
Geosci. Model Dev., 15, 7051–7073, 2022
https://doi.org/10.5194/gmd-15-7051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Classification of tropical cyclone containing images using a
convolutional neural network: performance and sensitivity to the
learning dataset
Sébastien Gardoll and Olivier Boucher
Institut Pierre-Simon Laplace, Sorbonne Université/CNRS, Paris, France

Correspondence: Sébastien Gardoll (sebastien.gardoll@cnrs.fr)

Received: 4 April 2022 – Discussion started: 19 April 2022
Revised: 22 July 2022 – Accepted: 18 August 2022 – Published: 16 September 2022

Abstract. Tropical cyclones (TCs) are one of the most dev-
astating natural disasters, which justifies monitoring and pre-
diction on short and long timescales in the context of a chang-
ing climate. In this study, we have adapted and tested a con-
volutional neural network (CNN) for the classification of re-
analysis outputs according to the presence or absence of TCs.
This study compares the performance and sensitivity of a
CNN to the learning dataset. For this purpose, we chose two
meteorological reanalysis, ERA5 and MERRA-2, and used a
number of meteorological variables from them to form TC-
containing and background images. The presence of TCs is
labeled from the HURDAT2 dataset. Special attention was
paid to the design of the background image set to make sure
it samples similar locations and times to the TC-containing
images. We have assessed the performance of the CNN using
accuracy but also the more objective AUC and AUPRC met-
rics. Many failed classifications can be explained by the me-
teorological context, such as a situation with cyclonic activity
but not yet classified as TCs by HURDAT2. We also tested
the impact of spatial interpolation and of “mixing and match-
ing” the training and test image sets on the performance of
the CNN. We showed that applying an ERA5-trained CNN
to MERRA-2 images works better than applying a MERRA-
2-trained CNN to ERA5 images.

1 Introduction

Tropical cyclones (TCs) are localized, very intense circular
low-pressure systems that form over warm tropical oceans
and are associated with strong winds and heavy rains. They

represent a major hazard for life and property in exposed re-
gions of the world. There are still many unanswered ques-
tions on the number, intensity, duration, trajectory, and prob-
ability of landfall of tropical cyclones in a warming climate
(Emanuel, 2005; Webster et al., 2005; Chan, 2006; Vecchi
et al., 2019; IPCC, 2021; Wu et al., 2022). IPCC (2021) es-
timated that “it is likely that the global proportion of ma-
jor (Category 3–5) tropical cyclone occurrence has increased
over the last four decades”, but “there is low confidence
in long-term (multi-decadal to centennial) trends in the fre-
quency of all-category tropical cyclones”. It has also been
shown that global warming causes TCs to move further north
in the North Atlantic and North Pacific basins (Kossin et al.,
2014; IPCC, 2021; Studholme et al., 2021), which could have
dire consequences for some coastal cities.

Better modeling of TCs in climate models is a prerequisite
to estimate future changes in risk and associated damages.
The automatic detection of TCs in climate model outputs
is central to our ability to analyze results from climate pro-
jections. Indeed, TCs can only be simulated in models with
sufficient horizontal and vertical resolutions (Strachan et al.,
2013; Knutson et al., 2015; Vecchi et al., 2019; Roberts et al.,
2020; Jiaxiang et al., 2020; Bourdin et al., 2022). Such mod-
els are now commonplace, but they produce huge volumes
of output data. Furthermore, multiple long simulations are
required because we need to understand the respective roles
of decadal variability and climate trends in observed and sim-
ulated changes. It is, thus, important to have the capability to
analyze climate simulations in a very efficient manner.

Climate modelers have developed “physical algorithms”
to detect TCs based on the translation of their physical char-
acteristics into identification criteria (e.g., Walsh et al., 2007;
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Horn et al., 2014; Bosler et al., 2016; Singh et al., 2022).
Such detection algorithms generally rely on the identifica-
tion of a spatial feature typical of a TC at all available time
steps and a temporal correlation procedure to track the time
consistency of the detected features and establish a trajec-
tory. They are usually applied in predefined regions prone
to TCs, though it is not unusual for a TC to move outside
its natural domain; hence it is important to apply the algo-
rithms to a larger domain. These physical algorithms require
setting up a number of thresholds, which may depend on the
climate model being considered and its resolution. For exam-
ple, in the Stride Search algorithm (Bosler et al., 2016), a TC
is identified if four criteria are met: maximum vorticity above
a threshold, distance between the grid points of maximum
vorticity and minimum sea level pressure below a threshold,
the presence of a maximum vertically averaged temperature
larger than its environment, and distance between the grid
points of maximum vertically averaged temperature and min-
imum sea level pressure below a threshold. Bourdin et al.
(2022) performed an intercomparison of four cyclone trajec-
tory detectors – called trackers – on ERA5 reanalysis.

There is also a wealth of studies on the detection of TCs
in satellite imagery, reanalysis, and climate model outputs
based on machine learning (ML) approaches. Table 1 sum-
marizes notable studies published in the last 8 years that
implement neural architectures based on convolution layers.
It is not surprising that this approach was favored because
TCs have very distinct features, which make them relatively
easy to detect with convolutional neural networks. Since Liu
et al. (2016), whose deep learning (DL) model only classifies
patches of cyclone (i.e., small images centered on a cyclone),
various subsequent studies have focused on improving the
detection of all cyclones at once present in unidimensional or
multidimensional meteorological images (e.g., Ebert-Uphoff
and Hilburn, 2020) and climate model data (e.g., Matsuoka
et al., 2018). This latter work focuses on the detection of
cyclones using a CNN image classifier which operates on
a sliding window of output from the Nonhydrostatic Icosa-
hedral Atmospheric Model (NICAM) and studies the sys-
tem performance in terms of detectability. The detection can
be either “coarse” by drawing rectangular envelopes around
the cyclones (the studies are flagged as detection in the Pur-
pose column of Table 1) or “precise” by drawing the con-
tours of the cyclones including their internal structure (stud-
ies flagged as segmentation). The main idea of these more
recent studies is to apply new DL model architectures com-
ing from computer vision research (e.g., U-Net, DeepLabv3,
YOLOv3, single shot Detector) to the analysis of meteoro-
logical features such as cyclones. Most approaches for TC
detection use supervised methods which require a training
dataset. While such techniques are now mainstream, they are
not always well documented and their description may lack
sufficient details which are often key in ML, e.g., the data en-
gineering involved in the preparation of the training dataset,
the hyperparameters of the CNN, and the evaluation meth-

ods of the metrics used to measure the performance of the
models. Studies evaluating the performance and sensitivity
of TC detection algorithms to the input and training datasets
are also relatively scarce.

It should be noted that labeled TC datasets exist for the
past observed climate record (satellite data, reanalysis), but
it may not be practical to generate such datasets in climate
model outputs for every new simulation that is made and to
which the detection algorithm is to be applied. Thus it is im-
portant to understand how a supervised method may depend
on the training dataset if it is to be applied to a dataset of
a slightly different nature. It is common practice that data
from climate simulations are first produced and stored and
then analyzed. However, the climate modeling community
is also moving in the direction of “on-the-fly” (also called
in situ) data analysis in order to reduce the volume of data
to be stored and the environmental impacts of such storage.
This paradigm change implies the development of more effi-
cient analysis methods. Both physical algorithms (i.e., track-
ers) and DL models are legitimate approaches to study TCs,
but it is useful to understand if one generalizes better than
the other. However, it is important to understand that both ap-
proaches do not necessarily achieve the same thing. Indeed,
trackers search for the trajectory of a cyclone by detecting its
different positions in time, whereas the DL models listed in
Table 1, derived from computer vision, detect cyclones on an
image frozen in time.

In this context and for the above-mentioned reasons, we
have developed in this study a detailed procedure for build-
ing training datasets and testing the performance of the TC
detection algorithm to some of its parameters. We chose to
work with two reanalyses (ERA5 and MERRA-2) and view
this as a necessary first step before being able to apply our
methodology to climate simulations. In Sect. 1, we present
the data used to generate the images to be classified. Then
in Sect. 2, we explain the architecture of the classification
model, its training, the evaluation method to assess its per-
formances, and the processes for generating the images to be
classified. In Sect. 3, we present the results of our experi-
ments in terms of accuracy and the other evaluation metrics.
We further present an investigation on misclassified images
and some suggestions for future work. Finally we summarize
our contribution in the last section.

2 Data

2.1 TC dataset

Several datasets of TCs exist: we can flag here Ex-
tremeWeather (Racah et al., 2017), ClimateNet (Prabhat
et al., 2020), and the International Best Track Archive for
Climate Stewardship (IBTrACS, Knapp et al., 2010, and ref-
erences therein). In this study we use the North Atlantic
National Hurricane Centre (NHC) “best track” hurricane
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database (HURDAT2; available from http://www.nhc.noaa.
gov/data/#hurdat, last access: 12 September 2022; Landsea
and Franklin, 2013) because it is known as a high-quality
dataset for the North Atlantic basin. Quality and quantity of
the training dataset are essential for the accuracy and per-
formance of ML models. In particular it is important for the
dataset to be comprehensive (i.e., there is no missed TC) and
homogeneous (i.e., the criteria for deciding if a feature qual-
ifies as a TC are used consistently in space and time). The
HURDAT2 dataset is reputed to be comprehensive for the
period after 1970 (Landsea et al., 2010). It is more difficult
however to ascertain its homogeneity especially for short-
duration TCs.

HURDAT2 contains 6-hourly (00:00, 06:00, 12:00,
18:00 UTC) information on the location, maximum winds,
central sea level pressure, and (since 2004) size of all known
tropical cyclones and subtropical cyclones. The intensity of
the TC is divided into several categories, as shown in Ta-
ble A1 in the Appendix. We consider the HU and TS cate-
gories to be TCs and the other categories (including tropi-
cal depressions) to not be TCs. We chose to exclude tropical
depressions (corresponding to the HURDAT2 status TD) as
well as the other weather events of lower intensity because
we wanted to focus on intense cyclonic events (> 34 knots)
which are responsible for the largest impacts when they reach
land.

2.2 Meteorological reanalyses

We use two different reanalyses upon which we train and
apply our CNN. The ECMWF Reanaysis 5th generation
(ERA5), is the current atmospheric reanalysis from the Eu-
ropean Centre for Medium-Range Weather Forecasts (Hers-
bach et al., 2020). The Modern-Era Retrospective Analysis
for Research and Applications, version 2 (MERRA-2) is the
current atmospheric reanalysis produced by NASA Global
Modeling and Assimilation Office (Gelaro et al., 2017).
These two reanalyses differ in the atmospheric models used,
the range of data being assimilated, and the details of the
assimilation scheme. They also differ in their spatial resolu-
tion. ERA5 is retrieved from the ECMWF archive at a native
resolution of 0.25◦× 0.25◦, while MERRA-2 is provided at
a native resolution of 0.5◦× 0.6◦. The atmospheric variables
relevant to TC detection are available in both reanalyses (as
proposed by Liu et al., 2016). We use fields of sea level pres-
sure, precipitable water vapor, the two components of the
wind (at the surface and at 850 hPa), and the temperature at
two different pressure levels (see Table 2). We have followed
Liu et al. (2016) and considered an extensive set of meteoro-
logical variables to detect TCs (see Table 2). This choice is
confirmed by subsequent studies (Racah et al., 2017; Prabhat
et al., 2020; Kumler-Bonfanti et al., 2020). It is likely that
there is redundant information in this set of variables. An in-
teresting follow-up work will be to investigate the relative
contributions of these variables in the classification decision

Table 2. Dataset variables.

Variable ERA5 MERRA-2
attribute attribute
name name

Sea level pressure msl spl
Precipitable water vapor tcwv tqv
Northward wind at 10 m v10 v10m
Northward wind at 850 hPa v850 v850
Eastward wind at 10 m u10 u10m
Eastward wind at 850 hPa u850 u850
Temperature at 200 hPa t200 t200
Temperature at 500 hPa t500 t500

of the CNN, with the aim of reducing the number of vari-
ables.

2.3 Images

In computer vision, the term image refers to a stack of ma-
trices (also called a 3D tensor), with each matrix represent-
ing an information channel. For example, RGB images are
formed of a stack of matrices of numerical values coding the
red (R), green (G), and blue (B) color intensities of each pixel
of a photograph. Our use of the term image is a generalization
of the concept of RGB images. In the rest of our study, an im-
age refers to a stack of gridded data extracted from a different
variable of ERA5 or MERRA-2 in a given geographical area.
Unlike for an RGB image, the channels cannot be combined;
we thus graphically represent each channel separately.

3 Methods

3.1 Classification model

In this study we implemented a binary classifier of cyclone
images based on the work of Liu et al. (2016), with slight
modifications. Table 3 shows the architecture of our CNN,
which is divided into two parts: a feature extraction part and
a classification part. The feature extraction part is composed
of the convolution layers whose filters are responsible for the
extraction of features of cyclone present in the input images
of the CNN. These features are the basic elements used for
the classification of the images, implemented by the dense
layers, and determine if the images represent cyclones or not
by outputting probabilities. As noted by Liu et al. (2016),
using a shallow convolutional neural network is appropriate
for a relatively small number of images in the training dataset
because the network only has a small number of parameters
to train.

Our modifications, compared to the work of Liu et al.
(2016), concern the size of the convolutional filters and the
number of neurons in the last dense layer. The characteris-
tics of their CNN are described in Table 4. Indeed, our con-
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Table 3. The layers of our CNN. The convolutional layer parameter are denoted as “filter size”− “number of filters”, the stride is (1, 1), and
no padding was added. The maximum pooling layer parameters are denoted as “pooling frame”. The fully connected layer parameters are
denoted as “number of neurons”. For the activation function of the neurons, “relu” stands for the rectified linear unit, whereas “sigmoid”
stands for the logistic sigmoid function. Output tensor shapes are also provided for each layer of the CNN for input images of size (16×16×8)
and (32× 32× 8). The number of trainable parameters are 5053 for images of 16× 16 pixels and 30 653 for images of 32× 32 pixels.

Layer type Parameters Activation Output tensor shape Output tensor shape
for image of 16× 16 pixels for image of 32× 32 pixels

Convolutional 3× 3–8 relu 14, 14, 8 30, 30, 8
Max pooling 2× 2 – 7, 7, 8 15, 15, 8
Convolutional 3× 3–16 relu 5, 5, 16 13, 13, 16
Max pooling 2× 2 – 2, 2, 16 6, 6, 16
Flattening – – 64 576
Dense 50 relu 50 50
Dense 1 sigmoid 1 1

Table 4. The layers of the CNN by Liu et al. (2016) for comparison with ours. This table follows the same syntax as Table 3. The number of
trainable parameters are 5776 for images of 16× 16 pixels and 24 976 for images of 32× 32 pixels.

Layer type Parameters Activation Output tensor shape Output tensor shape
for image of 16× 16 pixels for image of 32× 32 pixels

Convolutional 5× 5–8 relu 12, 12, 8 28, 28, 8
Max pooling 2× 2 – 6, 6, 8 14, 14, 8
Convolutional 5× 5–16 relu 2, 2, 16 10, 10, 16
Max pooling 2× 2 – 1, 1, 16 5, 5, 16
Flattening – – 16 400
Dense 50 relu 50 50
Dense 2 sigmoid 2 2

volutional filters are smaller: 3× 3 instead of 5× 5 for Liu
et al. (2016) We thought that smaller filters better capture
the features of cyclones on small images, especially for the
16× 16 pixels (px) images. In addition, 3×3 filters are more
conventional now. Note that the number of trainable param-
eters are very much the same between our CNN and that of
Liu et al. (2016). Lastly, Liu et al. (2016) describe a final
layer with two neurons using the logistic sigmoid activation
function. This layer outputs two probabilities: the probability
that the input image represents a TC and the probability that
the image represents the background, but the outputs are not
correlated and the sum of the probabilities can be larger than
1. In this study, we use the conventional approach of binary
classification by considering one output neuron activated by
a sigmoid function. So a probability value that tends to 0 clas-
sifies an image as background, while a value that tends to 1
classifies an image as cyclone.

By construction, the size and the number of channels of
the input images in a CNN are fixed. Using different image
sizes and/or numbers of channels would require modifying
the network architecture and retraining it. Indeed, the prop-
erties of the dense layers of the network depend on the im-
age shape (i.e., the number of neurons). Thus, image clas-
sification using a CNN implies the production of training
and testing datasets of a given shape, irrespectively of the

atmospheric reanalyses, ERA5 or MERRA-2, being consid-
ered. In our study, the size of the images is 32× 32 pixels or
16× 16 pixels with the eight variables as the channels of the
image (3D tensor). Of course, the channels must correspond
to the same atmospheric fields in the same units across the
two reanalyses and must be arranged in the same order. The
next section explains how we tackled the production of such
a dataset of images.

3.2 Image preparation

3.2.1 Principles

The training of a CNN classifier is based on the optimization
of its parameters using gradient descent and backpropagation
techniques. Roughly speaking, the training process presents a
batch of images as an input to the CNN. The training process
modifies the parameters of the CNN in order to improve the
classification of the batch, according to a chosen loss func-
tion. For a binary classifier, this process implies the presenta-
tion of images containing a TC but also images not contain-
ing a TC, called background images. We now explain the
data engineering involved in selecting both TC-containing
and background images using the HURDAT2 dataset of cy-
clone tracks and the ERA5 and MERRA-2 reanalyses.

https://doi.org/10.5194/gmd-15-7051-2022 Geosci. Model Dev., 15, 7051–7073, 2022
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3.2.2 TC-containing image generator

The HURDAT2 dataset provides locations and dates of TCs
as part of the cyclone metadata. We create images centered
on the cyclone positions in the reanalysis for the dates in-
dicated in HURDAT2. The different channels of the images
consist of the selected variables from the reanalyses as dis-
cussed above. We consider all cyclones with HU and TS sta-
tus (see Table A1) that are located over the ocean, islands,
and coasts, over the period 1980–2019. Most TCs are found
during the Atlantic hurricane season from May to December,
but we also consider a few events identified by HURDAT2
as TCs outside these months. Figure 1 shows the spatial and
temporal distributions of the TC-containing images.

3.2.3 Background image metadata generator

Extracting background images requires some thought be-
cause the performance of the CNN depends on these images
and whether these images sample the diversity of TC-free sit-
uations. The idea here is to reuse the HURDAT2 database so
that, for each location and date with a TC, we choose two
dates in the past where no TC is present. We also check that
the date was not already selected as the TC-free situation for
another TC-containing image, so that all background images
are distinct to each other. Once the dates are selected, we can
extract the corresponding images. Figure 2 shows a Unified
Modeling Language version 2 (Object Management Group)
activity diagram of the background image metadata genera-
tor and specifically how we compute the two dates from each
date of a TC track. The first date is computed by subtracting
between 48 and 168 h randomly (2–7 d) to the date of the TC
track to generate the first date and between 336 and 504 h
to generate the second date (2–3 weeks). Then the algorithm
checks if each computed date leads to a background image
that is in the immediate vicinity of any other TC track (status
HU or TS as before) within a 48 h time frame in the past or in
the future or to an already selected background image within
a 12 h time frame. If this is the case, we iterate by subtract-
ing from the faulty date either 54 h (48+ time resolution) if
the background metadata intersects a cyclone track or 18 h
(12+ time resolution) if it intersects another background im-
age metadata.

Overall our background image metadata generator has the
following advantages:

– our background images do not include a TC by con-
struction;

– the meteorological, geographical, and temporal contexts
of the background images are close to those of the TC-
containing images generated on the basis of the HUR-
DAT2 data – in this way, we hope to better train the
model at the classification decision boundaries;

– the ratio of background over TC-containing images is
constant by construction (with one-third TC-containing
images and two-thirds background images);

– the background images cannot be within 48 h from a cy-
clone image and 12 h from another background image,
considering the geographical domain.

As a result of our image metadata generator, we obtain 9507
cyclone metadata and 19 014 background metadata. The co-
ordinates (longitude and latitude) of the cyclone and back-
ground metadata are then rounded to the respective resolu-
tions of the ERA5 and MERRA-2 datasets, which results in
two batches of metadata. Finally, we perform an additional
step to check that no duplicate is created during the coordi-
nate rounding.

3.2.4 NXTensor software library

The production of the image sets was the opportunity to cre-
ate a reusable software library called NXTensor. This library
is written in the Python 3.7 programming language and auto-
mates the extraction of geospatialized data, stored in NetCDF
format, in a distributed and parallelized way on a computer
cluster scheduled by Torque/Maui. Indeed, each channel of
the images is produced by a task of the cluster (multitask-
ing) and the extractions are performed in parallel (multipro-
cessing). The library ensures the determinism of the data ex-
tractions, and it is reusable for other experiments than ours
because the parameters of the extractions are entirely con-
figurable through yaml files. NXTensor takes as parameters
the description files of the variables (path on the disk, nam-
ing conventions of the files, etc.), notably the period covered
by the NetCDF files (e.g., ERA5 files are monthly, while
MERRA-2 files are daily) and the image metadata (date and
location).

Figure 3 illustrates the step-by-step operation of NXTen-
sor according to the UML2 activity diagram formalism, for
the production of one of the channels of all the cyclone
and background images. NXTensor starts by analyzing the
image metadata to group them according to the period of
the variable files to ensure that the files are only read once
by distributed task. This analysis produces the block meta-
data, i.e., the set of data extractions to be performed by pe-
riod. Then NXTensor submits as many tasks to the cluster
as there are channels; the determinism is ensured by shar-
ing the same block metadata between the different distributed
tasks. Within each task, the block metadata are divided into
batches that are processed by a pool of workers performing
the extractions of data in parallel. Each worker produces a
set of blocks that are combined at the end by concatena-
tion to form one of the channels of all the images. A special
task is responsible for assembling the channels of the im-
ages in order to produce the 3D image tensor as mentioned
above. For information, the elapsed time to extract a channel
for 28 521 images is about 6 min when the computations are
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Figure 1. (a) Counts of TC-containing images per 1◦× 1◦ grid box. (b) Histogram of the count of TC-containing images according to the
month of the year. Panels (a) and (b) are computed over the period 1980–2019.

carried out on the CPU cluster of the Institut Pierre-Simon
Laplace (IPSL), using eight nodes (15 Go RAM and 15 cores
AMD Opteron™ 6378 at 2.4 GHz). The channel assembly
task takes about 1 min. The CPU time was 135 min for the
extraction of all the channels of the images.

3.2.5 Missing value issue

When generating images from the MERRA-2 data, we found
that some of them had missing values (NaN), especially from
the winds at 850 hPa. We decided to remove the metadata
that resulted in incomplete images, for both the MERRA-2
and ERA5 batches, so that the batches of metadata are still
identical. This resulted in the removal of 1567 of them. Thus
the number of cyclone metadata is 8974 and the number of
background metadata is 17 980, which gives a total of 26 954.
With this final screening, we could then proceed to the ex-
traction of the images.

3.2.6 Image interpolation

Previously we have detailed the automatic production chain
of constant-shape images to satisfy the constraints of
the CNN. However, as mentioned above, the ERA5 and
MERRA-2 reanalyses do not have the same spatial resolution
(0.25 versus 0.5◦). In order for the images to represent a con-
stant domain size and thus include cyclone of the same size as
a fraction of the image domain size, we extract native images
of 16×16 pixels for MERRA-2 and 32×32 pixels for ERA5
as described in Table 5. We then symmetrize the MERRA-
2 native image set at a resolution of 0.5◦× 0.5◦ with a bi-
linear interpolation to obtain the MERRA-2 16px@0.5 im-
age set. To resolve the difference in resolution and to study
the sensitivity of the CNN to the different datasets, we fur-
ther transform by bilinear interpolation one of the image
sets to the properties of the other set (image resolution and

Table 5. Properties of the image sets. MERRA-2 native is used to
construct the other two MERRA-2 image sets but is not used as
input to the CNN.

Image set Size Resolution
(in pixel) (in ◦)

ERA5 native 32× 32 0.25× 0.25
ERA5 16px@0.5 16× 16 0.5× 0.5
MERRA-2 native 16× 16 0.5× 0.6
MERRA-2 16px@0.5 16× 16 0.5× 0.5
MERRA-2 32px@0.25 32× 32 0.25× 0.25

size). Thus, we have two pairs of two image sets with sim-
ilar properties: on the one hand ERA5 native and MERRA-
2 32px@0.25 and on the other hand ERA5 16px@0.5 and
MERRA-2 16px@0.5 (Table 5).

Figures 4 and 5 illustrate the representations of the chan-
nels of a cyclone and a background image, respectively, for
the five image sets, at the same localization but for two dif-
ferent dates. It can be verified visually that the domain and
pattern sizes of the images are independent of the choice of
resolution. Finally, the input layer of the CNN is adapted dy-
namically to the size of the images during its instantiation, at
the training phase which is described in Sect. 3.3.

3.2.7 Data standardization

Neural network models learn a mapping from input variables
to output variables. The input variables nearly always have
different scales, and large-scale differences are detrimental
to the learning process of neural networks. In order to en-
sure that each variable is equally important, regardless of
its range of values, input variables are rescaled to the same
scale. There are several methods such as standardization (or
Z-score normalization), which consist in recalculating the
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Figure 2. UML2 activity diagram of the background image metadata generator.

values of the variables so that their mean and standard de-
viation equal 0 and 1, respectively. In our study, we have
systematically standardized each channel of the images by
calculating the means and standard deviations of the chan-
nels on all the images of the training set. The validation and
test image datasets are excluded from the calculation of the
mean and standard deviation to avoid information about the
validation and test datasets leaking into the training phase.
However, the validation and test datasets are also scaled us-
ing the mean and standard deviation of the training dataset.

3.3 Model training

We performed our model training experiments on HAL, a
Dell GPU cluster available at the IPSL. Each HAL comput-
ing node is composed of two 2.6 GHz Intel® Xeon® with four
cores and two Nvidia® RTX® 2080 Ti 11 Go GPU cards, but
only one card was used for our training experiments. On the
software side, the model is implemented in Python 3.8, using
the Keras 2.3.0 library, which is a layer built on top of the
Tensorflow 2.2.0 library, making it simpler to use. Overfit-
ting has been noticed during the training of the model. We
have observed the characteristic U shape of underfitting fol-
lowed by overfitting by plotting the value of the loss function
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Figure 3. UML2 activity diagram of the image extractions using the NXTensor library.

calculated using the validation dataset against the number of
epochs. In order to automatically avoid overfitting, we used
two Tensorflow callbacks: early stopping and model check-
point. The first callback stops the training after N epochs
without further improving the training metric (N is set to a
value of 10). Early stopping behaves more or less like the el-
bow method. The second callback always saves the weights
of the model giving the best score of the training metric. As
the number of epochs varies from one training to another (30
to 70), the training time also varies: between 1 and 3 min,
knowing that one epoch takes less than 1 s of computation.
Our work is based on the study by Liu et al. (2016), but these
authors did not provide the values of their training hyper-
parameters such as batch size, optimizer, and learning rate.
Instead of fixing these values in an arbitrary way, we search
for local optimal values of these hyperparameters to maxi-
mize the performance of the CNN. Since training times are
relatively short on our GPU cluster, we performed a grid
search hyperparameter optimization to maximize the score of
the training metric, using conventional hyperparameter value
ranges (the number of combinations of the search space is
48). We conducted four optimizations for the different im-
age datasets, but for the same training/validation/testing split
(0.70/0.15/0.15). We obtained the same values for the opti-

mizer and the learning rate, with very close performances.
Only the batch size differs, so we decided to set a value as
large as possible given the memory of the GPU cards at our
disposal. Of course, these optimal values are only valid for
the given split; however we think that they are close to the
global optimum because the performances vary very little
according to the different values of these hyperparameters.
The obtained values, described in Table 6, are used for all
experiments to avoid attributing the variability in the studied
metrics to hyperparameter changes. These metrics and the
methods for evaluating them are the subject of the next sec-
tion. We did not try to optimize the architecture of the CNN
proposed by Liu et al. (2016) because we believe they have
already optimized it and the modifications we have made do
not require any further optimization, since the performance
of our CNN is very close to that of Liu et al. (2016). Finally,
as explained above, we prefer to focus on the performance
and the sensitivity of the CNN to the learning dataset instead
of obtaining better performances.

3.4 Evaluation of metrics

In our study, we used three classical metrics to measure the
performance of our binary classification model: accuracy, the
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Figure 4. Channels (left to right) of the cyclone image on 22 August 1987, 00:00 UTC, centered on 35.5◦ N, 43.125◦W. The different rows
show the native and interpolated images from ERA5 and MERRA-2 as per the labels. Data are standardized.

Table 6. Optimal hyperparameter values.

Hyperparameter Value Search space

Loss function Binary cross-entropy –
Training metric Loss computed on test set –
Maximum number of epochs 100 –
Early stopping number of epochs (N ) 10 –
Batch size 256 From 32 to 256, step of 32
Optimizer Adam Adam; SGD (stochastic gradient descent)
Learning rate 0.0001 0.0001; 0.001; 0.01

area under the curve (AUC) of the receiver operating charac-
teristic (ROC), and the area under the precision–recall curve
(AUPRC). The equations of the binary classification metrics
are given in Appendix C1. The accuracy measures the rate of
good predictions of a model. It is an easy metric to interpret,
but it depends on the decision threshold for which the value
of a probability is associated with one class rather than the

other. It was criticized in particular by Provost et al. (1998)
and Ling et al. (2003), and we discuss it further in Sect. 4.1.
The AUC measures the power of a model to discriminate be-
tween the two classes for a variety of decision threshold val-
ues. The AUC is, as the acronym indicates, the area under the
ROC curve. The latter is depicted by plotting the recall of a
model against the false positive rate of the same model. The
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Figure 5. Same as Fig. 4 but for the background image on 6 August 1987, 18:00 UTC, centered on 35.5◦ N, 43.125◦W. Data are standardized.

recall measures the ability of a model to identify all occur-
rences of a class. The recall and false positive rate values are
calculated according to the ground truth and the classifier re-
sponses for a given test dataset and for all possible decision
thresholds (or a set of discrete values). A perfect classifier
has an AUC equal to 1, recalling all the images of cyclone
with a null false positive ratio. The AUPRC measures the re-
call of a model while minimizing the prediction errors. The
AUPRC follows a similar approach to the AUC: it is the area
under the curve which is depicted by plotting the precision of
a model against the recall of the same model (for all possible
decision thresholds, etc.). A perfect classifier has an AUPRC
equal to 1, that is, recalling all the images of the cyclone
without wrongly classifying any background image as a cy-
clone image. AUC and AUPRC are much more interesting
because they are integrated on the decision threshold values.

For the evaluation and comparison of the metrics (devel-
oped in Sect. 4.2), we wanted to be able to calculate the ex-
pected value and the uncertainty in the metrics, without bias.
To that end, we applied an iterative cross-validation method,

which consists in repeating a cross-validation method 20
times. We chose the k-fold method (Bishop, 2006), with k

equal to 10, as the cross-validation method. We obtained a
mean of the metrics for each k-fold iteration. By applying the
central limit theorem on this set of metric means, we could
compute the expected value and the uncertainty in the met-
rics.

In order to avoid any bias, we took care to check if the cen-
tral limit theorem can be applied by testing the normality of
the distribution of the metric means using the Shapiro–Wilk
statistical test (brief non-mathematical presentation given in
Appendix B1) for an alpha level of 1 %. Moreover, images
coming from a time series of tracks from the same cyclone
may be found in both the training and test datasets, which
would induce some dependance between the training and test
datasets due to the autocorrelation within individual cyclone
tracks. In order to avoid such a bias, the k-fold split is based
on sampling the years randomly and balancing the folds as
much as possible. The partitioning combinations are calcu-
lated in advance in order to guarantee the uniqueness of their
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composition. Scale bias is also avoided by standardizing the
channels of the images online, just before training the CNN.

Finally, for the comparison of the metric means, we
chose to apply the Kruskal–Wallis statistical test (brief non-
mathematical presentation given in Appendix B2) for an al-
pha level of 1 % because the Shapiro–Wilk test was negative
for most distributions of metric values of our experiments,
invalidating the use of Student’s t test.

For the experiment of highlighting the problem with the
accuracy (point developed in Sect. 4.1), we applied the clas-
sical hold-out method, avoiding the autocorrelation between
images belonging to a same cyclone track, with the follow-
ing partitioning: 70 % of the data for the training dataset and
30 % of the data for the test dataset.

4 Results

4.1 Accuracy and its threshold

Accuracy is a convenient measure, but according to Provost
et al. (1998) and Ling et al. (2003), the class threshold makes
it non-objective. Provost et al. (1998) argue that in real-world
cases, the use of accuracy as an ML model metric is ques-
tionable at best because the distribution of classes is gen-
erally not known, so it is impossible to optimize the mis-
classified rate. Furthermore, the authors demonstrate while
in some examples the classifiers have their accuracy statisti-
cally comparable, their AUC is significantly different. Ling
et al. (2003) argue that the accuracy loses information during
the transformation of the probability, returned by the classi-
fier, into a class identifier: as soon as this probability exceeds
the class decision threshold, the response of the classifier
takes the class identifier, while the information of the differ-
ence between the value of the probability and the threshold
is lost. In order to provide further evidence of this problem,
we study the distribution of the classifier’s predictions using
the hold-out method. Rather than applying it to a single set
of images, we identically partitioned the four sets of images
and trained and tested the classifier for all possible combina-
tions. Figure 6 shows plots of the distributions as log-scale
histograms, colored according to the ground truth of the im-
ages. Then we calculated the decision threshold for which
the number of misclassified predictions is minimal. For this
purpose, we use Youden’s index which is a measure of the
tradeoff between sensitivity and specificity. Maximizing the
index means minimizing the false positives and false neg-
atives according to its equation described in Appendix C6,
knowing that Youden’s index varies according to the class
decision threshold. By default, ML libraries set the thresh-
old to 0.5; however, in our case, the optimal threshold, indi-
cated in the title of each panel of Fig. 6, is lower than 0.5,
and for some combination of training and testing datasets,
it is even much lower (e.g., ERA5/MERRA-2 combination
in 16px@0.5). This reflects the fact that (i) the image sets

are not balanced and (ii) the number of false negatives (or-
ange color on the left side) is larger than the number of false
positives (blue color on the right side) for this particular par-
titioning.

Our set of experiments shows that the choice of the thresh-
old value depends on the partitioning, the source of the data,
and the relative importance given to false negatives and false
positives. While accuracy is a less interesting metric than
AUC and AUPRC, we decided to keep it, as a matter of in-
formation, and set its threshold to 0.5.

4.2 Metric comparisons

4.2.1 Intercomparisons

In this section, we focus on the values of the CNN metrics
obtained using the iterative cross-validation method on each
of the image sets described in Table 5. Since the Shapiro–
Wilk test shows that the distribution of the iteration means
is normal for all metrics, under the central limit theorem, we
computed the expectation and standard deviation of each of
the metrics, given in Table A2. The values of the metrics are
very high, over 0.98. They are close to those reported in the
studies about image classification that we have listed in Ta-
ble 1. As a comparison, the accuracy value of our CNN is
between those of Shakya et al. (2020) and Liu et al. (2016):
0.97 < 0.98 < 0.99. However, this comparison should be put
into perspective: our method of calculating the accuracy is
more robust against uncertainty. Additionally, the model of
Shakya et al. (2020) is trained and tested on observational
data that are quite different from multidimensional meteoro-
logical reanalysis data.

The values of the metrics are very high, but it does not
mean that a model is useful. Indeed, the usefulness of a
model is measured by the difference between its performance
and that of models based on simple rules or a domain-specific
baseline. For instance, we implement the following simple
models (from the software library scikit-learn): “most fre-
quent”, which always predicts the most frequent class ob-
served in the training dataset (i.e., background), “stratified”,
which generates randomly predictions at probabilities that re-
spect the class distribution of the training dataset (i.e., 1/3
cyclone, 2/3 background), and “uniform”, which generates
predictions uniformly at random background or cyclone with
equal probability. In our study, the CNN performs signifi-
cantly better than simple models as shown in Fig. 7. By plot-
ting the values of the metrics in Fig. 8, we can see that al-
though very close, the performances of the CNN are grouped
according to their original dataset (MERRA-2 and ERA5)
and that the performances of these two groups seem signif-
icantly different. In order to have an objective confirmation,
we chose to compare the values of the metrics using the
Kruskal–Wallis test, as the distributions of the metric val-
ues are not mostly normal (see Table A2). Table A3 sum-
marizes the pairwise comparison of the metric performances
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Figure 6. Histograms of the predicted probabilities for “true cyclone” images (orange bars) and background images (blue bars) for different
combinations of training and test datasets and resolution. The optimal decision threshold is indicated in the title of each histogram. Note the
logarithmic scale on the y axis and that by construction there are twice as many background than cyclone images.

according to the image set used and confirms our interpreta-
tion of Fig. 8. This experiment tells us that the difference be-
tween the metric values computed from the same dataset, in-
terpolated and not interpolated, can be attributed to random-
ness, whereas the metrics computed from different dataset
are quite distinct. So in our study, we can say that the inter-
polation does not impact the model performance and training
with interpolated datasets has some meaning. At last, we ob-
serve that the values of the metrics from ERA5 are greater
than those from MERRA-2.

4.2.2 Cross-comparisons

In this section we are interested in the values of the met-
rics of the CNN trained on one image set and tested on the
other image set with the same properties (image resolution
and size). In the same way as the previous experiment, we
computed the expectation and standard deviation for each of
the metrics, given in Table A4, and then compared the per-
formance obtained previously (training and testing with the
same image set) with these values (training and testing with
a different image set). Figure 9 gives the graphical represen-
tation and Table A5 gives the result of the Kruskal–Wallis
tests. This experiment shows us that regardless of the resolu-
tion and the dataset used for model training, the metric values
are statistically distinct and the value of the metrics evalu-
ated on the ERA5 dataset is greater than that evaluated on
the MERRA-2 dataset. Thus we can conclude that the ERA5

dataset is more information rich than the MERRA-2 dataset
for the classification of cyclone images using our CNN.

4.3 Misclassified images

Following the comparison of the metrics, we took a closer
look at the metadata of the images misclassified by the CNN.
Table A6 in the Appendix summarizes the number of false
alarms for each combination of training and testing datasets
discussed in Sect. 4.1. We studied the metadata of the failed
predictions that are common to all training/testing datasets
so as to limit the study to the most significant cases. We
also contextualize the misclassified images in the HURDAT2
time series. There is a total of 15 false alarms in common,
i.e., seven false positives (background images wrongly clas-
sified as cyclones) and eight false negatives (cyclone images
wrongly classified as background). However, we found that
the false negatives and the false positives were generated
from the tracks of the same cyclones. Thus, after removing
the duplicates, there are only eight false alarms left in com-
mon, i.e., seven false positives and one false negative.

4.3.1 False positives

First, we studied the false positives and have listed them in
Table A7. For each image, we gave their HURDAT2 status
(see Table A1) as well as the average probability given by
the CNN for each dataset (mean probability column). For
each of the false positives, we verified if there was a cyclone
close in the past and in the future by querying the HURDAT2
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Figure 7. Metric values showing the performances of the CNN versus simple classifiers for the four datasets. The color of the symbols
corresponds to the classifiers, while the marker shapes indicate the nature of the metric. The models are tested against the same image set as
they are trained against (e.g., era5_32/era5_32 means the CNN was trained and tested on ERA5 native).

database, and indicated the number of hours that separate
them from a referenced cyclone (status HU or TS; respec-
tively, the past and future columns). What we can already
observe is the high value of the mean probability and its low
standard deviation: the CNN is wrong with high confidence
for these images whatever the dataset used, which confirms
the relevance of the failed predictions in common. Then, we
notice that these images are temporally close to a TC by an
average of 131 h, approximately 5.5 d (in the past or in the fu-
ture). Thus we deduced that the false positives are essentially
linked to transition states leading to a cyclone or to its dissi-
pation. Figure 10 gives a graphical example of one of these
false positives for the ERA5 and MERRA-2 image sets.

4.3.2 False negative

We have listed the single example of false negative that the
training/testing datasets have in common in Table A8, and
we give a graphical example in Fig. 11. The image refers to
a cyclone, whose status is TS, and we give its mean proba-
bility and standard deviation computed by the CNN for each
dataset. We computed the lifetime of cyclonic activity near
the geographical area of this image, as previously by query-
ing the HURDAT2 database and indicated the number of
hours that separate this image from the first track of a cy-
clone in the area. We observe that the probability is very low,
which means that the CNN is wrong with high confidence,
and the low standard deviation of this probability means that
this false negative classification is relevant for all the combi-
nations of training/testing datasets. We also notice that this
image is temporally close to a tropical depression 6 h in the
future, suggesting that this false negative is essentially linked
to the dissipation of a stationary cyclone.

5 Discussion and potential future work

Designing, optimizing, and testing a DL method for im-
age classification involves many modeling choices, some of
which we have assessed and some of which we have not. We
now discuss some of the choices we have made and potential
future work.

We have chosen a binary approach for the classification
(i.e., TC or background), but it is quite possible to design a
classifier predicting the range of HURDAT2 status of the im-
ages. Such a classifier would use nine neurons with the soft
maximum activation function as the last layer of the CNN.
However, training it would probably face an acute problem
of image set imbalance. Indeed, four classes out of nine have
a number of occurrences smaller than 400 in HURDAT2 (see
Fig. A1). To improve the situation, it would be possible to
merge some classes (e.g., WV with DB and SD with SS) in
order to mitigate the problem.

Although the performance of our CNN is not an issue
(AUC and AUPRC are over 0.99), it may be less satisfactory
in other settings or if applied to classify other meteorological
features. Several leads can be pursued to improve the perfor-
mance in the future.

Our intercomparison experiments have shown that a bi-
linear interpolation does not affect the performances of the
classifier. However, there are other interpolation methods like
bicubic or nearest neighbor. It would be interesting to ver-
ify whether these interpolation methods have any effect on
the performance of the classifier. The choice of interpolation
method is particularly relevant in the case of an intercompar-
ison of data from multiple sources with different native reso-
lutions, such as is the case in climate model intercomparison
studies.
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Figure 8. Box plots of the accuracy, the AUC, and the AUPRC
metric values for the CNN for the four image sets. The models are
tested against the same image set as they are trained against (e.g.,
era5_32/era5_32 means the CNN was trained and tested on ERA5
native). Box plots are a synthetic representation of a data distribu-
tion. They are composed of a box and two whiskers. The bottom of
the box corresponds to the first quartile (Q1) of the studied dataset,
below which 25 % of the data are located. The middle line of the
box is the median of the dataset, and the top line of the box cor-
responds to the third quartile (Q3), below which 75 % of the data
are located. The interquartile range is represented by the extent of
the box: IQR=Q3−Q1. The bottom whisker is calculated accord-
ing to the IQR Q1− 1.5× IQR and the top whisker according to
Q3+1.5× IQR. The data outside the whiskers are regarded as out-
liers and are represented by diamond markers.

Our cross-comparison experiments have shown that apply-
ing an ERA5-trained CNN to MERRA-2 images works better
than applying a MERRA-2-trained CNN to ERA5 images,
which suggests that ERA5 has a larger information content
in the framework of our CNN. This is also consistent with
the findings of Malakar et al. (2020), who analyzed the error
in the location of the center, maximum winds, and minimum

pressure at sea level in six meteorological reanalyses includ-
ing ERA5 and MERRA-2 for the evolution of 28 TCs oc-
curring between 2006 and 2015 over the north Indian Ocean,
with respect to the observations of the Indian Meteorological
Department (IMD). The authors of this study show, among
other things, that the ERA5 dataset captures the evolution
of these TCs in a more realistic way than MERRA-2 (i.e.,
smaller errors in the previous variables). They also show that
ERA5 and MERRA-2 can capture the intensity of the TCs
from the depression stage to the very severe cyclonic storm
stage but not from the extremely severe cyclonic storm stage
for which the intensity of the TCs is underestimated. How-
ever, they conclude that of the six datasets, ERA5 provides
the best representation of the TC structure in terms of in-
tensity. Finally, the study published by Hodges et al. (2017)
shows that 95 % of the Northern Hemisphere TC tracks, from
the IBTrACS database that includes HURDAT2, are present
in MERRA-2. Unfortunately, this study does not include
ERA5. It also confirms the underestimation of cyclone in-
tensity in MERRA-2 compared to observations.

Some transfer learning experiments would also be inter-
esting to conduct. For example, instead of training the CNN
with randomly initialized weight values, training the CNN on
one image set with weight values initialized with those of the
CNN trained on the other image set with the same properties
could improve the performance of the CNN.

Data augmentation (especially geometric transformations;
Shorten and Khoshgoftaar, 2019) and model regularization
techniques (e.g., weight decay, batch normalization, dropout)
are proven ways to improve the robustness of a CNN trained
with a dataset of limited size. Our dataset contains 26 954
images, which is relatively small compared to the size of
datasets encountered in many computer vision applications
(for instance, Imagenet contains more than 14 million im-
ages). However, using these techniques was not justified for
our study because the performance of our CNN without data
augmentation is already very high (AUC and AUPRC are
over 0.99). Such techniques could however become very rel-
evant in future work when we seek to detect TCs in cli-
mate model simulations with a CNN trained on a reanalysis
dataset. Indeed different climate models may simulate TCs
imperfectly, and there is probably some value in offering a
larger variety of TC structures to the training dataset. It is ex-
pected that the simulation of TCs increases in quality with the
climate model resolution (Strachan et al., 2013), and climate
models running at resolutions of 10 to 50 km are now com-
monplace. Likewise we would need to augment the number
of images with very intense TCs or TCs migrating outside
their usual domains because there are indications that such
situations may become more frequent with global warming
(as presented in the introduction), and we want to ensure
these can be detected adequately in climate simulations.

In this study we work on images created on a regular lat–
long grid, which potentially introduces a deformation be-
cause of the cos(latitude) dependence of a displacement ele-
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Figure 9. Box plots of the accuracy, the AUC, and the AUPRC metric values for the CNN for different combinations of training and test
image sets. In blue, the models are tested against the same image set that they are trained against. In red, the models are tested against the
other image set of the same resolution (e.g., era5_32/merra2_32 means the CNN was trained on ERA5 native and tested against MERRA-2
32px@0.25).

ment along the longitude. Such a deformation is small in the
tropical region and therefore is not thought to be a problem
for our analysis. However, it increases as a function of lat-
itude, so it may become an important factor to consider for
TCs that migrate polewards or for the detection of midlat-
itude depressions. Data augmentation techniques that intro-
duce deformed images into the training datasets could help
to increase the robustness of the CNN in these situations.

Finally, pixel attribution experiments (saliency maps)
should give us the importance of each variable, with hints
at a possible reduction in their number or at the use of com-
posite variables such as vorticity. These experiments could
also give explanations of misclassified images. Occlusion–

perturbation-based methods like local surrogate (LIME;
Ribeiro et al., 2016), Shapley values (SHAP; Lundberg and
Lee, 2017), and gradient-based methods like Grad-CAM
(Selvaraju et al., 2017) should be resourceful.

6 Conclusions

In this study, we have adapted and tested a CNN for the clas-
sification of images according to the presence or absence
of tropical cyclones. The image sets for training and tests
were built from the ERA5 and MERRA-2 reanalyses with
labels derived from the HURDAT2 dataset. We have paid a
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Figure 10. Channels of the image on 5 August 1990, 00:00 UTC, centered on 38◦ N, 30.625◦W, taken as an example of a wrongly classified
image as a cyclone (false positive). Data are standardized.

Figure 11. Channels of the image on 6 August 1990, 06:00 UTC, centered on 27◦ N, 46.875◦W, taken as an example of a wrongly classified
image as background (false negative). Data are standardized.

lot of attention to the design of the background image set to
make sure it samples similar locations and times to the TC-
containing image. We have assessed the performance of the
CNN using accuracy but also the more objective AUC and
AUPRC metrics. We have shown that failed classifications
may be explained by the meteorological context. In partic-
ular false positives often represent a situation with cyclonic
activity, which is not yet classified as TCs by HURDAT2.
It should be relatively easy to diagnose those situations if the
TCs are tracked in time rather than dealt with as a set of sepa-
rate independent images as is the case in this study. We have
further shown that interpolation (from 0.5 to 0.25◦ or from
0.25 to 0.5◦) does not impact the performance of the CNN
and an ERA5-trained CNN on MERRA-2 images works bet-
ter than applying a MERRA-2-trained CNN to ERA5 im-
ages. This study paves the way for a future study aiming to
assess the performance of an automatic detection scheme of
TCs in climate simulations without a specific retraining of
the CNN for each new climate model or climate model reso-
lution.

Appendix A: Tables

Figure A1. Distribution of the cyclone categories/status computed
over the period 1980–2019.
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Table A1. HURDAT2 cyclone categories/status.

Two-letter code Storm status and meaning

HU Tropical cyclone of hurricane intensity (> 64 knots)
TS Tropical cyclone of tropical storm intensity (34–63 knots)
TD Tropical cyclone of tropical depression intensity (< 34 knots)
EX Extratropical cyclone (of any intensity)
SD Subtropical cyclone of subtropical depression intensity (< 34 knots)
SS Subtropical cyclone of subtropical storm intensity (> 34 knots)
LO A low that is neither a tropical cyclone, a subtropical cyclone, nor an extratropical cyclone (of any intensity)
WV Tropical wave (of any intensity)
DB Disturbance (of any intensity)

Table A2. The estimation of the values of the metrics based on iterative cross-validation. The training and test datasets come from the same
image set (intercomparison). The column “Shapiro p on means” refers to the p value of the Shapiro–Wilk test computed on the mean of each
iteration, whereas “Shapiro p on all” refers to the p value computed on all the values of the metric.

Metric Training dataset Test dataset Estimated mean Estimated SD Shapiro p on means Shapiro p on all

Accuracy

ERA5 32px@0.25 same 0.989748 0.002292 0.905230 1.363663× 10−4

ERA5 16px@0.5 same 0.989547 0.002255 0.991043 9.576093× 10−8

MERRA-2 32px@0.25 same 0.982276 0.002836 0.269320 2.560784× 10−4

MERRA-2 16px@0.5 same 0.981858 0.002927 0.902361 3.120732× 10−6

AUC

ERA5 32px@0.25 same 0.998989 0.000643 0.088747 8.914557× 10−12

ERA5 16px@0.5 same 0.998936 0.000638 0.506771 2.956014× 10−11

MERRA-2 32px@0.25 same 0.997114 0.001140 0.017086 3.536823× 10−14

MERRA-2 16px@0.5 same 0.996904 0.001107 0.239811 7.852716× 10−14

AUPRC

ERA5 32px@0.25 same 0.998430 0.000811 0.046393 2.159975× 10−9

ERA5 16px@0.5 same 0.998374 0.000796 0.359663 4.650617× 10−11

MERRA-2 32px@0.25 same 0.995573 0.001183 0.274620 3.556242× 10−12

MERRA-2 16px@0.5 same 0.995337 0.001319 0.769673 3.934050× 10−13
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Table A3. Comparisons of metric values of models taken two by two (intercomparisons). The column “Kruskal p value” refers to the p value
of the Kruskal–Wallis test computed on all the values of the metrics. The column “Comparable” indicates whether the null hypothesis is
accepted for an alpha level of 1 %.

Metric Training/test dataset Training/test dataset Kruskal p value Comparable

Accuracy

ERA5 32px@0.25/same ERA5 16px@0.5/same 9.173333× 10−1 True
ERA5 32px@0.25/same MERRA-2 32px@0.25/same 8.451539× 10−31 False
ERA5 32px@0.25/same MERRA-2 16px@0.5/same 2.367641× 10−33 False
ERA5 16px@0.5/same MERRA-2 32px@0.25/same 9.721777× 10−29 False
ERA5 16px@0.5/same MERRA-2 16px@0.5/same 9.251784× 10−31 False
MERRA-2 32px@0.25/same MERRA-2 16px@0.5/same 5.506329× 10−1 True

AUC

ERA5 32px@0.25/same ERA5 16px@0.5/same 5.243858× 10−1 True
ERA5 32px@0.25/same MERRA-2 32px@0.25/same 5.901992× 10−26 False
ERA5 32px@0.25/same MERRA-2 16px@0.5/same 9.964538× 10−32 False
ERA5 16px@0.5/same MERRA-2 32px@0.25/same 5.982768× 10−24 False
ERA5 16px@0.5/same MERRA-2 16px@0.5/same 6.935282× 10−30 False
MERRA-2 32px@0.25/same MERRA-2 16px@0.5/same 1.174539× 10−1 True

AUPRC

ERA5 32px@0.25/same ERA5 16px@0.5/same 7.391314× 10−1 True
ERA5 32px@0.25/same MERRA-2 32px@0.25/same 2.082609× 10−30 False
ERA5 32px@0.25/same MERRA-2 16px@0.5/same 2.401478× 10−35 False
ERA5 16px@0.5/same MERRA-2 32px@0.25/same 1.952581× 10−29 False
ERA5 16px@0.5/same MERRA-2 16px@0.5/same 3.139588× 10−34 False
MERRA-2 32px@0.25/same MERRA-2 16px@0.5/same 2.450381× 10−1 True

Table A4. The estimation of the values of the metrics based on iterative cross-validation. The training and test datasets come from different
image set but have the same image resolution and size (cross-comparisons). The column “Shapiro p on means” refers to the p value of the
Shapiro–Wilk test computed on the mean of each iteration, whereas “Shapiro p on all” refers to the p value computed on all the values of
the metric.

Metric Training dataset Test dataset Estimated Estimated Shapiro p Shapiro p

mean SD on means on all

Accuracy

ERA5 32px@0.25 MERRA-2 32px@0.25 0.977677 0.003182 0.226578 0.017054
ERA5 16px@0.5 MERRA-2 16px@0.5 0.977721 0.002321 0.786720 0.013096
MERRA-2 32px@0.25 ERA5 32px@0.25 0.986523 0.002604 0.073408 0.193609
MERRA-2 16px@0.5 ERA5 16px@0.5 0.986655 0.002943 0.540750 0.019739

AUC

ERA5 32px@0.25 MERRA-2 32px@0.25 0.995235 0.001789 0.762134 5.846574× 10−9

ERA5 16px@0.5 MERRA-2 16px@0.5 0.995413 0.001208 0.871147 2.561682× 10−12

MERRA-2 32px@0.25 ERA5 32px@0.25 0.998357 0.000803 0.719871 1.581214× 10−12

MERRA-2 16px@0.5 ERA5 16px@0.5 0.998323 0.000929 0.215594 5.414141× 10−9

AUPRC

ERA5 32px@0.25 MERRA-2 32px@0.25 0.993296 0.001898 0.436782 7.346610× 10−8

ERA5 16px@0.5 MERRA-2 16px@0.5 0.993437 0.001331 0.905712 2.634040× 10−11

MERRA-2 32px@0.25 ERA5 32px@0.25 0.997537 0.000852 0.825225 2.476906× 10−9

MERRA-2 16px@0.5 ERA5 16px@0.5 0.997549 0.001092 0.694913 1.416567× 10−7
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Table A5. The values of the metrics from models trained and tested on the same image set, compared to those from models trained on
one image set and tested on the other (cross-comparison). The column “Kruskal p value” refers to the p value of the Kruskal–Wallis test
computed on all the values of the metrics. The column “Comparable” indicates whether the null hypothesis is accepted for an alpha level of
1 %.

Metric Training/test dataset Training/test dataset Kruskal p value Comparable

Accuracy

ERA5 32px@0.25/same ERA5 32px@0.25/MERRA-2 32px@0.25 4.857791× 10−47 False
ERA5 16px@0.5/same ERA5 16px@0.5/MERRA-2 16px@0.5 1.005262× 10−44 False
MERRA-2 32px@0.25/same MERRA-2 32px@0.25/ERA5 32px@0.25 1.825678× 10−11 False
MERRA-2 16px@0.5/same MERRA-2 16px@0.5/ERA5 16px@0.5 1.434371× 10−14 False

AUC

ERA5 32px@0.25/same ERA5 32px@0.25/MERRA-2 32px@0.25 4.011721× 10−46 False
ERA5 16px@0.5/same ERA5 16px@0.5/MERRA-2 16px@0.5 2.698731× 10−43 False
MERRA-2 32px@0.25/same MERRA-2 32px@0.25/ERA5 32px@0.25 7.645103× 10−9 False
MERRA-2 16px@0.5/same MERRA-2 16px@0.5/ERA5 16px@0.5 2.074129× 10−12 False

AUPRC

ERA5 32px@0.25/same ERA5 32px@0.25/MERRA-2 32px@0.25 1.640760× 10−48 False
ERA5 16px@0.5/same ERA5 16px@0.5/MERRA-2 16px@0.5 3.619129× 10−47 False
MERRA-2 32px@0.25/same MERRA-2 32px@0.25/ERA5 32px@0.25 3.864565× 10−12 False
MERRA-2 16px@0.5/same MERRA-2 16px@0.5/ERA5 16px@0.5 1.332830× 10−16 False

Table A6. Statistics of failed predictions by combinations of training/testing datasets.

Training dataset Test dataset Specs Total failed False negatives False positives

ERA5 ERA5 32px@0.25 68 (0.88 %) 44 24
ERA5 MERRA-2 32px@0.25 156 (2.02 %) 125 31
ERA5 ERA5 16px@0.5 73 (0.94 %) 46 27
ERA5 MERRA-2 16px@0.5 155 (2.00 %) 128 27
MERRA-2 MERRA-2 32px@0.25 110 (1.42 %) 73 37
MERRA-2 ERA5 32px@0.25 93 (1.20 %) 58 35
MERRA-2 MERRA-2 16px@0.5 100 (1.29 %) 52 48
MERRA-2 ERA5 16px@0.5 90 (1.16 %) 40 50

Table A7. Background images wrongly classified as TC-containing images (false positives) for all combinations of training/testing datasets.
For each image we also indicate the status of the image according to HURDAT2 if present in the database (“None” if not present), the
probability of the classification (with its standard deviation across the combinations of training/testing datasets), and the temporal distance
to a cyclone in the past and in the future (with the status of the cyclone).

Index no. Status Mean prob Past (hours) Future (hours) HURDAT2 id

207 SD 0.9905± 0.0205 8250 (HU) 90 (TS) AL061990
3149 None 0.8819± 0.0544 1308 (TS) 354 (TS) AL122008
4163 WV 0.9919± 0.0150 174 (TS) 228 (TS) AL092012
6048 None 0.8240± 0.1111 132 (TS) 54 (TS) AL071998
6059 EX 0.9963± 0.0047 228 (TS) 96 (TS) AL132018
6295 None 0.8918± 0.1072 162 (HU) 60 (HU) AL132003
6836 None 0.9216± 0.0542 168 (TS) 90 (TS) AL162000

Table A8. The single TC-containing image wrongly classified as background (false negative) for all combinations of training/testing datasets.
The status of the image according to HURDAT2 and the probability of the classification (with its standard deviation across the combinations
of training/testing datasets) are indicated. The columns past and future reflect the cyclonic activity in the geographical area of the image,
i.e., the temporal distance to the first and the last tracks of the cyclone (and their HURDAT2 status).

Index no. Status Mean prob Past (hours) Future (hours) HURDAT2 id

290 TS 0.0855± 0.0665 72 (bckgrd) 6 (TD) AL162000

Geosci. Model Dev., 15, 7051–7073, 2022 https://doi.org/10.5194/gmd-15-7051-2022



S. Gardoll and O. Boucher: Detection of tropical cyclones with a CNN 7071

Appendix B: Statistical tests

Let us consider a group, a set of values of a random variable
that we observe, for example during an experiment, and its
population, the set of all the values that the variable can take
for a particular experimental context. The group is a subset
of the population.

B1 Shapiro–Wilk test

The Shapiro–Wilk test poses the so-called null hypothesis
(H0) that the group of values that a given quantitative vari-
able takes comes from a normally distributed population. For
a non-technical explanation of the test, we can say that, using
a single metric (the p value), the Shapiro–Wilk test quanti-
fies the dissimilarities between the distribution of the values
of the group and the distribution of the population of the
variable if it was normal. For a risk of error called alpha
level, commonly fixed at 1 % or 5 %, H0 is rejected if the
p value is lower than the alpha level and is accepted if the
p value is higher than the alpha level. The latter represents
the risk of accepting H0 when it is not true: a false positive.
If H0 is accepted, random sampling of the group can explain
the dissimilarities between the distribution of the values of
the group with a normal population distribution. If H0 is re-
jected, it can be stated that the population of the variable is
not normally distributed.

B2 Kruskal–Wallis test

The comparison of the mean of the values of a variable from
two different groups is usually done by Student’s t test (or
two-sample ANOVA) or the Kruskal–Wallis test. Student’s
t test is a parametric statistical test, in this case it requires
that the distribution of the given variable is normal. The
Kruskal–Wallis test is non-parametric and does not require
the assumption of the population distribution of the variable.
Indeed, it is not based on the value that the variable takes
but on its rank in the classification of the observed values
of the variable. As for the Shapiro—Wilk test, we propose a
non-technical explanation of the Kruskal–Wallis test: using
a single metric (the p value), this test quantifies the dissim-
ilarities between the mean ranks computed for two or more
groups of values, with, as H0, random sampling of the group
being able to explain the differences between the medians of
the two groups because they may come from the same popu-
lation.

Appendix C: Equations

TP, TN, FP, and FN stand for true positives, true negatives,
false positives, and false negatives, respectively.

C1 Binary classification metrics

The binary classification metrics used in this study are de-
fined as follows:

accuracy=
TP+TN

TP+TN+FP+FN
, (C1)

precision=
TP

TP+FP
, (C2)

recall or sensitivity=
TP

TP+FN
, (C3)

false positive rate=
FP

FP+TN
, (C4)

specificity=
TN

TN+FP
. (C5)

C2 Youden’s index

The Youden’s index is defined as

J = sensitivity+ specificity− 1

=
TP

TP+FN
+

TN
TN+FP

− 1 . (C6)
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