguer, N., van der Linden, P. J., Xiaosu, D., Maskell,
K., and Johnson, C. A., Cambridge University Press, New York, 2001.
Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y., Ho, T.-Y.,
Reinfelder, J. R., Schofield, O., Morel, F. M. M., and Falkowski, P. G.: The
evolutionary inheritance of elemental stoichiometry in marine phytoplankton,
Nature, 425, 291–294, https://doi.org/10.1038/nature01953, 2003.
Raiswell, R. and Canfield, D. E.: The Iron Biogeochemical Cycle Past and
Present, Geochemical Perspectives, 1, 1–2, 2012.
Raynaud, D., Jouzel, J., Barnola, J. M., Chappellaz, J., Delmas, R. J., and
Lorius, C.: The Ice Record of Greenhouse Gases, Science, 259, 926–934,
https://doi.org/10.1126/science.259.5097.926, 1993.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of
organisms on the composition of sea-water, in: The Sea, edited by: Hill, M.
N., Interscience Publishers, New York, 26–77, 1963.
Reimers, C. E., Jahnke, R. A., and McCorkle, D. C.: Carbon fluxes and burial
rates over the continental slope and rise off central California with
implications for the global carbon cycle, Global Biogeochem. Cycles, 6,
199–224, https://doi.org/10.1029/92gb00105, 1992.
Reinhard, C. T., Olson, S. L., Schwieterman, E. W., and Lyons, T. W.: False
Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from
the Early Earth, Astrobiology, 17, 287–297, https://doi.org/10.1089/ast.2016.1598, 2017a.
Reinhard, C. T., Planavsky, N. J., Gill, B. C., Ozaki, K., Robbins, L. J.,
Lyons, T. W., Fischer, W. W., Wang, C., Cole, D. B., and Konhauser, K. O.:
Evolution of the global phosphorus cycle, Nature, 541, 386–389,
https://doi.org/10.1038/nature20772,
2017b.
Reinhard, C. T., Olson, S. L., Kirtland Turner, S., Pälike, C., Kanzaki, Y., and Ridgwell, A.: Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14, Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, 2020.
Ridgwell, A. and Hargreaves, J. C.: Regulation of atmospheric CO2 by
deep-sea sediments in an Earth system model, Global Biogeochem. Cycles, 21,
GB2008, https://doi.org/10.1029/2006gb002764, 2007.
Romaniello, S. J. and Derry, L. A.: An intermediate-complexity model for
simulating marine biogeochemistry in deep time: Validation against the
modern global ocean, Geochem. Geophys. Geosyst., 11, Q08001,
https://doi.org/10.1029/2009gc002711, 2010.
Rowe, G. T., Morse, J., Nunnally, C., and Boland, G. S.: Sediment community
oxygen consumption in the deep Gulf of Mexico, Deep-Sea Res. Pt. II, 55, 2686–2691, https://doi.org/10.1016/j.dsr2.2008.07.018, 2008.
Ruttenberg, K. C.: Reassessment of the oceanic residence time of phosphorus,
Chem. Geol., 107, 405–409, https://doi.org/10.1016/0009-2541(93)90220-D, 1993.
Ruttenberg, K. C.: The Global Phosphorus Cycle, in: Treatise on
Geochemistry, edited by: Turekian, K. K., Pergamon, Oxford, 585–643,
https://doi.org/10.1016/B0-08-043751-6/08153-6, 2003.
Sachs, O., Sauter, E. J., Schlüter, M., Rutgers van der Loeff, M. M.,
Jerosch, K., and Holby, O.: Benthic organic carbon flux and oxygen
penetration reflect different plankton provinces in the Southern Ocean, Deep-Sea Res. Pt. I, 56, 1319–1335,
https://doi.org/10.1016/j.dsr.2009.02.003, 2009.
Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D., and Hord, C.: A search
for life on Earth from the Galileo spacecraft, Nature, 365, 715–721, 1993.
Sarmiento, J. L. and Gruber, N.: Ocean biogeochemical dynamics, Princeton
University Press, ISBN 0-691-01707-7, 2006.
Sarmiento, J. L. and Toggweiler, J. R.: A new model for the role of the
oceans in determining atmospheric , Nature, 308, 621–624,
https://doi.org/10.1038/308621a0, 1984.
Schenau, S. J. and De Lange, G. J.: Phosphorus regeneration vs. burial in
sediments of the Arabian Sea, Marine Chem., 75, 201–217, https://doi.org/10.1016/S0304-4203(01)00037-8, 2001.
Schlesinger, W. H. and Bernhardt, E. S.: The Global Cycles of Sulfur and
Mercury, in: Biogeochemistry, 3rd edn., Academic Press, Boston,
469–486, https://doi.org/10.1016/B978-0-12-385874-0.00013-3,
2013.
Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., Harman, C. E.,
DasSarma, S., Fischer, T. M., Arney, G. N., Hartnett, H. E., Reinhard, C.
T., Olson, S. L., Meadows, V. S., Cockell, C. S., Walker, S. I., Grenfell,
J. L., Hegde, S., Rugheimer, S., Hu, R., and Lyons, T. W.: Exoplanet
Biosignatures: A Review of Remotely Detectable Signs of Life, Astrobiology,
18, 663–708, https://doi.org/10.1089/ast.2017.1729, 2018.
Shaffer, G.: Phosphate pumps and shuttles in the Black Sea, Nature, 321,
515–517, https://doi.org/10.1038/321515a0, 1986.
Shaffer, G. and Sarmiento, J. L.: Biogeochemical cycling in the global
ocean: 1. A new, analytical model with continuous vertical resolution and
high-latitude dynamics, J. Geophys. Res., 100, 2659–2672, https://doi.org/10.1029/94JC01167, 1995.
Shaffer, G., Malskær Olsen, S., and Pepke Pedersen, J. O.: Presentation, calibration and validation of the low-order, DCESS Earth System Model (Version 1), Geosci. Model Dev., 1, 17–51, https://doi.org/10.5194/gmd-1-17-2008, 2008.
Sharoni, S. and Halevy, I.: Geologic controls on phytoplankton elemental
composition, P. Natl Acad. Sci. USA, 119, e2113263118,
https://doi.org/10.1073/pnas.2113263118, 2022.
Siegenthaler, U. and Wenk, T.: Rapid atmospheric CO2 variations and
ocean circulation, Nature, 308, 624–626, https://doi.org/10.1038/308624a0, 1984.
Sleep, N. H.: Dioxygen over geological time, in: Metal ions in biological
systems, edited by: Sigel, A., Sigel, H., and Sigel, R. K. O., Taylor &
Francis Group, Boca Raton, 49–73, 2005.
Slomp, C. P. and Van Cappellen, P.: The global marine phosphorus cycle: sensitivity to oceanic circulation, Biogeosciences, 4, 155–171, https://doi.org/10.5194/bg-4-155-2007, 2007.
Slomp, C. P., Thomson, J., and de Lange, G. J.: Enhanced regeneration of
phosphorus during formation of the most recent eastern Mediterranean
sapropel (S1), Geochim. Cosmochim. Ac., 66, 1171–1184, https://doi.org/10.1016/S0016-7037(01)00848-1, 2002.
Sloyan, B. M.: Spatial variability of mixing in the Southern Ocean, Geophys.
Res. Lett., 32, L18603, https://doi.org/10.1029/2005gl023568, 2005.
Soulet, G., Hilton, R. G., Garnett, M. H., Roylands, T., Klotz, S.,
Croissant, T., Dellinger, M., and Le Bouteiller, C.: Temperature control on
CO2 emissions from the weathering of sedimentary rocks, Nat. Geosci.,
14, 665–671, https://doi.org/10.1038/s41561-021-00805-1, 2021.
Southam, J. R., Peterson, W. H., and Brass, G. W.: Dynamics of anoxia,
Palaeogeogr. Palaeocl., 40, 183–198, https://doi.org/10.1016/0031-0182(82)90089-X, 1982.
Steefel, C. I. and MacQuarrie, K. T. B.: Approaches to modeling of reactive
transport in porous media, Rev. Miner. Geochem., 34,
85–129, 1996.
Suess, E.: Particulate organic carbon flux in the oceans – surface
productivity and oxygen utilization, Nature, 288, 260–263, https://doi.org/10.1038/288260a0,
1980.
Tang, D., Shi, X., Wang, X., and Jiang, G.: Extremely low oxygen
concentration in mid-Proterozoic shallow seawaters, Precambrian Res., 276,
145–157, https://doi.org/10.1016/j.precamres.2016.02.005,
2016.
Tarhan, L. G., Droser, M. L., Planavsky, N. J., and Johnston, D. T.:
Protracted development of bioturbation through the early Palaeozoic Era,
Nat. Geosci., 8, 865, https://doi.org/10.1038/ngeo2537,
2015.
Tarpgaard, I. H., Røy, H., and Jørgensen, B. B.: Concurrent low- and
high-affinity sulfate reduction kinetics in marine sediment, Geochim.
Cosmochim. Ac., 75, 2997–3010, https://doi.org/10.1016/j.gca.2011.03.028, 2011.
The LUVOIR Team: Mission Concept Study Final Report, in: arXiv e-prints, https://doi.org/10.48550/arXiv.1912.06219,
2019.
Tostevin, R., Turchyn, A. V., Farquhar, J., Johnston, D. T., Eldridge, D.
L., Bishop, J. K. B., and McIlvin, M.: Multiple sulfur isotope constraints
on the modern sulfur cycle, Earth Planet. Sc. Lett., 396, 14–21, https://doi.org/10.1016/j.epsl.2014.03.057, 2014.
Tromp, T. K., Van Cappellen, P., and Key, R. M.: A global model for the
early diagenesis of organic carbon and organic phosphorus in marine
sediments, Geochim. Cosmochim. Ac., 59, 1259–1284, https://doi.org/10.1016/0016-7037(95)00042-X, 1995.
Tsunogai, S. and Noriki, S.: Particulate fluxes of carbonate and organic
carbon in the ocean. Is the marine biological activity working as a sink of
the atmospheric carbon?, Tellus B, 43,
265–266, https://doi.org/10.3402/tellusb.v43i2.15272, 1991.
Turchyn, A. V. and Schrag, D. P.: Oxygen Isotope Constraints on the Sulfur
Cycle over the Past 10 Million Years, Science, 303, 2004–2007,
https://doi.org/10.1126/science.1092296, 2004.
Turchyn, A. V. and Schrag, D. P.: Cenozoic evolution of the sulfur cycle:
Insight from oxygen isotopes in marine sulfate, Earth Planet. Sc. Lett.,
241, 763–779, https://doi.org/10.1016/j.epsl.2005.11.007, 2006.
Turnewitsch, R. and Pohl, C.: An estimate of the efficiency of the iron- and
manganese-driven dissolved inorganic phosphorus trap at an oxic/euxinic
water column redoxcline, Global Biogeochem. Cycles, 24, GB4025,
https://doi.org/10.1029/2010gb003820, 2010.
Tyrrell, T.: The relative influences of nitrogen and phosphorus on oceanic
primary production, Nature, 400, 525–531, https://doi.org/10.1038/22941, 1999.
Van Cappellen, P. and Ingall, E. D.: Benthic phosphorus regeneration, net
primary production, and ocean anoxia: A model of the coupled marine
biogeochemical cycles of carbon and phosphorus, Paleoceanography, 9,
677–692, https://doi.org/10.1029/94PA01455, 1994.
Van Cappellen, P. and Ingall, E. D.: Redox Stabilization of the Atmosphere
and Oceans by Phosphorus-Limited Marine Productivity, Science, 271, 493–496,
https://doi.org/10.1126/science.271.5248.493, 1996.
Van Cappellen, P. and Wang, Y.: Cycling of iron and manganese in surface
sediments; a general theory for the coupled transport and reaction of
carbon, oxygen, nitrogen, sulfur, iron, and manganese, Am. J. Sci., 296,
197–243, https://doi.org/10.2475/ajs.296.3.197, 1996.
van de Velde, S. J., Hülse, D., Reinhard, C. T., and Ridgwell, A.: Iron and sulfur cycling in the cGENIE.muffin Earth system model (v0.9.21), Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, 2021.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative
strengths and efficiencies in ocean-driven atmospheric CO2 changes, in:
The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to
Present, edited by: Sundquist, E. T. and Broecker, W. S.,
99–110, https://doi.org/10.1029/GM032p0099, 1985.
Walker, J. C. G.: Evolution of the atmosphere, Macmillan, New York, 318
pp., ISBN 0-02-854390-4, 1977.
Walker, J. C. G. and Brimblecombe, P.: Iron and sulfur in the pre-biologic
ocean, Precambrian Res., 28, 205–222, https://doi.org/10.1016/0301-9268(85)90031-2, 1985.
Wallmann, K.: Feedbacks between oceanic redox states and marine
productivity: A model perspective focused on benthic phosphorus cycling,
Global Biogeochem. Cycles, 17, 1084, https://doi.org/10.1029/2002gb001968, 2003.
Wallmann, K.: Phosphorus imbalance in the global ocean?, Global Biogeochem.
Cycles, 24, GB4030, https://doi.org/10.1029/2009gb003643, 2010.
Wang, W.-L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–211,
https://doi.org/10.1038/s41586-019-0911-2, 2019.
WebBook, N. C.: NIST Chemistry WebBook, https://doi.org/10.18434/T4D303, 2022.
Westrich, J. T. and Berner, R. A.: The role of sedimentary organic matter in
bacterial sulfate reduction: The G model tested, Limnol. Oceanogr.,
29, 236–249, https://doi.org/10.4319/lo.1984.29.2.0236, 1984.
Wheat, C. G., Feely, R. A., and Mottl, M. J.: Phosphate removal by oceanic
hydrothermal processes: An update of the phosphorus budget in the oceans,
Geochim. Cosmochim. Ac., 60, 3593–3608, https://doi.org/10.1016/0016-7037(96)00189-5, 1996.
Wheat, C. G., McManus, J., Mottl, M. J., and Giambalvo, E.: Oceanic
phosphorus imbalance: Magnitude of the mid-ocean ridge flank hydrothermal
sink, Geophys. Res. Lett., 30, 1895, https://doi.org/10.1029/2003GL017318, 2003.
Woodward, F. I.: Global primary production, Current Biology, 17, R269–R273,
https://doi.org/10.1016/j.cub.2007.01.054, 2007.
Wortmann, U. G. and Paytan, A.: Rapid Variability of Seawater Chemistry Over
the Past 130 Million Years, Science, 337, 334–336, https://doi.org/10.1126/science.1220656,
2012.
Yakushev, E. V. and Neretin, L. N.: One-dimensional modeling of nitrogen and
sulfur cycles in the aphotic zones of the Black and Arabian Seas, Global
Biogeochem. Cycles, 11, 401–414, https://doi.org/10.1029/97GB00782, 1997.
Yakushev, E. V., Pollehne, F., Jost, G., Kuznetsov, I., Schneider, B., and
Umlauf, L.: Analysis of the water column oxic/anoxic interface in the Black
and Baltic seas with a numerical model, Marine Chem., 107, 388–410,
https://doi.org/10.1016/j.marchem.2007.06.003, 2007.
Yamanaka, Y. and Tajika, E.: The role of the vertical fluxes of particulate
organic matter and calcite in the oceanic carbon cycle: Studies using an
ocean biogeochemical general circulation model, Global Biogeochem. Cycles,
10, 361–382, https://doi.org/10.1029/96gb00634, 1996.
Yao, W. and Millero, F.: The chemistry of the anoxic waters in the Framvaren
Fjord, Norway, Aquatic Geochemistry, 1, 53–88, https://doi.org/10.1007/bf01025231, 1995.
Yaroshevsky, A. A.: Abundances of chemical elements in the Earth's crust,
Geochem. Int., 44, 48–55, https://doi.org/10.1134/s001670290601006x, 2006.
Zabel, M., Dahmke, A., and Schulz, H. D.: Regional distribution of diffusive
phosphate and silicate fluxes through the sediment–water interface: the
eastern South Atlantic, Deep-Sea Res. Pt. I, 45, 277–300, https://doi.org/10.1016/S0967-0637(97)00073-3, 1998.
Zhang, S., Wang, X., Wang, H., Bjerrum, C. J., Hammarlund, E. U., Dahl, T.
W., and Canfield, D. E.: Reply to Planavsky et al.: Strong evidence for high
atmospheric oxygen levels 1,400 million years ago, P. Natl Acad. Sci.
USA, 113, E2552–E2553, https://doi.org/10.1073/pnas.1603982113, 2016.
Zhao, M., Zhang, S., Tarhan, L. G., Reinhard, C. T., and Planavsky, N.: The
role of calcium in regulating marine phosphorus burial and atmospheric
oxygenation, Nat. Commun., 11, 2232, https://doi.org/10.1038/s41467-020-15673-3, 2020.
Short summary
A new biogeochemical model (CANOPS-GRB v1.0) for assessing the redox stability and dynamics of the ocean–atmosphere system on geologic timescales has been developed. In this paper, we present a full description of the model and its performance. CANOPS-GRB is a useful tool for understanding the factors regulating atmospheric O2 level and has the potential to greatly refine our current understanding of Earth's oxygenation history.
A new biogeochemical model (CANOPS-GRB v1.0) for assessing the redox stability and dynamics of...