Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Classification of tropical cyclone containing images using a convolutional neural network: performance and sensitivity to the learning dataset
Sébastien Gardoll
CORRESPONDING AUTHOR
Institut Pierre-Simon Laplace, Sorbonne Université/CNRS, Paris, France
Olivier Boucher
Institut Pierre-Simon Laplace, Sorbonne Université/CNRS, Paris, France
Related authors
Ruth Petrie, Sébastien Denvil, Sasha Ames, Guillaume Levavasseur, Sandro Fiore, Chris Allen, Fabrizio Antonio, Katharina Berger, Pierre-Antoine Bretonnière, Luca Cinquini, Eli Dart, Prashanth Dwarakanath, Kelsey Druken, Ben Evans, Laurent Franchistéguy, Sébastien Gardoll, Eric Gerbier, Mark Greenslade, David Hassell, Alan Iwi, Martin Juckes, Stephan Kindermann, Lukasz Lacinski, Maria Mirto, Atef Ben Nasser, Paola Nassisi, Eric Nienhouse, Sergey Nikonov, Alessandra Nuzzo, Clare Richards, Syazwan Ridzwan, Michel Rixen, Kim Serradell, Kate Snow, Ag Stephens, Martina Stockhause, Hans Vahlenkamp, and Rick Wagner
Geosci. Model Dev., 14, 629–644, https://doi.org/10.5194/gmd-14-629-2021, https://doi.org/10.5194/gmd-14-629-2021, 2021
Short summary
Short summary
This paper describes the infrastructure that is used to distribute Coupled Model Intercomparison Project Phase 6 (CMIP6) data around the world for analysis by the climate research community. It is expected that there will be ~20 PB (petabytes) of data available for analysis. The operations team performed a series of preparation "data challenges" to ensure all components of the infrastructure were operational for when the data became available for timely data distribution and subsequent analysis.
John P. Dunne, Helene T. Hewitt, Julie M. Arblaster, Frédéric Bonou, Olivier Boucher, Tereza Cavazos, Beth Dingley, Paul J. Durack, Birgit Hassler, Martin Juckes, Tomoki Miyakawa, Matt Mizielinski, Vaishali Naik, Zebedee Nicholls, Eleanor O'Rourke, Robert Pincus, Benjamin M. Sanderson, Isla R. Simpson, and Karl E. Taylor
Geosci. Model Dev., 18, 6671–6700, https://doi.org/10.5194/gmd-18-6671-2025, https://doi.org/10.5194/gmd-18-6671-2025, 2025
Short summary
Short summary
The seventh phase of the Coupled Model Intercomparison Project (CMIP7) coordinates efforts to answer key and timely climate science questions and facilitate delivery of relevant multi-model simulations for prediction and projection; characterization, attribution, and process understanding; and vulnerability, impact, and adaptation analysis. Key to the CMIP7 design are the mandatory Diagnostic, Evaluation and Characterization of Klima and optional Assessment Fast Track experiments.
Sauvik Santra, Shubha Verma, Shubham Patel, Olivier Boucher, and Mathew Koll Roxy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2302, https://doi.org/10.5194/egusphere-2025-2302, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Uneven spatial changes in Indian monsoon rainfall are linked to tiny airborne particles called aerosols, both human-made and natural (like dust). Using a high-resolution climate model, we show how persistent weakening and strengthening patterns in rainfall are driven by spatially varying aerosols. Reducing human-made aerosols may ease rainfall shortages in some areas but worsen excesses in others. These insights are key for better water management and policy planning.
Irina Melnikova, Philippe Ciais, Katsumasa Tanaka, Hideo Shiogama, Kaoru Tachiiri, Tokuta Yokohata, and Olivier Boucher
Earth Syst. Dynam., 16, 257–273, https://doi.org/10.5194/esd-16-257-2025, https://doi.org/10.5194/esd-16-257-2025, 2025
Short summary
Short summary
Reducing non-CO2 greenhouse gases is important alongside CO2 for climate mitigation. Here, we look at how reducing their emissions compares to reducing CO2 using an Earth system model. While both types of gases contribute to warming, their regional climate impacts differ. Besides, the carbon cycle responds differently depending on whether climate change is driven by CO2 or non-CO2 gases. Considering both types of gases is important for carbon cycle analysis and climate mitigation strategies.
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025, https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Short summary
ERA5 atmospheric reanalysis and airborne in situ observations from IAGOS are compared in terms of the representation of the contrail formation potential and the presence of supersaturation. Differences are traced back to biases in ERA5 relative humidity fields. Those biases are addressed by applying a quantile mapping technique that significantly improved contrail estimation based on post-processed ERA5 data.
Audran Borella, Olivier Boucher, Keith P. Shine, Marc Stettler, Katsumasa Tanaka, Roger Teoh, and Nicolas Bellouin
Atmos. Chem. Phys., 24, 9401–9417, https://doi.org/10.5194/acp-24-9401-2024, https://doi.org/10.5194/acp-24-9401-2024, 2024
Short summary
Short summary
This work studies how to compare the climate impact of the CO2 emitted and contrails formed by a flight. This is applied to contrail avoidance strategies that would decrease climate impact of flights by changing the trajectory of aircraft to avoid persistent contrail formation, at the risk of increasing CO2 emissions. We find that different comparison methods lead to different quantification of the total climate impact of a flight but lead to similar decisions of whether to reroute an aircraft.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary
Short summary
Relative humidity relative to ice (RHi) is a key variable in the formation of cirrus clouds and contrails. This study shows that the properties of the probability density function of RHi differ between the tropics and higher latitudes. In line with RHi and temperature variability, aircraft are likely to produce more contrails with bioethanol and liquid hydrogen as fuel. The impact of this fuel change decreases with decreasing pressure levels but increases from high latitudes to the tropics.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 24, 5009–5024, https://doi.org/10.5194/acp-24-5009-2024, https://doi.org/10.5194/acp-24-5009-2024, 2024
Short summary
Short summary
The contrail formation potential and its tempo-spatial distribution are estimated for the North Atlantic flight corridor. Meteorological conditions of temperature and relative humidity are taken from the ERA5 re-analysis and IAGOS. Based on IAGOS flight tracks, crossing length, size, orientation, frequency of occurrence, and overlap of persistent contrail formation areas are determined. The presented conclusions might provide a guide for statistical flight track optimization to reduce contrails.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 14003–14037, https://doi.org/10.5194/acp-23-14003-2023, https://doi.org/10.5194/acp-23-14003-2023, 2023
Short summary
Short summary
Cirrus and contrails considerably impact Earth's energy budget. Such ice clouds can have a positive (warming) or negative (cooling) net radiative effect (RE), which depends on cloud and ambient properties. The effect of eight parameters on the cloud RE is estimated. In total, 283 500 radiative transfer simulations have been performed, spanning the typical parameter ranges associated with cirrus and contrails. Specific cases are selected and discussed. The data set is publicly available.
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023, https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Short summary
The proposed graphs of hydrological sub-grid elements for atmospheric models allow us to integrate the topographical elements needed in land surface models for a realistic representation of horizontal water and energy transport. The study demonstrates the numerical properties of the automatically built graphs and the simulated water flows.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Yann Quilcaille, Thomas Gasser, Philippe Ciais, and Olivier Boucher
Geosci. Model Dev., 16, 1129–1161, https://doi.org/10.5194/gmd-16-1129-2023, https://doi.org/10.5194/gmd-16-1129-2023, 2023
Short summary
Short summary
The model OSCAR is a simple climate model, meaning its representation of the Earth system is simplified but calibrated on models of higher complexity. Here, we diagnose its latest version using a total of 99 experiments in a probabilistic framework and under observational constraints. OSCAR v3.1 shows good agreement with observations, complex Earth system models and emerging properties. Some points for improvements are identified, such as the ocean carbon cycle.
Yangxin Chen, Duoying Ji, Qian Zhang, John C. Moore, Olivier Boucher, Andy Jones, Thibaut Lurton, Michael J. Mills, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Earth Syst. Dynam., 14, 55–79, https://doi.org/10.5194/esd-14-55-2023, https://doi.org/10.5194/esd-14-55-2023, 2023
Short summary
Short summary
Solar geoengineering has been proposed as a way of counteracting the warming effects of increasing greenhouse gases by reflecting solar radiation. This work shows that solar geoengineering can slow down the northern-high-latitude permafrost degradation but cannot preserve the permafrost ecosystem as that under a climate of the same warming level without solar geoengineering.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 287–309, https://doi.org/10.5194/acp-23-287-2023, https://doi.org/10.5194/acp-23-287-2023, 2023
Short summary
Short summary
Recent studies estimate the radiative impact of contrails to be similar to or larger than that of emitted CO2; thus, contrail mitigation might be an opportunity to reduce the climate effects of aviation. A radiosonde data set is analyzed in terms of the vertical distribution of potential contrails, contrail mitigation by flight altitude changes, and linkages with the tropopause and jet stream. The effect of prospective jet engine developments and alternative fuels are estimated.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Irina Melnikova, Olivier Boucher, Patricia Cadule, Katsumasa Tanaka, Thomas Gasser, Tomohiro Hajima, Yann Quilcaille, Hideo Shiogama, Roland Séférian, Kaoru Tachiiri, Nicolas Vuichard, Tokuta Yokohata, and Philippe Ciais
Earth Syst. Dynam., 13, 779–794, https://doi.org/10.5194/esd-13-779-2022, https://doi.org/10.5194/esd-13-779-2022, 2022
Short summary
Short summary
The deployment of bioenergy crops for capturing carbon from the atmosphere facilitates global warming mitigation via generating negative CO2 emissions. Here, we explored the consequences of large-scale energy crops deployment on the land carbon cycle. The land-use change for energy crops leads to carbon emissions and loss of future potential increase in carbon uptake by natural ecosystems. This impact should be taken into account by the modeling teams and accounted for in mitigation policies.
Simone Tilmes, Daniele Visioni, Andy Jones, James Haywood, Roland Séférian, Pierre Nabat, Olivier Boucher, Ewa Monica Bednarz, and Ulrike Niemeier
Atmos. Chem. Phys., 22, 4557–4579, https://doi.org/10.5194/acp-22-4557-2022, https://doi.org/10.5194/acp-22-4557-2022, 2022
Short summary
Short summary
This study assesses the impacts of climate interventions, using stratospheric sulfate aerosol and solar dimming on stratospheric ozone, based on three Earth system models with interactive stratospheric chemistry. The climate interventions have been applied to a high emission (baseline) scenario in order to reach global surface temperatures of a medium emission scenario. We find significant increases and decreases in total column ozone, depending on regions and seasons.
Andy Jones, Jim M. Haywood, Adam A. Scaife, Olivier Boucher, Matthew Henry, Ben Kravitz, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Roland Séférian, Simone Tilmes, and Daniele Visioni
Atmos. Chem. Phys., 22, 2999–3016, https://doi.org/10.5194/acp-22-2999-2022, https://doi.org/10.5194/acp-22-2999-2022, 2022
Short summary
Short summary
Simulations by six Earth-system models of geoengineering by introducing sulfuric acid aerosols into the tropical stratosphere are compared. A robust impact on the northern wintertime North Atlantic Oscillation is found, exacerbating precipitation reduction over parts of southern Europe. In contrast, the models show no consistency with regard to impacts on the Quasi-Biennial Oscillation, although results do indicate a risk that the oscillation could become locked into a permanent westerly phase.
Yves Balkanski, Rémy Bonnet, Olivier Boucher, Ramiro Checa-Garcia, and Jérôme Servonnat
Atmos. Chem. Phys., 21, 11423–11435, https://doi.org/10.5194/acp-21-11423-2021, https://doi.org/10.5194/acp-21-11423-2021, 2021
Short summary
Short summary
Earth system models have persistent biases that impinge on our ability to make robust future regional predictions of precipitation. For the last 15 years, there has been little improvement in these biases. This work presents an accurate representation of dust absorption based upon observed dust mineralogical composition and size distribution. The striking result is that this more accurate representation improves tropical precipitations for climate models with too weak an African monsoon.
Daniele Visioni, Douglas G. MacMartin, Ben Kravitz, Olivier Boucher, Andy Jones, Thibaut Lurton, Michou Martine, Michael J. Mills, Pierre Nabat, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-10039-2021, https://doi.org/10.5194/acp-21-10039-2021, 2021
Short summary
Short summary
A new set of simulations is used to investigate commonalities, differences and sources of uncertainty when simulating the injection of SO2 in the stratosphere in order to mitigate the effects of climate change (solar geoengineering). The models differ in how they simulate the aerosols and how they spread around the stratosphere, resulting in differences in projected regional impacts. Overall, however, the models agree that aerosols have the potential to mitigate the warming produced by GHGs.
Yuan Zhang, Olivier Boucher, Philippe Ciais, Laurent Li, and Nicolas Bellouin
Geosci. Model Dev., 14, 2029–2039, https://doi.org/10.5194/gmd-14-2029-2021, https://doi.org/10.5194/gmd-14-2029-2021, 2021
Short summary
Short summary
We investigated different methods to reconstruct spatiotemporal distribution of the fraction of diffuse radiation (Fdf) to qualify the aerosol impacts on GPP using the ORCHIDEE_DF land surface model. We find that climatological-averaging methods which dampen the variability of Fdf can cause significant bias in the modeled diffuse radiation impacts on GPP. Better methods to reconstruct Fdf are recommended.
Ben Kravitz, Douglas G. MacMartin, Daniele Visioni, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Andy Jones, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Alan Robock, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 4231–4247, https://doi.org/10.5194/acp-21-4231-2021, https://doi.org/10.5194/acp-21-4231-2021, 2021
Short summary
Short summary
This study investigates multi-model response to idealized geoengineering (high CO2 with solar reduction) across two different generations of climate models. We find that, with the exception of a few cases, the results are unchanged between the different generations. This gives us confidence that broad conclusions about the response to idealized geoengineering are robust.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Ruth Petrie, Sébastien Denvil, Sasha Ames, Guillaume Levavasseur, Sandro Fiore, Chris Allen, Fabrizio Antonio, Katharina Berger, Pierre-Antoine Bretonnière, Luca Cinquini, Eli Dart, Prashanth Dwarakanath, Kelsey Druken, Ben Evans, Laurent Franchistéguy, Sébastien Gardoll, Eric Gerbier, Mark Greenslade, David Hassell, Alan Iwi, Martin Juckes, Stephan Kindermann, Lukasz Lacinski, Maria Mirto, Atef Ben Nasser, Paola Nassisi, Eric Nienhouse, Sergey Nikonov, Alessandra Nuzzo, Clare Richards, Syazwan Ridzwan, Michel Rixen, Kim Serradell, Kate Snow, Ag Stephens, Martina Stockhause, Hans Vahlenkamp, and Rick Wagner
Geosci. Model Dev., 14, 629–644, https://doi.org/10.5194/gmd-14-629-2021, https://doi.org/10.5194/gmd-14-629-2021, 2021
Short summary
Short summary
This paper describes the infrastructure that is used to distribute Coupled Model Intercomparison Project Phase 6 (CMIP6) data around the world for analysis by the climate research community. It is expected that there will be ~20 PB (petabytes) of data available for analysis. The operations team performed a series of preparation "data challenges" to ensure all components of the infrastructure were operational for when the data became available for timely data distribution and subsequent analysis.
Camilla W. Stjern, Bjørn H. Samset, Olivier Boucher, Trond Iversen, Jean-François Lamarque, Gunnar Myhre, Drew Shindell, and Toshihiko Takemura
Atmos. Chem. Phys., 20, 13467–13480, https://doi.org/10.5194/acp-20-13467-2020, https://doi.org/10.5194/acp-20-13467-2020, 2020
Short summary
Short summary
The span between the warmest and coldest temperatures over a day is a climate parameter that influences both agriculture and human health. Using data from 10 models, we show how individual climate drivers such as greenhouse gases and aerosols produce distinctly different responses in this parameter in high-emission regions. Given the high uncertainty in future aerosol emissions, this improved understanding of the temperature responses may ultimately help these regions prepare for future changes.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
Bishop, C. M.: Pattern Recognition and Machine Learning, chap. 1, 32–33 pp., edited by: Jordan, M., Kleinberg, J., and Schölkopf, B.,
Springer International Publishing, ISBN 0387310738, 2006. a
Bosler, P. A., Roesler, E. L., Taylor, M. A., and Mundt, M. R.: Stride Search: a general algorithm for storm detection in high-resolution climate data, Geosci. Model Dev., 9, 1383–1398, https://doi.org/10.5194/gmd-9-1383-2016, 2016. a, b
Bourdin, S., Fromang, S., Dulac, W., Cattiaux, J., and Chauvin, F.: Intercomparison of four algorithms for detecting tropical cyclones using ERA5, Geosci. Model Dev., 15, 6759–6786, https://doi.org/10.5194/gmd-15-6759-2022, 2022. a, b
Chan, J. C. L.: Comment on “Changes in tropical cyclone number, duration, and
intensity in a warming environment”, Science, 311, 1713,
https://doi.org/10.1126/science.1121522, 2006. a
Ebert-Uphoff, I. and Hilburn, K.: Evaluation, tuning, and interpretation of
neural networks for working with images in meteorological applications, B.
Am. Meteorol. Soc., 101, E2149–E2170, https://doi.org/10.1175/BAMS-D-20-0097.1, 2020. a
Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30
years, Nature, 436, 686–688, https://doi.org/10.1038/nature03906, 2005. a
Gardoll, S. and Boucher, O.: Classification of tropical cyclone containing images using a convolutional neural network: performance and sensitivity to the learning dataset (Version 3), Zenodo [code and data], https://doi.org/10.5281/zenodo.6881020, 2022. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803,
2020. a
Hodges, K., Cobb, A., and Vidale, P. L.: How well are tropical cyclones
represented in reanalysis datasets?, J. Climate, 30, 5243–5264,
https://doi.org/10.1175/JCLI-D-16-0557.1, 2017. a
Hong, S., Kim, S., Joh, M., and Kwang Song, S.: GlobeNet: Convolutional neural
networks for typhoon eye tracking from remote sensing imagery, in: 7th
International Workshop on Climate Informatics, edited by: Lyubchich, V., Oza,
N. C., Rhines, A., and Szekely, E., vol. NCAR Technical Notes,
NCAR/TN536+PROC, 69–72 pp., National Center for Atmospheric Research, https://doi.org/10.5065/D6222SH7, 2017. a
Horn, M., Walsh, K., Zhao, M., Camargo, S. J., Scoccimarro, E., Murakami, H.,
Wang, H., Ballinger, A., Kumar, A., Shaevitz, D. A., Jonas, J. A., and
Oouchi, K.: Tracking scheme dependence of simulated tropical cyclone response
to idealized climate simulations, J. Climate, 27, 9197–9213, 2014. a
IPCC: 2021: Summary for Policymakers. In: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T.
K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge
University Press, https://doi.org/10.1017/9781009157896, 2021. a, b, c
Jiaxiang, G., Shoshiro, M., Roberts, M. J., Haarsma, R., Putrasahan, D.,
Roberts, C. D., Scoccimarro, E., Terray, L., Vannière, B., and Vidale,
P. L.: Influence of model resolution on bomb cyclones revealed by
HighResMIP-PRIMAVERA simulations, Environ. Res. Lett., 15, 084001,
https://doi.org/10.1088/1748-9326/ab88fa, 2020. a
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.:
The International Best Track Archive for Climate Stewardship (IBTrACS):
Unifying tropical cyclone data, B. Am. Meteorol. Soc., 91, 363–376,
https://doi.org/10.1175/2009BAMS2755.1, 2010. a
Knutson, T. R., Sirutis, J. J., Zhao, M., Tuleya, R. E., Bender, M., Vecchi,
G. A., Villarini, G., and Chavas, D.: Global projections of intense tropical
cyclone activity for the late twenty-first century from dynamical downscaling
of CMIP5/RCP4.5 scenarios, J. Climate, 28, 7203–7224,
https://doi.org/10.1175/JCLI-D-15-0129.1, 2015. a
Kossin, J., Emanuel, K., and Vecchi, G.: The poleward migration of the location
of tropical cyclone maximum intensity, Nature, 509, 349–352,
https://doi.org/10.1038/nature13278, 2014. a
Kumler-Bonfanti, C., Stewart, J., Hall, D., and Govett, M.: Tropical and
extratropical cyclone detection using deep learning, J. Appl.
Meteorol. Climatol., 59, 1971–1985,
https://doi.org/10.1175/jamc-d-20-0117.1, 2020. a, b
Landsea, C. W. and Franklin, J. L.: Atlantic hurricane database uncertainty and
presentation of a new database format, Mon. Weather Rev., 141, 3576–3592,
https://doi.org/10.1175/MWR-D-12-00254.1, 2013. a
Landsea, C. W., Vecchi, G. A., Bengtsson, L., and Knutson, T. R.: Impact of
duration thresholds on Atlantic tropical cyclone counts, J. Climate, 23,
2508–2519, https://doi.org/10.1175/2009JCLI3034.1, 2010. a
Ling, C. X., Huang, J., and Zhang, H.: AUC: a better measure than accuracy in
comparing learning algorithms, in: Proceedings of IJCAI'03, edited by: Xiang, Y. and Chaib-draa, B., 329–341,
Springer, https://doi.org/10.1007/3-540-44886-1_25, 2003. a, b, c
Liu, Y., Racah, E., Prabhat, Correa, J., Khosrowshahi, A., Lavers, D., Kunkel,
K., Wehner, M. F., and Collins, W. D.: Application of Deep Convolutional
Neural Networks for Detecting Extreme Weather in Climate Datasets, CoRR,
abs/1605.01156, http://arxiv.org/abs/1605.01156 (last access: 12 September 2022), 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model
predictions, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, edited
by: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., Curran Associates, Inc., 4768–4777, ISBN 9781510860964,
2017. a
Malakar, P., Kesarkar, A., Bhate, J., Singh, V., and Deshamukhya, A.:
Comparison of reanalysis data sets to comprehend the evolution of tropical
cyclones over North Indian Ocean, Earth Space Sci., 7,
e2019EA000978, https://doi.org/10.1029/2019EA000978,
2020. a
Matsuoka, D., Nakano, M., Sugiyama, D., and Uchida, S.: Deep learning approach
for detecting tropical cyclones and their precursors in the simulation by a
cloud-resolving global nonhydrostatic atmospheric model, Prog. Earth
Planet. Sci., 5, 80, https://doi.org/10.1186/s40645-018-0245-y, 2018. a, b
Object Management Group: What is UML,
https://www.uml.org/what-is-uml.htm, last access: 7 July
2022. a
Pang, S., Xie, P., Xu, D., Meng, F., Tao, X., Li, B., Li, Y., and Song, T.:
NDFTC: A new detection framework of tropical cyclones from meteorological
satellite images with deep transfer learning, Remote Sens., 13, 1860,
https://doi.org/10.3390/rs13091860, 2021. a
Prabhat, Kashinath, K., Mudigonda, M., Kim, S., Kapp-Schwoerer, L., Graubner, A., Karaismailoglu, E., von Kleist, L., Kurth, T., Greiner, A., Mahesh, A., Yang, K., Lewis, C., Chen, J., Lou, A., Chandran, S., Toms, B., Chapman, W., Dagon, K., Shields, C. A., O'Brien, T., Wehner, M., and Collins, W.: ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather, Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, 2021. a, b, c
Racah, E., Beckham, C., Maharaj, T., Kahou, S. E., Prabhat, and Pal, C.:
Extreme weather: a large-scale climate dataset for semi-supervised
detection, localization, and understanding of extreme weather events, in:
Proceedings of the 31st International Conference on Neural Information Processing Systems, 3405–3416, ISBN 9781510860964, 2017. a, b, c
Ribeiro, M. T., Singh, S., and Guestrin, C.: “Why should I trust you?”:
Explaining the predictions of any classifier, in: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1135–1144, 2016. a
Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vannière, B.,
Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P.,
Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts,
C. D., Senan, R., Zarzycki, C., Ullrich, P., Yamada, Y., Mizuta, R., Kodama,
C., Fu, D., Zhang, Q., Danabasoglu, G., Rosenbloom, N., Wang, H., and Wu, L.:
Projected future changes in tropical cyclones using the CMIP6 HighResMIP
multimodel ensemble, Geophys. Res. Lett., 47, e2020GL088662,
https://doi.org/10.1029/2020GL088662, 2020. a
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D.,
and Batra, D.: Grad-CAM: Visual explanations from deep networks via
gradient-based localization, in: 2017 IEEE International Conference on
Computer Vision (ICCV), edited by: O'Conner, L., 618–626, https://doi.org/10.1109/ICCV.2017.74, 2017. a
Shakya, S., Kumar, S., and Goswami, M.: Deep learning algorithm for satellite
imaging based cyclone detection, IEEE J. Sel. Top. Appl.
Earth Obs., 13, 827–839,
https://doi.org/10.1109/JSTARS.2020.2970253, 2020. a, b, c, d
Shi, M., He, P., and Shi, Y.: Detecting extratropical cyclones of the Northern
Hemisphere with single shot detector, Remote Sens., 14, 254,
https://doi.org/10.3390/rs14020254, 2022. a
Shorten, C. and Khoshgoftaar, T. M.: A survey on image data augmentation for
deep learning, Journal of Big Data, 6, 60, https://doi.org/10.1186/s40537-019-0197-0,
2019. a
Singh, S., Singh, C., and Mitra, D.: Detection and tracking of tropical cyclone
using NCEP-GFS model analysis and forecasts, J. Earth Syst. Sci., 131, 15,
https://doi.org/10.1007/s12040-021-01765-1, 2022. a
Strachan, J., Vidale, P., Hodges, K., Roberts, M., and Demory, M.:
Investigating global tropical cyclone activity with a hierarchy of AGCMs: The
role of model resolution, J. Climate, 26, 133–152,
https://doi.org/10.1175/JCLI-D-12-00012.1, 2013. a, b
Studholme, J., Fedorov, A. V., Gulev, S. K., Emanuel, K., and Hodges, K.:
Poleward expansion of tropical cyclone latitudes in warming climates, Nat.
Geosci., 15, 14–28, https://doi.org/10.1038/s41561-021-00859-1, 2021. a
Vecchi, G. A., Delworth, T. L., Murakami, H., Underwood, S. D., Wittenberg,
A. T., Zeng, F., Zhang, W., Baldwin, J. W., Bhatia, K. T., Cooke, W., He, J.,
Kapnick, S. B., Knutson, T. R., Villarini, G., van der Wiel, K., Anderson,
W., Balaji, V., Chen, J., Dixon, K. W., Gudgel, R., Harris, L. M., Jia, L.,
Johnson, N. C., Lin, S.-J., Liu, M., Ng, C. H. J., Rosati, A., Smith, J. A.,
and Yang, X.: Tropical cyclone sensitivities to CO2 doubling: roles of
atmospheric resolution, synoptic variability and background climate changes,
Clim. Dynam., 53, 5999–6033, https://doi.org/10.1007/s00382-019-04913-y, 2019. a, b
Walsh, K. J. E., Fiorino, M., Landsea, C. W., and McInnes, K. L.: Objectively
determined resolution-dependent threshold criteria for the detection of
tropical cyclones and reanalyses, J. Climate, 20, 2307–2314, 2007. a
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H.-R.: Changes in
tropical cyclone number, duration, and intensity in a warming environment,
Science, 309, 1844–1846, https://doi.org/10.1126/science.1116448, 2005. a
Wu, L., Zhao, H., Wang, C., Cao, J., and Liang, J.: Understanding of the effect
of climate change on tropical cyclone intensity: A Review, Adv. Atmos.
Sci., 39, 205–221, https://doi.org/10.1007/s00376-021-1026-x, 2022. a
Short summary
Tropical cyclones (TCs) are one of the most devastating natural disasters, which justifies monitoring and prediction in the context of a changing climate. In this study, we have adapted and tested a convolutional neural network (CNN) for the classification of reanalysis outputs (ERA5 and MERRA-2 labeled by HURDAT2) according to the presence or absence of TCs. We tested the impact of interpolation and of "mixing and matching" the training and test sets on the performance of the CNN.
Tropical cyclones (TCs) are one of the most devastating natural disasters, which justifies...