Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6659-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-15-6659-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inland lake temperature initialization via coupled cycling with atmospheric data assimilation
Stanley G. Benjamin
CORRESPONDING AUTHOR
NOAA Global Systems Laboratory, Boulder, CO 80305, USA
Tatiana G. Smirnova
Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado Boulder, Boulder, CO 80303, USA
NOAA Global Systems Laboratory, Boulder, CO 80305, USA
Eric P. James
Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado Boulder, Boulder, CO 80303, USA
NOAA Global Systems Laboratory, Boulder, CO 80305, USA
Eric J. Anderson
Civil and Engineering Department, Colorado School of Mines, Golden, CO, USA
Ayumi Fujisaki-Manome
Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, USA
School for Environment and Sustainability (SEAS), Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, USA
John G. W. Kelley
Coast Survey Development Laboratory, NOAA National Ocean Service,
Durham, NH 03824, USA
Greg E. Mann
NOAA National Weather Service, White Lake, MI, USA
Andrew D. Gronewold
Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, USA
School for Environment and Sustainability (SEAS), Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, USA
Philip Chu
NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI, USA
Sean G. T. Kelley
Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
Related authors
No articles found.
Nicola Bodini, Joseph Olson, Brian Gaudet, Giacomo Valerio Iungo, Mojtaba Shams Solari, Sayahnya Roy, Julie K. Lundquist, Nathan Agarwal, Timothy A. Myers, Bianca Adler, Jeffrey D. Mirocha, Eric James, Laura Bianco, James M. Wilczak, and David D. Turner
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2026-17, https://doi.org/10.5194/wes-2026-17, 2026
Preprint under review for WES
Short summary
Short summary
To improve offshore wind forecasts, the Third Wind Forecast Improvement Project monitored the United States East Coast for eighteen months. We compiled a daily log of weather events using advanced scanners and expert notes. This public dataset identifies important wind patterns, helping scientists test computer models and choose specific cases to study.
Lauren H. North, Adrienne M. Marshall, Glen A. Tootle, Lisa Davis, Andy W. Wood, and Eric J. Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-5815, https://doi.org/10.5194/egusphere-2025-5815, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We assessed the U.S. National Hydrologic Model's ability to simulate several components of the water cycle using multiple datasets of environmental variables. We find that the model's accuracy in streamflow simulation is positively and negatively impacted by the additional constraints, and more model parameters are identified as important. Our results inform operational hydrologic modeling by illuminating the complexities of using the continually expanding suite of data products.
Marnie B. Bryant, Adrian A. Borsa, Eric J. Anderson, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, and Adam P. Young
The Cryosphere, 19, 1825–1847, https://doi.org/10.5194/tc-19-1825-2025, https://doi.org/10.5194/tc-19-1825-2025, 2025
Short summary
Short summary
We measure shoreline change across a 7 km stretch of coastline on the Alaskan Beaufort Sea coast between 2019 and 2022 using multispectral imagery from Planet and satellite altimetry from ICESat-2. We find that shoreline change rates are high and variable and that different shoreline types show distinct patterns of change in shoreline position and topography. We discuss how the observed changes may be driven by both time-varying ocean and air conditions and spatial variations in morphology.
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024, https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Short summary
Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread processes to understand the drivers of this devastating event. The simulation results show that extreme winds with high variability, a fire ignition close to the community, and construction characteristics led to continued fire spread in multiple directions. Our results suggest that available modeling capabilities can provide vital information to guide decision-making during wildfire events.
Pengfei Xue, Xinyu Ye, Jeremy S. Pal, Philip Y. Chu, Miraj B. Kayastha, and Chenfu Huang
Geosci. Model Dev., 15, 4425–4446, https://doi.org/10.5194/gmd-15-4425-2022, https://doi.org/10.5194/gmd-15-4425-2022, 2022
Short summary
Short summary
The Great Lakes are the world's largest freshwater system. They are a key element in regional climate influencing local weather patterns and climate processes. Many of these complex processes are regulated by interactions of the atmosphere, lake, ice, and surrounding land areas. This study presents a Great Lakes climate change projection that employed the two-way coupling of a regional climate model with a 3-D lake model (GLARM) to resolve 3-D hydrodynamics essential for large lakes.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Cited articles
Anderson, E. J., Fujisaki-Manome, A., Kessler, J., Lang, G. A., Chu, P. Y.,
Kelley, J. G. W., Chen, Y., and Wang, J.: Ice forecasting in the next-generation Great Lakes Operational Forecast System (GLOFS), J. Mar. Sci. Eng., 6, 123, https://doi.org/10.3390/jmse6040123, 2018.
Balsamo, G.: Interactive lakes in the Integrated Forecast System, ECMWF
Newslett., 137, 30–34, https://doi.org/10.21957/rffv1gir, 2013.
Balsamo, G. and Mahfouf, J.-F.: Les schémas de surface continentale pour le suivi et la prévision du système Terre au CEPMMT, La Météorologie, 108, 77–81, 2020.
Balsamo, G., Salgado, R., Dutra, E., Boussetta, S., Stockdale, T., and Potes,
M.: On the contribution of lakes in predicting near-surface temperature in a
global weather forecasting model, Tellus A, 64, 1, https://doi.org/10.3402/tellusa.v64i0.15829, 2012.
Belovsky, G., Stephens, D., Perschon, C., Birdsey, P., Paul, D., Naftz, D., Baskin, R., Larson, C., Mellison, C., Luft, J., Mosley, R., Mahon, H., Van
Leeuwen, J., and Allen, D. V.: The Great Salt Lake Ecosystem (Utah, USA): long term data and a structural equation approach, Ecosphere, 2, 1–40, https://doi.org/10.1890/ES10-00091.1, 2011.
Benjamin, S. G., Devenyi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M.,
Grell, G., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith, T. L., and Manikin, G. S.: An hourly assimilation/forecast cycle: the RUC, Mon. Weather Rev., 132, 495–518, 2004.
Benjamin, S. G., Jamison, B. D., Moninger, W. R., Sahm, S. R., Schwartz, B., and Schlatter, T. W.: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle, Mon. Weather Rev., 138, 1319–1343, 2010.
Benjamin, S. G., Weygandt, S. S., Hu, M., Alexander, C. A., Smirnova, T. G.,
Olson, J. B., Brown, J. M., James, E., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., and Manikin, G. S.: A North American hourly assimilation and model forecast cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1, 2016.
Benjamin, S. G., James, E. P., Hu, M., Alexander, C. R., Ladwig, T. T., Brown, J. M., Weygandt, S. S., Turner, D. D., Minnis, P., Smith Jr., W. L., and Heidinger, A.: Stratiform cloud-hydrometeor assimilation for HRRR and RAP model short-range weather prediction, Mon. Weather Rev., 149, 2673–2694, https://doi.org/10.1175/MWR-D-20-0319.1, 2021.
Benjamin, S. G., Smirnova, T. G., James, E. P., Lin, L.-F., Hu, H., Turner, D. D., and He, S.: Land-snow assimilation including a moderately coupled
initialization method applied to NWP, J. Hydrometeorol., 23, 825–845, https://doi.org/10.1175/JHM-D-21-0198.1, 2022.
Boussetta, S., Balsamo, G., Arduini, G., Dutra, E., McNorton, J., Choulga,
M., Agustí-Panareda, A., Beljaars, A., Wedi, N., Munõz-Sabater, J.,
de Rosnay, P., Sandu, I., Hadade, I., Carver, G., Mazzetti, C., Prudhomme,
C., Yamazaki, D., and Zsoter, E.: ECLand: The ECMWF Land Surface Modelling
System, Atmosphere, 12, 723, https://doi.org/10.3390/atmos12060723, 2021.
Charusombat, U., Fujisaki-Manome, A., Gronewold, A. D., Lofgren, B. M., Anderson, E. J., Blanken, P. D., Spence, C., Lenters, J. D., Xiao, C.,
Fitzpatrick, L. E., and Cutrell, G.: Evaluating and improving modeled
turbulent heat fluxes across the North American Great Lakes, Hydrol. Earth Syst. Sci., 22, 5559–5578, https://doi.org/10.5194/hess-22-5559-2018, 2018.
Chen, C., Beardsley, R. C., and Cowles, G.: An unstructured grid, finite
volume coastal ocean model (FVCOM) syste, Oceanography, 19, 78–89, https://doi.org/10.5670/oceanog.2006.92, 2006.
Chen, C., Beardsley, R., Cowles, G., Qi, J., Lai, Z., Gao, G., Stuebe, D., Xu, Q., Xue, P., Ge, J., Ji, R., Hu, S., Tian, R., Huang, H., Wu, L., and Lin, H.: An unstructured grid, Finite-Volume Coastal Ocean Model FVCOM – User Manual, Tech. Rep., SMAST/UMASSD-13-0701, Sch. for Mar. Sci. and Technol., Univ. of Mass. Dartmouth, New Bedford, 416 pp., http://fvcom.smast.umassd.edu/wp-content/uploads/2013/11/MITSG_12-25.pdf (last access: 26 August 2022), 2013.
Choulga, M., Kourzeneva, E., Balsamo, G., Boussetta, S., and Wedi, N.: Upgraded global mapping information for earth system modelling: an
application to surface water depth at the ECMWF, Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019, 2019.
De Pondeca, M. S. F. V., Manikin, G. S., DiMego, G., Benjamin, S. G., Parrish, D. F., Purser, R. J., Wu. W.-S., Horel, J. D., Myrick, D. T., Lin, Y., Aune, R. M., Keyser, D., Colman, B., Mann, G., and Vavra, J.: The Real-Time Mesoscale Analysis at NOAA's National Centers for Environmental Prediction: Current status and development, Weather Forecast., 26, 593–612, https://doi.org/10.1175/WAF-D-10-05037.1, 2011.
Dirmeyer, P. A., Halder, S., and Bombardi, R.: On the harvest of predictability from land states in a global forecast model, J. Geophys. Res.-Atmos., 123, 13111–13127, https://doi.org/10.1029/2018JD029103, 2018.
Dirmeyer, P. A., Halder, S., and Bombardi, R.: On the harvest of predictability from land states in a global forecast model, J. Geophys. Res.-Atmos. 123, 13111–13127, 2018.
Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S., Benjamin, S. G., Manikin, G. S., Blake, B. T., Brown, J. M., Olson, J. B., Hu, M., Smirnova, T. G., Ladwig, T., Kenyon, J. S., Ahmadov, R., Turner, D. D., Duda, J. D., and Alcott, T. I.: The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description, Weather Forecast., 150, 1371–1395, https://doi.org/10.1175/WAF-D-21-0151.1, 2022.
Downing, J. A., Prairie, Y., Cole, J., Duarte, C., Tranvik, L., Striegl, R., McDowell, W., Kortelainen, P., Caraco, N., Melack, J., Mironov, D., and Schar, C.: The global abundance and size distribution of lakes, ponds, and impoundments, Limnol. Oceanogr., 51, 2388–2397, 2006.
Dutra, E., Stepanenko, V. M., Balsamo, G., Viterbo, P., Miranda, P. M., and Middelburg, J.: An offline study of the impact of lakes on the performance of the ECMWF surface scheme, Boreal Environ. Res., 15, 100–112, 2010.
ECMWF: OpenIFS: Lakes, https://confluence.ecmwf.int/display/OIFS/3.5+OpenIFS:+Lakes (last access: 7 December 2021), 2020.
Fiedler, E. K., Martin, M. J., and Roberts-Jones, J.: An operational analysis of Lake Surface Water Temperature, Tellus A, 6, 21247, https://doi.org/10.3402/tellusa.v66.21247, 2014.
Fujisaki-Manome, A., Mann, G. E., Anderson, E. J., Chu, P. Y., Fitzpatrick, L. E., Benjamin, S. G., James, E. P., Smirnova, T. G., Alexander, C. R., and Wright, D. M.: Improvements to lake-effect snow forecasts using a one-way
air-lake model coupling approach, J. Hydrometeorol., 21, 2813–2828, https://doi.org/10.1175/JHM-D-20-0079.1, 2020.
Gao, G., Chen, C., Qi, J., and Beardsley, R. C.: An unstructured-grid,
finite-volume sea ice model: Development, validation, and application, J. Geophys. Res., 116, C00D04,, https://doi.org/10.1029/2010JC006688. 2011.
Gemmill, W., Katz, B., and Li, X.: Daily real-time, global sea surface
temperature – High-resolution analysis: RTG_SST_HR, NCEP Office Tech. Note 260, 39 pp., http://polar.ncep.noaa.gov/mmab/papers/tn260/MMAB260.pdf (last access: 26 August 2022), 2007.
Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and
validation of lake surface temperature simulations with the coupled WRF-lake
model, Climatic Change, 129, 471–483, https://doi.org/10.1007/s10584-013-0978-y, 2015.
Hamill, T. M.: Benchmarking the raw model-generated background forecast in
rapidly updated surface temperature analyses. Part I: Stations, Mon. Weather Rev., 148, 689–700, https://doi.org/10.1175/MWR-D-19-0027.1, 2020.
Hostetler, S. W., Bates, G., and Giorgi, F.: Interactive coupling of a lake
thermal model with a regional climate model, J. Geophys. Res., 98, 5045–5057, https://doi.org/10.1029/92JD02843, 1993.
Hunter, T. S., Clites, A. H., Campbell, K. B., and Gronewold, A. D.: Development and application of a monthly hydrometeorological database for
the North American Great Lakes – Part I: precipitation, evaporation, runoff,
and air temperature, J. Great Lakes Res., 41, 65–77, 2015.
James, E. P. and Benjamin, S. G.: Observation system experiments with the
hourly updating Rapid Refresh model using GSI hybrid ensemble-variational
data assimilation, Mon. Weather Rev., 145, 2897–2918, https://doi.org/10.1175/MWR-D-16-0398.1, 2017.
James, E. P., Alexander, C. R., Dowell, D. C., Weygandt, S. S., Benjamin, S. G., Manikin, G. S., Brown, J. M., Olson, J. B., Hu, M., Smirnova, T. G., Ladwig, T., Kenyon, J. S., and Turner, D. D.: The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part II: Forecast performance, Weather Forecast., 150, 1397–1417, https://doi.org/10.1175/WAF-D-21-0130.1, 2022.
Kelley, S. G. T., Kelley, J. G. W., and Anderson, E. J.: Evaluation of the NASA SPoRT Composite Product of surface water temperatures for large lakes in New England and New York State, in: 24th Conference on Satellite Meteorology, Oceanography, and Climatology, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/381301 (last access: 26 August 2022), 2021.
Kourzeneva, E., Martin, E., Batrak, Y., and LeMoigne, P.: Climate data for parameterisation of lakes in Numerical Weather Prediction models, Tellus A, 64, 17226, https://doi.org/10.3402/tellusa.v64i0.17226, 2012a.
Kourzeneva, E., Asensio, H., and Martin, E.: Global gridded dataset of
lake coverage and lake depth for use in numerical weather prediction and
climate modelling, Tellus A, 64, 15640, https://doi.org/10.3402/tellusa.v64i0.15640, 2012b.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P., Li, F., Li, H., Lombardozzi, D., Riley, W., Sacks, W.,
Shi, M., Vertenstein, M., Wieder, W., Xu, C., Ali, A., Badger, A., Bisht, G., van den Broeke, M., Brunke, M., Burns, S., Buzan, J., Clark, M.,
Craig, A., Dahlin, K., Drewniak, B., Fisher, J., Flanner, M., Fox, A., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S.,
Lenaerts, J., Leung, R., Lipscomb, W., Lu, Y., Pandey, A., Pelletier, J., Perket, J., Randerson, J., Ricciuto, D., Sanderson, B., Slater, A.,
Subin, Z., Tang, J., Thomas, R., Martin, M., and Zeng, X.: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty, J. Adv. Model. Earth Syst., 11, 4245–4287,
https://doi.org/10.1029/2018MS001583, 2019.
Lewis Jr., W. M.: A revised classification of lakes based on mixing, Can. J. Fish. Aquat. Sci., 40, 1779–1787, https://doi.org/10.1139/f83-207, 1983.
Mallard, M. S., Nolte, C. G., Spero, T. L., Bullock, O. R., Alapaty, K., Herwehe, J. A., Gula, J., and Bowden, J. H.: Technical challenges and solutions in representing lakes when using WRF in downscaling applications, Geosci. Model Dev., 8, 1085–1096, https://doi.org/10.5194/gmd-8-1085-2015, 2015.
Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and
Terzhevik, A.: Implementation of the lake parameterisation scheme Flake into
numerical weather prediction model COSMO, Boreal Environ. Res., 15, 218–230, 2010.
Muñoz-Sabater, J., Lawrence, H., Albergel, C., de Rosnay, P., Isaksen, L., Mecklenburg, S., Kerr, Y., and Drusch, M.: Assimilation of SMOS brightness temperatures in the ECMWF Integrated Forecasting System, Q. J. Roy. Meteorol. Soc., 145, 2524–2548, https://doi.org/10.1002/QJ.3577, 2019.
NASA: Surface water temperature composite, https://weather.msfc.nasa.gov/sport/sst/, last access: 2 November 2021.
National Oceanic and Atmospheric Administration: NOAA High-Resolution Rapid Refresh (HRRR) Model, NOAA [data set], https://registry.opendata.aws/noaa-hrrr-pds/, last access: 28 August 2022a.
National Oceanic and Atmospheric Administration: High Resolution Rapid Refresh Model (HRRR), NOAA [data set], https://console.cloud.google.com/marketplace/product/noaa-public/hrrr?project=python-232920&pli=1, last access: 28 August 2022b.
NCAR/UCAR: Weather Research and Forecasting Model, NCAR/UCAR [code],
https://doi.org/10.5065/D6MK6B4K, 2022.
NWS – National Weather Service: Service Change Notice 20-10, https://www.weather.gov/media/notification/pdf2/scn20-10nsst1_0.pdf (last access: 26 August 2022), 2020.
Powers, J. G., Klemp, J., Skamarock, W., Davis, C., Dudhia, J., Gill, D., Coen, J., Gochis, D., Ahmadov, R., Peckham, S., Grell, G., Michalakes, J.,
Trahan, S., Benjamin, S., Alexander, C., Dimego, G., Wang, W., Schwartz, C., Romine, G., Liu, Z., Snyder, C., Chen, F., Barlage, M., Yu,
W., and Duda, M.: The Weather Research and Forecasting Model: Overview, system efforts, and future directions, B. Am. Meteorol. Soc., 98, 1717–1737, https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
Railsback, B.: Some fundamentals of mineralogy and geochemistry. Figure on
lake salinity at http://railsback.org/Fundamentals/SFMGLakeSize&Salinity07I.pdf (last access: 26 August 2022), 2006.
Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D., Liu, Z., Berner, J., Wang, W., Powers, J., Duda, M., Barker, D., and Huang, X.-Y.: A description of the Advanced Research WRF version 4, NCAR Tech. Note NCAR/TN-556+STR, 162 pp.,
http://www2.mmm.ucar.edu/wrf/users/docs/technote/v4_technote.pdf (last access: 26 August 2022), 2019.
Subin, Z. M., Riley, W. J., and Mironov, D.: An improved lake model for
climate simulations: Model structure, evaluation, and sensitivity analyses
in CESM1, J. Adv. Model. Earth Syst., 4, M02001, https://doi.org/10.1029/2011ms000072, 2012.
Thiery, W., Stepanenko, V., Fang, X., Jöhnk, D., Li, Z., Martynov, A.,
Perroud, M., Subin, Z., Darchambeau, F., Mironov, D., and Van Lipzig, N.:
LakeMIP Kivu: evaluating the representation of a large, deep tropical lake
by a set of one-dimensional lake models, Tellus A, 66, 21390, https://doi.org/10.3402/tellusa.v66.21390, 2014.
US National Ice Center: updated daily: IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1, NSIDC – National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.7265/N52R3PMC, 2021.
Vanderkelen, I., van Lipzig, N. P. M., Sacks, W. J., Lawrence, D. M., Clark,
M., Mizukami, N., Pokhrel, Y., and Thiery, W.: The impact of global reservoir expansion on the present-day climate, in: EGU General Assembly 2021,
online, 19–30 April 2021, EGU21-723, https://doi.org/10.5194/egusphere-egu21-723, 2021.
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global
inventory of lakes based on high-resolution satellite imagery, Geophys. Res. Lett., 41, 6396–6402, https://doi.org/10.1002/2014GL060641, 2014.
Weygandt, S. S., Benjamin, S. G., Hu, M., Alexander, C. R., Smirnova, T. G., and James, E. P.: Radar reflectivity-based model initialization using specified latent heating (Radar-LHI) within a diabatic digital filter or
pre-forecast integration, Weather Forecast., 150, 1419–1434, https://doi.org/10.1175/WAF-D-21-0142.1, 2022.
Wilson, R. C., Hook, S. J., Schneider, P., and Schladow, S. G.: Skin and bulk temperature difference at Lake Tahoe: A case study on lake skin effect, J. Geophys. Res.-Atmos., 118, 10332–10346, https://doi.org/10.1002/jgrd.50786, 2013.
Zeng, X., Zhao, M., and Dickinson, R. E.: Intercomparison of bulk
aerodynamic algorithms for the computation
of sea surface fluxes using TOGA COARE and TAO
data, J. Climate, 11, 2628–2644, https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2, 1998.
Short summary
Application of 1-D lake models coupled within earth-system prediction models will improve accuracy but requires accurate initialization of lake temperatures. Here, we describe a lake initialization method by cycling within a weather prediction model to constrain lake temperature evolution. We compared these lake temperature values with other estimates and found much reduced errors (down to 1-2 K). The lake cycling initialization is now applied to two operational US NOAA weather models.
Application of 1-D lake models coupled within earth-system prediction models will improve...