Articles | Volume 15, issue 19
https://doi.org/10.5194/gmd-15-7449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Moist Quasi-Geostrophic Coupled Model: MQ-GCM 2.0
Sergey Kravtsov
Department of Mathematical Sciences, University of
Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow,
117218, Russia
Institute of Applied Physics, Russian Academy of Sciences, Nizhny
Novgorod, 603155, Russia
Ilijana Mastilovic
CORRESPONDING AUTHOR
Department of Mathematical Sciences, University of
Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
Andrew McC. Hogg
Research School of Earth Sciences and ARC Centre of Excellence for
Climate Extremes, Australian National University, Canberra, Australia
William K. Dewar
Department of Earth, Ocean and Atmospheric Science, Florida State
University, Tallahassee, FL 32304, USA
Laboratoire de Glaciologie et Geophysique de l'Environnement, CNRS,
Grenoble, France
Jeffrey R. Blundell
Ocean and Earth Science, National Oceanography Centre Southampton,
University of Southampton, Southampton SO14 3ZH, United Kingdom
Related authors
No articles found.
Wilma G. C. Huneke, Andy McC. Hogg, Martin Dix, Daohua Bi, Arnold Sullivan, Shayne McGregor, Chiara Holgate, Siobhan P. O'Farrell, and Micael J. T. Oliveira
EGUsphere, https://doi.org/10.5194/egusphere-2025-1006, https://doi.org/10.5194/egusphere-2025-1006, 2025
Short summary
Short summary
A new configuration of the Australian Community Climate and Earth System Simulator coupled model, ACCESS-CM2, with a higher resolution ocean-sea ice component is introduced. The new version of the coupled climate model was designed to better capture smaller-scale ocean motions. While this configuration improves the representation of many aspects of the climate system, some biases from the existing lower-resolution version persist.
Claire K. Yung, Madelaine G. Rosevear, Adele K. Morrison, Andrew McC Hogg, and Yoshihiro Nakayama
EGUsphere, https://doi.org/10.5194/egusphere-2024-3513, https://doi.org/10.5194/egusphere-2024-3513, 2024
Short summary
Short summary
Ocean models are used to understand how the ocean interacts with the Antarctic Ice Sheet, but they are too coarse in resolution to capture the small-scale ocean processes driving melting and require a parameterisation to predict melt. Previous parameterisations ignore key processes occurring in some regions of Antarctica. We develop a parameterisation with the feedback of stratification on melting and test it in idealised and regional ocean models, finding changes to melt rate and circulation.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Cameron M. O'Neill, Andrew McC. Hogg, Michael J. Ellwood, Bradley N. Opdyke, and Stephen M. Eggins
Clim. Past, 17, 171–201, https://doi.org/10.5194/cp-17-171-2021, https://doi.org/10.5194/cp-17-171-2021, 2021
Short summary
Short summary
We undertake a model–data study of the last glacial–interglacial cycle of atmospheric CO2, spanning 0–130 ka. We apply a carbon cycle box model, constrained with glacial–interglacial observations, and solve for optimal model parameter values against atmospheric and ocean proxy data. The results indicate that the last glacial drawdown in atmospheric CO2 was delivered mainly by slowing ocean circulation, lower sea surface temperatures and also increased Southern Ocean biological productivity.
Cited articles
Barsugli, J. J. and Battisti, D. S.: The basic effects of atmosphere–ocean
thermal coupling on midlatitude variability, J. Atmos. Sci., 55, 477–493,
https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2, 1998.
Berloff, P. and McWilliams, J.: Large-scale low-frequency variability in
wind-driven ocean gyres, J. Phys. Oceanogr., 29, 1925–1949, 1999.
Berloff, P., Hogg, A., and Dewar, W.: The turbulent oscillator: A mechanism
of low-frequency variability of wind-driven ocean gyres, J. Phys. Oceanogr.,
37, 2363–2386, 2007.
Bolton, D.: The computation of equivalent potential temperature, Mon. Weather
Rev., 108, 1046–1053, 1980.
Brachet, S., Codron, F., Feliks, Y., Ghil, M., Le Treut, H., and Simonnet,
E.: Atmospheric circulations induced by a midlatitude SST front: a GCM
study, J. Climate, 25, 1847–1853, 2012.
Bryan, F. O., Tomas, R., Dennis, J. M., Chelton, D. B., Loeb, N. G., and
McClean, J. L.: Frontal scale air–sea interaction in high-resolution
coupled climate models, J. Climate, 23, 6277–6291,
https://doi.org/10.1175/2010JCLI3665.1, 2010.
Chelton D.: Ocean–atmosphere coupling: Mesoscale eddy effects, Nat.
Geosci., 6, 594–595, 2013.
Chelton, D. and Xie, S.-P.: Coupled ocean-atmosphere interaction at oceanic
mesoscales, Oceanography, 23, 52–69, https://doi.org/10.5670/oceanog.2010.05, 2010.
Czaja, A. and Blunt, N.: A new mechanism for ocean–atmosphere coupling in
midlatitudes, Q. J. Roy. Meteor. Soc., 137, 1095–1101, 2011.
Czaja, A. and Marshall, J.: Observations of atmosphere–ocean coupling in
the North Atlantic, Q. J. Roy. Meteor. Soc., 127, 1893–1916, 2001.
Deremble, B., Lapeyre, G., and Ghil, M.: Atmospheric Dynamics Triggered by
an Oceanic SST Front in a Moist Quasigeostrophic Model, J. Atmos. Sci., 69,
1617–1632, https://doi.org/10.1175/JAS-D-11-0288.1, 2012.
Deremble, B., Wienders, N., and Dewar, W. K.: Cheapaml: a simple atmospheric
boundary layer model for use in ocean-only calculations, Mon. Weather Rev., 141, 12, https://doi.org/10.1175/MWR-D-11-00254.1, 2013.
Deser, C. and Blackmon, M. L.: Surface climate variations over the North
Atlantic Ocean during winter: 1900–1989, J. Climate, 6, 1743–1753, 1993.
Dewar, W. and Flierl, G.: Some effects of the wind on rings, J. Phys.
Oceanogr., 17, 1653–1667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2, 1987.
Fan, M. and Schneider, E. K.: Observed Decadal North Atlantic Tripole SST
Variability. Part I: Weather Noise Forcing and Coupled Response, J. Atmos.
Sci., 69, 35–50, https://doi.org/10.1175/JAS-D-11-018.1, 2012.
Feliks, Y., Ghil, M., and Simonnet, E.: Low-frequency variability in the
midlatitude atmosphere induced by an oceanic thermal front, J. Atmos. Sci.,
61, 961, https://doi.org/10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2, 2004.
Feliks, Y., Ghil, M., and Simonnet, E.: Low-frequency variability in the
midlatitude baroclinic atmosphere induced by an oceanic thermal front, J.
Atmos. Sci., 64, 97–116, 2007.
Feliks, Y., Ghil, M., and Robertson, A. W.: The atmospheric circulation over
the North Atlantic as induced by the SST field, J. Climate, 24, 522–542,
https://doi.org/10.1175/2010JCLI3859.1, 2011.
Foussard, A., Lapeyre, G., and Plougonven, R.: Storm Track Response to
Oceanic Eddies in Idealized Atmospheric Simulations, J. Climate, 32,
445–463, https://doi.org/10.1175/JCLI-D-18-0415.1, 2019.
Frankignoul, C.: Sea surface temperature anomalies, planetary waves, and
air-sea feedback in the middle latitudes, Rev. Geophys., 23, 357–390,
https://doi.org/10.1029/RG023i004p00357, 1985.
Frankignoul, C. and Hasselmann, K.: Stochastic climate models, part II:
Application to sea-surface temperature anomalies and thermocline
variability, Tellus, 29A, 289–305, https://doi.org/10.1111/j.2153-3490.1977.tb00740.x,
1977.
Frenger, I., Gruber, N., Knutti, R., and Munnich, M.: Imprint of Southern
Ocean eddies on winds, clouds and rainfall, Nat. Geosci., 6, 608–612,
https://doi.org/10.1038/ngeo1863, 2013.
Gaube, P., Chelton, D. B., Strutton, P. G., and Behrenfeld, M. J.: Satellite
observations of chlorophyll, phytoplankton biomass, and Ekman pumping in
nonlinear mesoscale eddies, J. Geophys. Res., 118, 6349–6370, 2013.
Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., and O'Neill, L. W.:
Satellite observations of mesoscale eddy-induced Ekman pumping, J. Phys.
Oceanogr., 45, 104–132, 2015.
Gill, A. E.: Atmosphere–Ocean Dynamics, Academic Press, 662 pp., ISBN 9780122835223,
eBook ISBN 9780080570525, 1982.
Hasselmann, K.: Stochastic climate models: Part I. Theory, Tellus, 28A,
473–485, https://doi.org/10.1111/j.2153-3490.1976.tb00696.x, 1976.
Hogg, A. M. and Blundell, J. R.: Interdecadal variability of the Southern
Ocean, J. Phys. Oceanogr., 36, 1626–1645, 2006.
Hogg, A. M., Dewar, W. K., Killworth, P. D., and Blundell, J. R.: A
quasigeostrophic coupled model (Q-GCM), Mon. Weather Rev., 131, 2261–2278,
2003.
Hogg, A. M., Killworth, P. D., Blundell, J. R., and Dewar, W. K.: Mechanisms
of decadal variability of the wind-driven ocean circulation, J. Phys.
Oceanogr., 35, 512–531, 2005.
Hogg, A. M., Dewar, W. K., Killworth, P. D., and Blundell, J. R.: Decadal
variability of the midlatitude climate system driven by the ocean
circulation, J. Climate, 19, 1149–1166, 2006.
Hogg, A. M., Killworth, P. D., Blundell, J. R., and Dewar, W. K.: Low
Frequency Ocean Variability: Feedbacks Between Eddies and the Mean Flow, in: Turbulence and Coherent Structures
in Fluids, Plasmas and Granular Flows, edited by:
Fredriksen, J. and Denier, J., 171–185, World Scientific, 2007.
Hogg, A. M., Meredith, M. P., Blundell, J. R., and Wilson, C.: Eddy heat
flux in the Southern Ocean: Response to variable wind forcing, J. Climate,
21, 608–620, 2008.
Hogg, A. M., Dewar, W. K., Berloff, P. S., Kravtsov, S., and Hutchinson, D.
K.: The effects of mesoscale ocean-atmosphere coupling on the large-scale
ocean circulation, J. Climate, 22, 4066–4082, 2009.
Hogg, A. M., Blundell, J. R., Dewar, W. K., and Killworth, P. D.:
Formulation and users' guide for Q-GCM, Version 1.5.0,
http://www.q-gcm.org/downloads/q-gcm-v1.5.0.pdf (last access: 10 May 2022), 2014.
Hutchinson, D. K., Hogg, A. McC., and Blundell, J. R.: Southern Ocean
response to relative velocity wind stress forcing, J. Phys. Oceanogr., 40,
326–339, https://doi.org/10.1175/ 2009JPO4240.1, 2010.
Kelly, K. A., Small, R. J., Samelson, R. M., Qiu, B., Joyce, T. M., Kwon, Y., and Cronin, M. F.: Western Boundary Currents and Frontal Air–Sea Interaction: Gulf Stream and Kuroshio Extension, J. Climate, 23, 5644–5667, https://doi.org/10.1175/2010JCLI3346.1, 2010.
Kravtsov, S., Robertson, A. W., and Ghil, M.: Bimodal behavior in the zonal
mean flow of a baroclinic-channel model, J. Atmos. Sci., 62, 1746–1769,
2005.
Kravtsov, S., Berloff, P., Dewar, W. K., Ghil, M., and McWilliams, J. C.:
Dynamical origin of low-frequency variability in a highly nonlinear
mid-latitude coupled model, J. Climate, 19, 6391–6408, 2006.
Kravtsov, S., Dewar, W. K., Berloff, P., McWilliams, J. C., and Ghil, M.: A
highly nonlinear coupled mode of decadal variability in a mid-latitude
ocean–atmosphere model, Dyn. Atmos.-Oceans, 43, 123–150,
https://doi.org/10.1016/j.dynatmoce.2006.08.001, 2007.
Kravtsov, S. K., Dewar, W. K., Ghil, M., Berloff, P. S., and McWilliams, J. C.: North Atlantic climate variability in coupled models and data, Nonlin. Processes Geophys., 15, 13–24, https://doi.org/10.5194/npg-15-13-2008, 2008.
Kravtsov, S., Kamenkovich, I., Hogg, A. M., and Peters, J. M.: On the
mechanisms of late 20th century sea-surface temperature trends over the
Antarctic Circumpolar Current, J. Geophys. Res.-Oceans, 116, C11034, https://doi.org/10.1029/2011JC007473, 2011.
Kravtsov, S., Mastilovic, I., Hogg, A., Dewar, W. K., and Blundell, J. R.:
MQ-GCM2.0 model, Zenodo [code], https://doi.org/10.5281/zenodo.4916720, 2021a.
Kravtsov, S., Mastilovic, I., Hogg, A. M., Dewar, W. K., Blundell, J. R., and Killworth, P.: MQ-GCM (v2.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5250828, 2021b.
Kushnir, Y.: Interdecadal variations in North Atlantic sea surface
temperature and associated atmospheric circulation, J. Climate, 7, 141–157,
1994.
Kuwano-Yoshida, A., Minobe, S., and Xie, S.-P.: Precipitation response to
the Gulf Stream in an atmospheric GCM, J. Climate, 23, 3676–3698,
https://doi.org/10.1175/2010jcli3261.1, 2010.
Laîné, A., Lapeyre, G., and Rivière, G.: A Quasigeostrophic
Model for Moist Storm Tracks, J. Atmos. Sci., 68,
1306–1322, https://doi.org/10.1175/2011JAS3618.1, 2011.
Lindzen, R. S. and Nigam, S.: On the role of sea surface temperature
gradients in forcing low-level winds and convergence in the tropics, J. Atmos.
Sci., 44, 2418–2436, 1987.
Ma, X., Chang, P., Saravanan, R., Montuoro, R., Hsieh, J.-S., Wu, D., Lin,
X., Wu, L., and Jing, Z.: Distant influence of Kuroshio eddies on North
Pacific weather patterns?, Sci. Rep.-UK, 5, 17785, https://doi.org/10.1038/srep17785, 2015.
Ma, X., Chang, P., Saravanan, R., Montuoro, R., Nakamura, H., Wu, D., Lin,
X., and Wu, L.: Importance of Resolving Kuroshio Front and Eddy Influence in
Simulating the North Pacific Storm Track, J. Climate, 30, 1861–1880, https://doi.org/10.1175/JCLI-D-16-0154.1, 2017.
Maloney, E. D. and Chelton, D. B.: An assessment of sea surface temperature
influence on surface winds in numerical weather prediction and climate
models. J. Climate, 19, 2743–2762, 2006.
Manabe, S. and Strickler, R. F.: Thermal Equilibrium of the Atmosphere with
a Convective Adjustment, J. Atmos. Sci., 21,
361–385, https://doi.org/10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2, 1964.
Manabe, S. and Wetherald, R. T.: Thermal Equilibrium of the Atmosphere with
a Given Distribution of Relative Humidity, J. Atmos. Sci., 24,
241–259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2, 1967.
Marshall, J. and Molteni, F.: Toward a Dynamical Understanding of
Planetary-Scale Flow Regimes, J. Atmos. Sci., 50,
1792–1818, https://doi.org/10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2, 1993.
Martin, P. E., Arbic, B. K., Hogg, A. McC., Kiss, A.E., Munroe, J. R., and
Blundell, J. R.: Frequency-domain analysis of the energy budget in an
idealized coupled ocean–atmosphere model, J. Climate, 33, 707–726,
2020.
Mastilovic, I. and Kravtsov, S.: Climatic effects of mesoscale
ocean–atmosphere interaction in an idealized coupled model, Geophys.
Res. Abstr., 21, EGU2019-8383, EGU General Assembly 2019,
https://meetingorganizer.copernicus.org/EGU2019/EGU2019-8383.pdf (last access: 10 May 2022), 2019.
McDougall, T. and Dewar, W.: Vertical mixing and cabbeling in layered
models, J. Phys. Oceanogr., 28, 1458–1480, 1998.
Meredith, M. P. and Hogg, A. M.: Circumpolar response of Southern Ocean eddy
activity to a change in the Southern Annular Mode, Geophys. Res. Lett., 33,
https://doi.org/10.1029/2006GL026499, 2006.
Miller, A. J. and Schneider, N.: Interdecadal climate regime dynamics in the
North Pacific Ocean: Theories, observations and ecosystem impacts, Prog.
Oceanogr., 47, 355–379, https://doi.org/10.1016/S0079-6611(00)00044-6, 2000.
Minobe, S., Kuwano-Yoshida, A. , Komori, N., Xie, S.-P., and Small, R. J.:
Influence of the Gulf Stream on the troposphere, Nature, 452, 206–209,
https://doi.org/10.1038/nature06690, 2008.
Nakamura, H. and Yamane, S.: Dominant anomaly patterns in the near-surface
baroclinicity and accompanying anomalies in the atmosphere and oceans. Part
I: North Atlantic Basin. J. Climate, 22, 880–904,
https://doi.org/10.1175/2008JCLI2297.1, 2009.
Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W., and Xie, S.-P.: On the
importance of midlatitude oceanic frontal zones for the mean state and
dominant variability in the tropospheric circulation, Geophys. Res. Lett.,
35, L15709, https://doi.org/10.1029/2008GL034010, 2008.
O'Neill, L. W., Chelton, D. B., and Esbensen, S. K.: The effects of
SST-induced surface wind speed and direction gradients on midlatitude
surface vorticity and divergence, J. Climate, 23, 255–281, https://doi.org/10.1175/2009JCLI2613.1, 2010.
O'Neill, L. W., Chelton, D. B., and Esbensen, S. K.: Covariability of
surface wind and stress responses to sea surface temperature fronts, J.
Climate, 25, 5916–5942, https://doi.org/10.1175/JCLI-D-11-00230.1, 2012.
O'Reilly, C. H. and Czaja, A.: The response of the Pacific storm track and
atmospheric circulation to Kuroshio Extension variability, Q. J. Roy.
Meteor. Soc., 141, 52–66, https://doi.org/10.1002/qj.2334, 2015.
Parfitt, R., Czaja, A., Kwon, Y.-O.: The impact of SST resolution change in
the ERA-Interim reanalysis on wintertime Gulf Stream frontal air-sea
interaction, Geophys. Res. Lett., 44, 3246–3254, 2017.
Perlin, N., De Szoeke, S. P., Chelton, D. B., Samelson, R. S., Skyllingstad,
E. D., and O'Neill, L. W.: Modeling the atmospheric boundary layer wind response
to mesoscale sea surface temperature perturbations, Mon. Weather Rev., 142, 4284–4307,
https://doi.org/10.1175/MWR-D-13-00332.1, 2014.
Piazza, M., Terray, L., Boé, J., Maisonnave, E., and Sanchez-Gomez, E.:
Influence of small-scale North Atlantic sea surface temperature patterns on
the marine boundary layer and free troposphere: A study using the
atmospheric ARPEGE model, Clim. Dynam., 46, 1699–1717, https://doi.org/10.1007/s00382-015-2669-z, 2016.
Primeau, F. W.: Multiple equilibria and low-frequency variability of the
wind-driven ocean circulation, J. Phys. Oceanogr., 32, 2236–2252, 2002.
Putrasahan, D. A., Miller, A. J., and Seo, H.: Isolating mesoscale coupled
ocean–atmosphere interactions in the Kuroshio Extension region, Dyn. Atmos.
Oceans, 63, 60–78, https://doi.org/10.1016/j.dynatmoce.2013.04.001, 2013.
Putrasahan, D. A., Kamenkovich, I., Le Henaff, M., and Kirtman, B. P.:
Importance of oceanic mesoscale variability for air-sea interactions in the
Gulf of Mexico, Geophys. Res. Lett., 44, 6352–6362, https://doi.org/10.1002/2017GL072884, 2017.
Ramanathan, V. and Coakley, J. A.: Climate modeling through
radiative-convective models, Rev. Geophys., 16, 465–489,
https://doi.org/10.1029/RG016i004p00465, 1978.
Schneider, N. and Qiu, B.: The atmospheric response to weak sea surface
temperature fronts, J. Atmos. Sci., 72, 3356–3377,
https://doi.org/10.1175/JAS-D-14-0212.1, 2015.
Seo, H., Miller, A. J., and Norris, J. R.: Eddy-wind interaction in the
California Current System: dynamics and impacts, J. Phys. Oceanogr., 46,
439–459, 2016.
Shevchenko, I., Berloff, P., Guerrero-Lopez, D., and Roman, J.: On
low-frequency variability of the midlatitude ocean gyres, J. Fluid Mech.,
795, 423–442, 2016.
Siqueira, L. and Kirtman, B. P.: Atlantic near-term climate variability and
the role of a resolved Gulf Stream, Geophys. Res. Lett., 43, 3964–3972,
https://doi.org/10.1002/2016GL068694, 2016.
Small, R. J., De Szoeke, S. P., Xie, S.-P., O'Neill, L., Seo, H., Song, Q.,
Cornillon, P., Spall, M., and Minobe, S.: Air–sea interaction over ocean
fronts and eddies, Dyn. Atmos. Oceans, 45, 274–319,
https://doi.org/10.1016/j.dynatmoce.2008.01.001, 2008.
Small, R., Tomas, A., and Bryan, F. O.: Storm track response to ocean fronts
in a global high-resolution climate model, Clim. Dynam., 43, 805–828,
https://doi.org/10.1007/s00382-013-1980-9, 2014.
Taguchi, B., Nakamura, H., Nonaka, M., and Xie, S.-P.: Influences of the
Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track
activity as revealed in regional atmospheric model simulations for the
2003/04 cold season, J. Climate, 22, 6536–6560, https://doi.org/10.1175/2009JCLI2910.1,
2009.
Wallace, J. M., Mitchell, T. P., and Deser, C.: The influence of sea-surface
temperature on surface wind in the eastern equatorial Pacific: seasonal and
interannual variability, J. Climate, 2, 1492–1499, 1989.
Willison, J., Robinson, W. A., and Lackmann, G. M.: The importance of
resolving mesoscale latent heating in the North Atlantic storm track, J.
Atmos. Sci., 70, 2234–2250, https://doi.org/10.1175/JAS-D-12-0226.1, 2013.
Xie, S.-P.: Satellite observations of cool ocean–atmosphere interaction,
B. Am. Meteorol. Soc., 85, 195–208, https://doi.org/10.1175/ BAMS-85-2-195, 2004.
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
Climate is a complex system whose behavior is shaped by multitudes of processes operating on...