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Abstract. Application of lake models coupled within earth-
system prediction models, especially for predictions from
days to weeks, requires accurate initialization of lake tem-
peratures. Commonly used methods to initialize lake tem-
peratures include interpolation of global sea-surface temper-
ature (SST) analyses to inland lakes, daily satellite-based
observations, or model-based reanalyses. However, each of
these methods have limitations in capturing the temporal
characteristics of lake temperatures (e.g., effects of anoma-
lously warm or cold weather) for all lakes within a geo-
graphic region and/or during extended cloudy periods. An
alternative lake-initialization method was developed which
uses two-way-coupled cycling of a small-lake model within
an hourly data assimilation system of a weather prediction
model. The lake model simulated lake temperatures were
compared with other estimates from satellite and in situ ob-
servations and interpolated-SST data for a multi-month pe-
riod in 2021. The lake cycling initialization, now applied to
two operational US NOAA weather models, was found to
decrease errors in lake surface temperature from as much as
5–10 K vs. interpolated-SST data to about 1–2 K compared
to available in situ and satellite observations.

1 Introduction

Inclusion of lake representation into numerical weather pre-
diction (NWP) models has become increasingly necessary to
further improve representation of atmosphere–surface fluxes
of heat and moisture as model grid resolution becomes finer.
Representation of lake physics to provide time-varying lake
surface properties (e.g., Subin et al., 2012) is essential to im-
prove fluxes of heat, moisture, and momentum between the
surface and atmosphere (Hostetler et al., 1993; Thiery et al.,
2014). Lake representation is part of the overall surface treat-
ment including land-surface models (LSMs) necessary to ac-
curately model the evolution of the planetary boundary layer
in the atmosphere. Lakes are estimated to cover 3.7 % of the
global non-glaciated land area (Verpoorter et al., 2014), and
they significantly moderate sensible heat and moisture fluxes
from this “land” (i.e., non-ocean) area. Water impoundments
(reservoirs) that used to account for about 6 % of these “lake”
areas (Downing et al., 2006) have recently increased to 9 %
(Vanderkelen et al., 2021). Initial conditions for both land
and lake surface are an important consideration due to far
larger thermal inertia for soil or water than for air. Conse-
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quently, incorrect soil or lake initial conditions can result in
erroneous heat and moisture fluxes that may persist for days
and even weeks (e.g., Dirmeyer et al., 2018). This potential
source of error in fluxes is more pronounced for lake areas
with far larger thermal inertia and heat storage than even sat-
urated soils.

In operational US NOAA weather prediction models
(global and regional) up to this point, daily sea-surface tem-
perature (SST) analyses have been used to specify the sur-
face water temperatures for even small inland lakes. Inland
lake temperatures in North America have been obtained by
the interpolation of SST values from the ocean and the Lau-
rentian Great Lakes. An alternative is to incorporate one-
dimensional (1-D) lake models within NWP models and use
a continuous lake simulation forced by atmospheric con-
ditions updated regularly by new atmospheric observations
to obtain realistic lake water temperatures (e.g., “cycling”).
This cycling to initialize small lakes in NOAA operational
regional weather prediction models complements loose cou-
pling with a 3-D hydrodynamical lake model for the Lauren-
tian Great Lakes as described elsewhere in Fujisaki-Manome
et al. (2020).

Lake representation (via one-dimensional – 1-D – models,
as in LSMs) within NWP models is beneficial by providing
a first-order accurate lagged effect of the seasonal variation
in temperature, with lake water remaining colder than nearby
land in spring and warmer in autumn. The outcomes are de-
sirable, as described by Balsamo et al. (2012), for instance
by accurately representing increased evaporative fluxes in the
fall. Thus, use of a 1-D lake model has the potential to im-
prove over land representation by capturing this slower sea-
sonal response.

However, lake temperature initialization from SST (e.g.,
Mallard et al., 2015) can exaggerate this seasonal slower re-
sponse. Shallow lakes warm more slowly in spring than sur-
rounding land but more quickly than nearby deeper lakes.
Even in summer, it will take at least 1–2 weeks for cycled
1-D models to adjust from values interpolated from deeper-
lake temperatures to become more realistic for shallow lakes.
Therefore, lake temperature initialization becomes the most
important factor to accurately simulate sensible and latent
heat fluxes from lakes for short- to medium-range NWP –
more so than the use of the lake model itself. One option to
solve the lake-initialization problem is to use a model-based
climatology for seasonal variation of lake temperatures (Bal-
samo et al., 2012; Balsamo, 2013, ECMWF) using a 1-D lake
model forced by reanalysis data. The 1-D lake model used by
ECMWF for this method is the two-layer FLake (Freshwater
Lake Model) model (Mironov et al., 2010; Balsamo et al.,
2012; Boussetta et al., 2021) and also implemented into their
Integrated Forecast System (IFS) in 2015. A similar tech-
nique was applied by Mironov et al. (2010) using FLake for
the COSMO model. Kourzeneva et al. (2012a) describe ap-
plication of 20-year reanalysis data to create a global lake
climatology dataset using FLake. This technique avoids a

new spin-up with each new run but cannot capture unique
weather regime variations in a given region and time. The
UK Met Office uses satellite data to update their lake sur-
face water temperatures using the previous day values as a
background (Fiedler et al., 2014). Another option to solve the
lake-initialization problem, described here, is lake tempera-
ture evolution, referred to as “lake cycling”, with the ongoing
1-D lake prediction within an NWP model, a cost-free option
if the atmospheric conditions are relatively accurate.

Data assimilation for land-surface fields (e.g., soil tem-
perature, soil moisture, snow cover, snow water equiva-
lent, snow temperature) has been very beneficial for im-
proved short-range weather prediction accuracy (e.g., Bal-
samo and Mahfouf, 2020; Muñoz-Sabater et al., 2019; Ben-
jamin et al., 2022, others), but lake temperature has not been
a part of this surface data assimilation. In December 2020,
the two NOAA hourly updated weather models, the 13 km
Rapid Refresh (RAP) and 3 km High-Resolution Rapid Re-
fresh (HRRR), implemented an interactive small-lake multi-
layer 1-D lake model, the first NOAA weather models to do
so. The lake coverage for the HRRR model is shown in Fig. 1
(RAP model lake coverage not shown). The HRRR and RAP
weather models are coupled with the 10-layer Community
Land Model (CLM) version 4.5 lake model (Subin et al.,
2012; Mallard et al., 2015), an option within the community
Weather Research and Forecast Model (WRF, Skamarock et
al., 2019). The CLM lake model is a 1-D thermal diffusion
model allowing two-way coupling with the atmosphere. Vir-
tually no additional computational cost (< 0.1 %) was added
by use of the CLM lake model within the HRRR model. To
initialize small-lake temperatures in the RAP and HRRR, all
lake variables have been evolving (e.g., lake cycling) since
summer 2018 depending on the cycled atmospheric condi-
tions and the lake model physics as discussed in Sect. 4.
This cycling is similar to the land-surface cycling in HRRR
and RAP as described by Benjamin et al. (2022). The 1-D
lake model cannot represent 3-D hydrodynamical processes
in larger bodies of water. Thus, a second major improvement
in 2020 with lake representation in the NOAA 3 km HRRR
model occurred with the implementation of lagged data cou-
pling with the 3-D hydrodynamic-ice model for the much
larger Laurentian Great Lakes as described by Fujisaki-
Manome et al. (2020). These new improved lake treatments
are in the newer HRRR version 4 (HRRRv4) replacing the
previous HRRRv3 (differences described in Dowell et al.,
2022; hereafter D22).

Here, we describe the design and results of a unique ap-
proach to inland-small-lake initialization by cycling with
hourly updating of atmospheric conditions (clouds/radiation,
near-surface temperature/moisture/winds). This lake initial-
ization via cycling is an important component of earth-
system coupled modeling for effective NWP, with goals to
improve prediction of 2 m (air) temperature and moisture,
cloud, boundary-layer conditions, and precipitation for situa-
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Figure 1. Small-lake areas for the 3 km HRRR domain using the MODIS 15 arcsec resolution data for land/water and lake information. Only
small-lake areas treated in HRRR by the 1-D CLM lake model are shown. A zoomed-in insert for HRRR small-lake coverage in the vicinity
of the state of Wisconsin is shown in the lower left. Out of the 1 900 000 grid points in this HRRR CONUS domain, 12 305 of them (∼ 0.6 %)
are for small lakes (excluding the five Laurentian Great Lakes treated by separate coupling as described in the text). Lakes circled in black
were related to problem reports from US National Weather Service Forecast Offices on nearby deficient 2 m air temperature or dew point
forecasts in NOAA hourly updated models as discussed in Sect. 2.

tional awareness enabling short-range decision making (e.g.,
aviation, severe weather, hydrology, energy).

2 The lake-initialization problem

For the NOAA hourly updated mesoscale models, used fre-
quently for short-range weather prediction, poor 2 m air tem-
perature and/or dew point forecasts have been reported in-
termittently during 2004–2019 by the US National Weather
Service (NWS) in the vicinity of inland lakes (Fig. 1). These
hourly updated models included the Rapid Update Cycle
(RUC, Benjamin et al., 2004) with horizontal grid spacing
decreasing from 40 to 20 to 13 km (Benjamin et al., 2010),
succeeded by the 13 km RAP and 3 km HRRR (Benjamin et
al., 2016; D22, James et al., 2022 – J22). Many of these re-
ported systematic deficiencies from the US NWS were for
the 2.5 km NOAA Real-Time Mesoscale Analysis (RTMA,
De Pondeca et al., 2011), using 1 h forecasts from the 3 km
HRRR as a background. The most common report was too-
low 2 m air temperatures near inland lakes in late spring and
summer. At times, spurious prediction of fog formation was
also noted on or near small lakes due to too-cold lake tem-
peratures and erroneous heat and moisture fluxes into the at-
mosphere.

Further investigation revealed the water temperatures for
small lakes used in NOAA weather models were assigned via
horizontal interpolation from larger, deeper bodies of water
(with available AVHRR data) in the design for the NOAA
real-time gridded SST analysis (RTG_SST_HR, Gemmill et

al., 2007). An example of the analysis is shown in Fig. 2.
Temperature for the larger, deeper-water areas has a lesser
and more lagged seasonal variation than the smaller, shal-
lower lake areas due to their large heat storage capacity.
Therefore, use of the NOAA SST fields for lake temper-
atures resulted in generally too-low values through spring
and summer and even into autumn. In situations with at-
mospheric cold outbreaks in the autumn, shallow lake tem-
peratures quickly decrease (as reflected with lake cycling),
and SST-based estimated lake temperatures were too high.
This behavior was consistent with the HRRR and RTMA
deficiencies noted by forecasters. In February 2020, NOAA
changed from the RTG_SST_HR to a near-surface sea tem-
perature (NSST; see NWS, 2020) for SSTs, but using the
same horizontal interpolation method to estimate small-lake
temperatures resulting in the same temperature biases for
small lakes.

Hamill (2020), in a comparison benchmarking a statis-
tical method for 2 m temperature (at 00:00 UTC), showed
the same problem with large summer temperature biases
from the HRRRv3 1 h forecasts in August 2018 especially
in the vicinity of lakes (his Figs. 10 and 11). His results are
shown in Fig. 3, with three stations showing coldest biases
(at 00:00 UTC) greater than 2 K (circled in red), all adjacent
to lakes. In Fig. 3, these circled stations, from north to south,
are KFGN (Flag Island on Lake of the Woods; > 3 K cold
bias), KRRT – Warroad, MN (west of Lake of the Woods),
and KVWU – Waskish, MN (east of Red Lake). The overall
warm or cold biases are generally < 2 K, but these stations
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Figure 2. An example of small-lake temperatures spatially interpolated from deeper-water temperature data in the NOAA SST analysis
(Gemmill et al., 2007). For 9 October 2019, provided by NOAA National Weather Service.

adjacent to lakes are outliers, consistent with introduction of
cold-biased lake temperatures through the NSST.

With its 3 km grid spacing, the HRRR model can resolve
many inland lakes (Fig. 1). Specification of surface tempera-
tures for these small lakes using the horizontal interpolation
from the NOAA SST fields was problematic, being deter-
mined by interpolation from large-lake and ocean tempera-
tures.

In summary, errors in specified lake temperatures (as well
as ice cover and concentration) due to spatial interpolation
from oceans and larger lakes can lead to degraded atmo-
spheric predictions in the vicinity of lakes. For small lakes,
poor short-range 2 m temperature (T ) and 2 m dew point tem-
perature (Td) forecasts were noted in the vicinity of lakes,
especially from spring through summer and into autumn.
Specifically, fluxes from lakes were often poorly estimated
due to inaccurate lake temperature fields.

3 Lake model for coupling with NOAA regional
atmospheric models

To complement the now-commonplace (in NWP models)
coupling with land-surface models (LSMs) to improve fluxes

into the atmosphere, a multi-level 1-D lake model was im-
plemented within the operational 3 km HRRRv4 and 13 km
RAP weather models in December 2020, an extension to
atmosphere–surface coupling. An effective lake initialization
is a necessary complement for the lake model coupling, as
described in Sect. 4. Different earth–system coupling pro-
cesses represented in the HRRR and RAP models are de-
scribed in Table 1, including land, snow, ice, and smoke. The
Community Land Model (CLM) lake model (same in ver-
sions 4.5 and 5.0) was added for smaller lakes as an option in
the WRF model version 3.6 (Mallard et al., 2015). The CLM
lake model is described in more detail below with its con-
figuration for the NOAA HRRRv4 and RAP weather mod-
els. A detailed description of the physical processes (cloud
microphysics, turbulent exchange, land surface, etc.) in the
HRRR and RAP models is described by D22 and Benjamin
et al. (2016). An additional improvement in lake–atmosphere
coupling in NOAA weather models for large lakes (>
15000 km2) was recently introduced – a coupling between
the NOAA HRRR model using predicted lake temperatures
and ice concentration fields from the NOAA GLERL/NOS
three-dimensional hydrodynamic-ice model run in real time
over the Laurentian Great Lakes, as described by Fujisaki-
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Figure 3. The 2 m temperature biases for 1 h HRRR forecasts valid at 00:00 UTC in August 2018 (from HRRRv3, before introduction of lake
cycling and using NSST estimates instead; HRRR versions and dates are listed in D22). Stations with low bias less than −2 K are circled in
red. (Credit and thanks to Thomas Hamill for providing a regional version of his Fig. 10b in Hamill, 2020.)

Manome et al. (2020). This hydrodynamic-ice model is based
on the Finite Volume Community Ocean Model (FVCOM,
Chen et al., 2006, 2013) coupled with the unstructured grid
version of Los Alamos sea ice model (CICE; Gao et al.,
2011) and is applied to the NOAA Great Lakes Operational
Forecast System (GLOFS, Anderson et al., 2018). This time-
lagged data coupling (alternate applications of HRRR at-
mospheric forcing and FVCOM–CICE lake forcing about
6–12 h in advance) was incorporated to improve lake-effect
snow (LES) predictions in winter but has also been found
to improve near-lake atmospheric predictions year-round es-
pecially for upwelling events in the warm season. The use of
FVCOM–CICE to specify lake temperatures addresses previ-
ous errors in SST from relatively fast changes in lake temper-
atures due to cold air outbreaks or upwelling events. These
changes sometimes escape AVHRR-derived SST detection
due to multi-day cloud obscuration.

3.1 CLM lake model applied to HRRR for smaller
inland lakes

Subin et al. (2012) describe the 1-D CLM lake model as ap-
plied within the Community Earth System Model (CESM)
as a component of the overall CESM CLM (Lawrence et
al., 2019). Gu et al. (2015) describe the introduction of the
CLM lake model into the WRF model and initial experi-
ments using its 1-D solution for both Lake Superior (aver-
age depth of 147 m) and Lake Erie (average depth of 19 m).
The CLM lake model divides the vertical lake profile into
10 layers driven by wind-driven eddies. The atmospheric in-

puts into the model are temperature, water vapor, horizon-
tal wind components from the lowest atmospheric level, and
shortwave and longwave radiative fluxes (from the HRRR
model in this application). The CLM lake model then pro-
vides latent heat and sensible heat fluxes back to the HRRR.
The CLM lake model is called every 20 s within the HRRR
model. The CLM lake model was configured with the top
layer fixed to a 10 cm thickness (Gu et al., 2015) and with the
rest of the lake depth divided evenly into the other nine lay-
ers. Energy transfer (heat and kinetic energy) occurs between
lake layers via eddy and molecular diffusion as a function of
the vertical temperature gradient. The version of the CLM
lake model used for HRRRv4 and RAP was introduced with
CLM version 4.5 and continues without change in CLM ver-
sion 5 (Lawrence et al., 2019). The CLM lake model also
uses a 10-layer soil model beneath the lake, a multi-layer
ice formation model and an up-to-5-layer snow-on-ice model
(Gu et al., 2015). Again, testing of the CLM lake model by
the authors within WRF showed computational efficiency of
the model with no change of even 0.1 % in run time with
the HRRR and RAP applications. Multiple layers in lake
models better represent vertical mixing processes in the lake.
By intention, the CLM lake model was only applied for the
HRRR and RAP model to smaller lakes, since NOAA be-
gan at the same time to provide temperature and ice cover
through GLOFS for the Laurentian Great Lakes through the
3-D hydrodynamic-ice model (Fujisaki-Manome et al., 2020;
Anderson et al., 2018).
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Table 1. Earth-system coupling added to NOAA regional models (HRRR, RAP, RUC – pre-2012).

Component Prognostic Layers Year Year Data Other information,
variables (below introduced for introduced for assimilation references

surface experimental NCEP
except cycling
for
smoke)

Soil Temperature, 9 1996 (6 1998 Cycling, atmosphere- Moderately coupled
moisture levels (6 levels to-soil coupled DA (Benjamin et al.,

until 2012) until DA 2022)
2014)

Snow Water 2 1997 1998 Cycling, atmosphere- Moderately coupled
equivalent, to-snow DA for DA; subgrid fraction
snow temperature, trim/build introduced 2020
depth, from satellite for
temperature cover

Ice Temperature 9 2010 (6 levels 2012 Cycling, atmosphere- Subgrid fraction
until 2012) (6 levels to-surface introduced 2018

until coupled DA
2014)

Smoke Smoke 50 atmosphere 2016 2020 Cycling, fire radiation No direct DA, only
mixing layers power from satellite cycling
ratio

Small lakes Temperature, ice 10 2018 2020 Cycling No direct DA, only
fraction, cycling
mixing

Large lakes Temperature, ice FVCOM 2018 2020 Independent FVCOM driven by
(Great fraction, levels HRRR wind, radiation,
Lakes) mixing temperature, 6 h lag

(Fujisaki-Manome et
al., 2020)

3.2 Lake area mask

Grid points were assigned as lake points when the fraction of
lake coverage in the grid cell (derived from yet finer 15 arcsec
MODIS data) exceeds 50 % and when HRRR grid point ele-
vation is more than 5 m a.s.l. (above sea level, to distinguish
from ocean) and is disconnected from ocean areas with the
3 km land–water mask. The lake water mask is therefore
binary, set to either 1 or 0. This binary approach at 3 km
seemed capable of capturing the effect of lakes on regional
heat and moisture fluxes. The alternative subgrid lake frac-
tion approach was used by ECMWF with their 9 km model
(Choulga et al., 2019).

An overview of the lake number, areal coverage, and in-
tegrated volume for the 3 km HRRRv4 model are depicted
in Table 2. The HRRR CONUS domain (Fig. 1) is able to
represent 1864 separate lakes occupying 0.6 % of the entire
domain. These water bodies represented in HRRR as “lakes”
include reservoirs and larger rivers, and about half of the
1864 lakes are single-grid-point lakes. The 16 largest lakes

in the HRRR CONUS domain have surface area greater than
1000 km2, 9 in Canada and 2 on the US–Canada border (Lake
of the Woods and Lake St. Clair). In contrast, the five Lau-
rentian Great Lakes (Table 3) range in size from 82 000 km2

(Superior) to 19 000 km2 (Ontario), and, therefore, their rep-
resentation in the coupled HRRR system (Table 1) is handled
with 3-D hydrodynamic-ice models (Fujisaki-Manome et al.,
2020).

The lake area mask for the 3 km HRRRv4 used an algo-
rithm for identifying an ocean area mask for all areas with
contiguous water areas and leaving other areas also below
5 m a.s.l. as near-ocean lagoon regions treated as lakes with
the CLM 1-D lake model. These lagoon areas separated from
the ocean by barrier islands in the HRRR representation
(Fig. 1) include the Intracoastal Waterway in Texas largely
separated from the Gulf of Mexico by Padre Island, Indian
River in Florida largely separated from the Atlantic Ocean
by Merritt Island, and Lake Pontchartrain in Louisiana. This
ocean-contiguity technique is similar to the flood-filling tech-
nique used by ECMWF (Choulga et al., 2019).
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Table 2. Characteristics of small lakes (not including the five Laurentian Great Lakes) resolved in the 3 km HRRRv4 CONUS domain over
the lower 48 United States and adjacent areas of Canada and Mexico. Grid points were assigned as having a lake land use for points with at
least 50 % lake representation from the higher-resolution 15 arcsec MODIS land-use data.

Small lake No. of Percent of Percent of Average Surface Volume of
size (grid lakes no. of small lake depth area of lakes (km3)
points) small surface (m) lakes (km2)

lakes coverage

1 grid point 917 49 % 7 % 13 8812 115
(3 km× 3 km)

2 (∼ 20 km2) 323 17 % 5 % 12 6208 76

3 155 8 % 4 % 11 4468 49

4–5 157 8 % 6 % 14 6746 97

6–10 (∼ 100 km2) 155 8 % 10 % 14 11 570 162

11-100 (∼ 1000 km2) 141 7 % 30 % 21 35 518 769

> 100 16 < 1 % 38 % 14 44 926 614

All 1864 100 % 100 % 118 248 1882

Figure 4. Lake depth for small lakes in a subset of the HRRR domain.

Table 3. Characteristics of the five Laurentian Great Lakes (surface
area, volume) (Hunter et al., 2015).

Laurentian Surface Volume
Great area of of lakes
Lakes lakes (km3)

(km2)

Superior 82 100 12 000
Michigan 57 800 4920
Huron 59 600 3540
Erie 25 670 484
Ontario 19 010 1640

3.3 Lake depths

Lake depths for the HRRRv4-WRF-CLM lake configura-
tion (Fig. 4) are assigned from a global dataset provided by
Kourzeneva et al. (2012b, hereafter K12). For some smaller
lakes identified using the 15 arcsec MODIS land–water mask
not found in K12, a 50 m depth was assumed (too deep, will
be reduced in future). K12 identified uncertainties in their
own database including estimates of lake depth and errors in
coastlines. More recently, ECMWF applied a 10 m depth as a
default depth for these small lakes (Choulga et al., 2019). For
many lakes in the K12 database, a single value for maximum
lake depth had been applied to all lake points, which results
in excessive lake water volume and too-cold temperatures as
discussed in Sect. 5. However, the K12 database still allows
overall differentiation between shallow and deep lakes.
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3.4 Turbidity

A single value for turbidity to describe absorption of down-
ward shortwave radiation is used in CLM, allowing for
a moderate amount of suspended sedimentation. Subin et
al. (2012) describe other options for variations in radiative
transfer in lake bodies to capture degrees of eutrophication,
but these are not used here.

3.5 Salinity

The CLM lake model is configured for fresh water. The au-
thors manually modified the freezing temperature to account
for non-zero salinity (Railsback, 2006) from 0 to −5 ◦C for
Mono Lake in California and Great Salt Lake (GSL) in Utah
to capture the effect of salinity. Other areas of water im-
poundment from coastal lagoons in the 3 km HRRR lake
representation (Fig. 1) also have, in reality, non-zero salinity
(e.g., along the coasts of the Gulf of Mexico and the Atlantic
Ocean), but this is not applied in HRRR/RAP. Moreover, no
change in freezing temperature is necessary for these areas
anyway.

3.6 Elevation

The elevation value (above sea level) assigned to each lake
grid point is the same assigned to that from the atmospheric
model, which may be different from reality but at least con-
sistent with the atmospheric conditions. As mentioned ear-
lier, the minimum elevation above sea level of a grid point
to be assigned as a lake is 5 m; other water grid points are
assumed to be ocean.

3.7 Special situations for CLM lake model application

The algorithm for the turbulent heat flux calculation in the
CLM lake model was mainly based on Zeng et al. (1998),
except that roughness length scales for temperature and hu-
midity are the same as roughness length scale for momentum
for its WRF lake application, while they are updated dynami-
cally in CLM 4.5. Charusombat et al. (2018) showed that the
same roughness length scales for temperature and salinity as
that for momentum could result in overestimated surface sen-
sible and latent heat fluxes in autumn and winter. Therefore, a
revision to the CLMv4.5 lake model was introduced for mod-
ified roughness lengths over water using modified formula-
tions of the Coupled Ocean-Atmosphere Response Experi-
ment (COARE) algorithm as described by Charusombat et
al. (2018) to improve surface sensible and latent heat fluxes.

For GSL with a very high value of salinity (270 ppt north
of∼ 41.22◦ N with freezing point of 249 K and 150 ppt south
of ∼ 41.22◦ N with freezing point at 263 K), a change of
freezing temperature to −5 ◦C appeared to be not sufficient
to keep the lake ice-free during the cold outbreaks in win-
ter in this high-elevation area. GSL is unusual in various as-
pects – it is hypersaline (far more saline than the ocean), the

largest terminal lake (without outflow) in the Western Hemi-
sphere (Belovsky et al., 2011), shallow (mean depth of 5 m),
and subject to very strong eutrophication (Belovsky et al.,
2011). According to GSL climatology the lake stays ice-free
all winter, and its temperature goes slightly below freezing
only for a very short period in January and February. Thus,
we presume that the CLM lake model needs to allow tur-
bidity variation (see Sect. 3.4). A solution to this representa-
tion problem was use of a bi-weekly climatology over each
1-year period to bound the cycled GSL temperature at ini-
tial forecast time not to deviate more than ±3 ◦C from the
climatological value interpolated to the current day of year.
Also, using special code, GSL was forced stay ice-free for
the whole year as observed.

3.8 Time step

The CLM lake model within the HRRR/RAP weather mod-
els was run with the same time step as for other physical pro-
cesses in the HRRR model (20 s) and the RAP model (60 s).
Again, even with this relatively high frequency for calling the
CLM lake model, the computational expense was extremely
small – less than 0.1 % of overall HRRR run time.

4 Initialization for small-lake temperatures by cycling
with ongoing atmospheric predictions – a strategy

The central strategy described in this paper is to use accu-
rate, ongoing atmospheric forcing with a computationally in-
expensive 1-D lake model to obtain an equilibrium state of a
lake temperature profile. This technique responds appropri-
ately to strong changes in atmospheric forcing (e.g., cold air
outbreak or excessive heat events). With the NOAA HRRR
and RAP atmospheric models performing hourly data assim-
ilation of a broad set of hourly observations, accurate atmo-
spheric forcing is available.

The RAP and HRRR hourly data assimilation cycles in-
clude these aspects, all of which are important for cycling
initialization of inland lakes. First, cloud assimilation (from
satellite and ceilometer data) is performed to ensure accu-
rate shortwave and longwave radiation fields (Benjamin et
al., 2021). Second, radar reflectivity data are assimilated as
part of a 3 km ensemble data assimilation system to ensure
accurate short-range precipitation (Weygandt et al., 2022;
D22; J22; Benjamin et al., 2016). Finally, 2 m air temperature
and moisture and 10 m wind observations are effectively as-
similated (i.e., producing more accurate predictions), includ-
ing representation through the boundary layer using pseudo-
innovations (James and Benjamin, 2017, meaning estimated
observation–background forecast differences but not actual).
Other information on the HRRR/RAP data assimilation is
provided by Benjamin et al. (2016) and D22.

The cycling of the 10-level CLM lake model within the
then-experimental HRRRv4 started on 24 August 2018. Af-
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Table 4. Expected seasonal lake–atmosphere temperature consequences from different lake-initialization strategies.

Consequences (to Coupling Lake temperatures in Lake temperatures in fall
right) from strategy lake and spring–summer
for lake initialization atmosphere
(below) within

initialization

SST interpolation to None Much too cold, Still generally too cold
small lakes especially for shallow but intermittently too

lakes. warm after cold-air
outbreaks.

Lake annual variation One-way More accurate. No More accurate. Will not
forced by reanalysis weather regime variation capture variation from
atmospheric data – in a given year. weather regimes in a
one-way cycling from given year.
atmospheric forcing

Daily updating with None More accurate but More accurate but
satellite data cannot keep up with cannot keep up with

changes during cloudy changes during cloudy
periods. periods.

Two-way coupled Two-way More accurate including More accurate including
cycling response to specific yearly/seasonal

yearly/seasonal anomalies.
anomalies.

ter 10 d of cycling (Fig. 5), differences in lake temperatures
between HRRRv4 and the operational HRRRv3 using in-
terpolated NSST data were evident of 5–15 ◦F (3–12 ◦C or
276–285 K), showing that the adjustment with realistic at-
mospheric conditions and use of the CLM lake model with
roughly accurate lake depth data was very effective.

Possible approaches for initializing lake temperatures are
summarized in Table 4. The simplest option is via larger-
scale water temperature data (SST data) with horizontal in-
terpolation to smaller water areas including inland lakes and
reservoirs; this was the previous strategy for the HRRRv3
and older RAP models before introduction of cycling us-
ing the CLM lake model. An alternate strategy is to run
lake models over a multi-year period forced by reanalysis
atmospheric data (ERA-Interim) as described by Balsamo
et al. (2012), Dutra et al. (2010), and Balsamo (2013) for
the ECMWF to obtain a yearly varying climatology of lake
temperature for all lakes represented. This method will cap-
ture the mean annual variation of lake temperatures. How-
ever, due to multi-year averaging, it cannot represent anoma-
lous conditions in a given year (sustained heat or sustained
cold conditions), which can modify temperatures especially
for shallow lakes by several kelvin within 1–2 weeks. Use
of daily updating from satellite data can be effective (e.g.,
MetOffice – Fiedler et al., 2014) under clear-sky conditions.
Full cycling of the lake model within an ongoing coupled
weather model, the strategy described in this paper, can rep-

resent the lingering effects of anomalously warm or cold
weather upon lake temperatures and the resultant fluxes.

The two-way-coupled cycling (Table 4) used now in the
HRRR and RAP models benefits via hourly data assimila-
tion using the latest hourly observations both for the atmo-
sphere (D22) and land-surface snow conditions (Benjamin
et al., 2021). In the 3 km HRRR model, the 3-D state of
the atmosphere, land surface, and inland lake conditions are
advanced on 20 s time steps using the HRRR-specific con-
figuration (described in D22) of the WRF model (Powers
et al., 2017; Mallard et al., 2015). As atmospheric condi-
tions change every 20 s (including temperature, moisture,
wind, and radiation), the exchange of heat, moisture, and mo-
mentum between inland lake points and the atmosphere also
varies. Lake temperature is not modified in the hourly data
assimilation step, but the ongoing exchange recalculated ev-
ery 20 s forces an evolution of lake conditions to values con-
sistent with atmospheric conditions. ECMWF applies a sim-
ilar ongoing cycling for lake prognostic variables (ECMWF,
2020) for lake initialization.

A similar challenge is the initialization of lake ice cover.
Similar to the treatment for lake temperature, cycling of
a multi-level lake model (like the CLM lake model) can
provide an alternative, adaptive-in-time method for lake
ice initialization. NOAA has used in the HRRR and RAP
the daily IMS ice cover product (https://usicecenter.gov/
Products/ImsHome, last access: 26 August 2022) (US Na-
tional Ice Center, 2021) for binary (non-fractional) lake ice
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Figure 5. Lake surface temperatures from 18 h forecasts valid at 15:00 UTC on 3 September 2018 for the (a) operational HRRRv3 using
NSST for lake temperatures and (b) then-experimental HRRRv4 with CLM lake model and cycling.

cover. The IMS ice cover is used for oceans and large lakes
(e.g., for RAP for Great Slave Lake and Great Bear Lake in
northern Canada). For small lakes below the resolution of
the IMS ice map, lakes stayed open for the winter. Start-
ing with HRRRv4 and RAPv5, ice concentration from the
NOAA global model is used for oceans, FVCOM ice frac-
tion is used for the Great Lakes, and ice fraction from the
CLM lake model is used for small lakes.

5 Results

In this section, we describe comparisons of lake surface tem-
perature evolution between the CLM implementation de-
scribed here and the lake specification through interpolation
from the NSST dataset (Fig. 2) at lakes in the United States
and southern Canada.

Comparisons during 2018–2019 were drawn from real-
time simulations from the then-operational HRRRv3 (using
interpolated SST) and the then-experimental HRRRv4 (us-
ing CLM). More recent comparisons were made for March–
November 2021 between the operational HRRRv4 (using
CLM) and interpolated NSST values (as used in 2019–2020
for HRRRv3). In addition, the CLM and NSST values were
compared to in situ observations where available and also to
satellite-based estimates defined below.

5.1 Cases from 2018–2019

Introduction of the CLM lake model forced by ongoing
HRRRv4 atmospheric conditions (i.e., cycling) allowed,
within only 10 d, an increase in lake temperatures for Red
Lake and Lake of the Woods (both in Minnesota) from 3 K
to over 10 K (Fig. 5) in September 2018. A comparison in
skin temperature for a year later (October 2019) between
versions of the HRRR model (HRRRv4 with lake cycling
vs. HRRRv3), including differences with and without lake
cycling, is shown in Fig. 6. Higher temperatures were evi-
dent for the Minnesota/Ontario lakes from cycling (vs. NSST
interpolation). HRRRv4 also included coupling with the 3-D
FVCOM lake model for the Laurentian Great Lakes, showing
areas of upwelling with associated cooler water over Lake
Superior in Fig. 6 from predominant westerly to southwest-
erly near-surface wind at this time.

5.2 Comparisons of different lake temperature
estimates for 19 lakes from the lower 48 US and
southern Canada during 2021

During a period from March to November 2021, a compari-
son was made of lake surface temperatures between the cy-
cled HRRRv4-CLM values and those from three other esti-
mates from NASA, NOAA, and in situ observations. A geo-
graphically diverse set of 19 lakes over the lower 48 United
States and southern Canada was selected for these compar-
isons as listed in Table 5 and shown in Fig. 7. Lakes selected
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Figure 6. Difference (K) in lake surface temperatures between ver-
sions of HRRR model using cycled lake-model values (HRRRv4)
and using interpolated NSST data (HRRRv3). Valid at 13:00 UTC
on 13 October 2019 and also includes differences from use of the
FVCOM lake model in HRRRv4 (Fujisaki-Manome et al., 2020).

included near-ocean lagoon areas separated from ocean areas
by coastal land as resolved by the 3 km land–water mask as
discussed in Sect. 3.2. The water areas also included a reser-
voir (Lake Sakakawea). Some of these lakes are dimictic or
polymictic (with ice cover part of each year, Lewis, 1983),
but five of them do not experience any ice cover (Table 5),
and lakes 5, 6, 7, and 8 are monomictic. The CLM lake model
was cycled for all these lakes in the 3 km HRRRv4 model.
The 19 lakes included 7 lakes with a surface area greater than
1000 km2. The March–November evaluation period includes
the spring–summer warming period and the cooling period
in autumn. Data points were obtained monthly for March–
August and weekly for September–November.

The HRRRv4-CLM values for these 19 lakes were com-
pared first with an estimate from the NASA SPoRT (Short-
term Prediction Research and Transition) real-time sur-
face water temperature composite including time-weighted
MODIS and VIIRS data for inland lakes (NASA, 2021; Kel-
ley et al., 2021). The SPoRT estimates are similar to the
satellite-based lake temperature estimates from the Met Of-
fice (Fiedler et al., 2014). The SPoRT composite is valid from
the surface to 2 m depth and is averaged over a 7 d period
to mitigate for cloud cover on a given day. A second lake
temperature estimate is that from NSST, as discussed earlier.
Third, in situ surface water temperature observations were
available from observing platforms in 9 of the 19 lakes (Ta-
ble 6). The platforms are operated by federal, state, and local
government agencies and a regional ocean observing system.
The depths of the water temperature observations were only

available at four of the nine platforms. At these four sites, the
depth ranged from 0.45 to 0.9 m.

In general, the HRRRv4-CLM-cycled lake surface temper-
atures showed the anticipated difference from NSST values
(Fig. 8) with quicker summer warming from HRRR–CLM
cycling for all lakes except the southern three lakes (5, 6, and
7 in Table 5, with lakes 6 and 7 essentially lagoons in close
proximity to the ocean) and Bear Lake in UT/ID (Lake 12,
39 m depth). The NSST estimates were colder for spring
through summer than HRRR values for 15 of the 19 lakes,
a consequence from the NSST estimate via horizontal inter-
polation from deeper bodies of water.

For the nine lakes with in situ observations (Table 6),
the HRRR–CLM-cycled lake temperatures are generally able
to better capture weekly variability in summer and autumn
months, associated with windy periods increasing mixing or
relatively warm and cool weather periods or varying amounts
of cloud cover. This can be seen, for example, at Utah Lake
and the Intracoastal Waterway west of Padre Island in Texas
(note cooling from passage of Hurricane Nicholas in mid-
September). The most dramatic improvement of HRRR–
CLM over NSST lake temperatures is seen at Lake Tahoe
and lakes 14–19 in the northern region, with NSST estimates
5–10 K too cool. At two of the lakes with in situ observa-
tions, the Intracoastal Waterway (linked to the ocean) and
Lake Pontchartrain, both lagoons linked to the ocean, NSST
estimates are generally closer than HRRR–CLM to the ob-
servations.

HRRR–CLM lake surface temperatures matched in situ
observations well for the northern lakes, usually within 1–
2 K. In contrast, the lake temperature values from SPoRT
were generally warmer than HRRR or in situ observations
in the autumn period. The SPoRT observations showed a
strong confirmation of HRRR–CLM-cycled lake tempera-
tures for lakes in the western US (lakes 8–13) and most lakes
in the northern areas (lakes 4, 14–19). Finally, the HRRR–
CLM-cycled lake temperatures during this period often var-
ied strongly from the NSST estimates, with differences of
up to 5–10 K (largest difference with Red Lake, Lake 15).
The effect of lake depth was evident with a faster transition
to fully mixed lakes for shallow lakes (e.g., 5 m depth for
Red Lake in MN, Lake 15 in Table 5) but subject to more
temporal and horizontal variation for deeper lakes. Figure 9
showed a strong intralake variation of 7 K across Lake of the
Woods (32 m depth) in the HRRR–CLM estimate, in con-
trast with very little variation (< 1 K) across Red Lake. Due
to a lack of high-resolution observations of lake surface tem-
peratures, it is difficult to determine which intralake varia-
tions are more realistic. However, we think some of these
intralake contrasts from HRRR–CLM may be exaggerated
from actual values, possibly requiring a future introduction
of a small temperature exchange rate (diffusion) between ad-
jacent lake columns. Differences in skin temperature (e.g.,
SPoRT) and bulk temperature (e.g., in situ) for lakes have
been noted (e.g., Wilson et al., 2013) of up to 0.5 K, but the
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Figure 7. Locations of 19 lakes (see Table 5) used for the lake surface temperature intercomparison in this paper in Fig. 8. These lakes are
shown as mapped onto the 3 km CONUS HRRR model domain.

Figure 8. Lake surface temperatures in 2021 (April–October) from the 19 selected lakes (Table 5, Fig. 7) from HRRR–CLM-cycled, NSST,
SPoRT, and in situ data.
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Table 5. Lakes for comparison of lake surface temperatures between HRRRv4/CLM, NASA SPoRT, NSST, and in situ observations as shown
in Figs. 7 and 8. Area is shown for lakes more than 1000 km2. Lake depths are constant within each lake except for lakes 2, 3, and 18. See
Fig. 4 for example map of lake depth used in HRRR. Specific HRRR I/J 3 km grid points (indicated in table) were selected from HRRR data
for each lake.

Lake Lake name State/province, HRRR HRRR Area Depth Ice-
number country I point J point (km2) used free?

(m)

1 Simcoe ON, CA 1378 799 6 N

2 St. Clair ON/MI, CA/US 1302 709 1240 6 N

3 Champlain VT/NY, US 1534 835 77 N

4 Sebago ME, US 1610 833 33 N

5 Okefenokee FL, US 1459 145 1510 3 Yes

6 Pontchartrain LA, US 1136 224 2180 10 Yes

7 Intracoastal TX, US 905 128 3300 10 Yes
Waterway
(near Corpus
Christi, TX)

8 Salton Sea CA, US 337 387 9 Yes

9 Tahoe NV/CA, US 259 628 313 N

10 Great Salt UT, US 486 653 3050 3 Yes

11 Utah UT, US 496 622 3 N

12 Bear ID/UT, US 518 684 29 N

13 Sakakawea ND, US 790 868 27 N

14 Winnebago WI, US 1143 742 7 N

15 Lower Red MN, US 961 880 5 N

16 Lake of the Woods MB/MN, CA/US 965 919 3030 32 N

17 Manitoba MB, CA 879 972 3240 5 N

18 Winnipeg MB, CA 916 977 13 270 8 N

19 Nipigon ON, CA 956 956 5410 55 N

HRRR vs. NSST differences in this study are generally much
larger than this magnitude.

The main deficiencies evident so far with the HRRR–CLM
lake temperatures appear to be associated with errors in lake
depth values. On the average, the current specified values
for mean lake depth for most lakes are too deep compared
to reality, since the preprocessing with the K12 dataset sim-
ply assigned a single lake depth value (maximum or mean)
to all grid points for that lake even up to the modeled lake
points adjacent to land, as shown in Table 5 for 16 or the
19 lakes studied. We also noted too-low lake temperatures
in HRRRv4 for lake grid points at the western edge of a
few lakes – e.g., Tahoe, Sebago (ME), Cayuga (NY), and
Champlain, all relatively deep lakes (Fig. 5, Table 5). We at-
tribute this to 1-D upwelling from insufficient bathymetry

data resulting in cylinder-like lake volumes with constant
lake depths, therefore with (a) too-deep lake-edge pixels co-
inciding with (b) strong winds coming off from land areas
with predominantly westerly winds. This deficient effect was
not widespread for the HRRR model and did not affect the
overall results. Again, this behavior is attributed to the be-
havior of the lake model over integrations with the inaccurate
lake depth information and not to the lake cycling initializa-
tion design.

6 Conclusions

We report here on the first use of a small-lake
model (CLM4.5, 10 layer) in US NOAA NWP mod-
els along with an ongoing cycling of lake temperatures
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Table 6. Sources of available in situ data among 19 lakes in Table 5.

Name of No. Source of Depth of URL
lake from observation sensor

Table 5 (m)

Lake St. Clair 2 ECCC 6 https://www.ndbc.noaa.gov/station_page.php?station=45147
(last access: 26 August 2022)

Lake 3 GLERL 0.45 https://www.ndbc.noaa.gov/station_page.php?station=45195
Champlain– (last access: 26 August 2022)
Schuyler Reef

Sebago Lake 4 Portland Est 1 https://www.pwd.org/sebago-lake-monitoring-buoy
@ Lower Bay Water (last access: 26 August 2022)

District Buoy

Lake 6 NOAA/ 0.6 https://www.ndbc.noaa.gov/station_page.php?station=nwcl1
Pontchartrain National (last access: 26 August 2022)
@ New Canal Ocean
Station Service

Intracoastal 7 Texas Unknown https://www.ndbc.noaa.gov/station_page.php?station=babt2
Waterway @ Coastal (last access: 26 August 2022)
Baffin Bay Ocean
near Padre Observing
Island Network

Lake Tahoe 9 NASA/JPL 0.5 https://laketahoe.jpl.nasa.gov/get_imp_weather
(last access: 26 August 2022)

Utah Lake @ 11 Utah DWQ Unknown https://wqdatalive.com/public/669
Provo Marina Water (last access: 26 August 2022)

Quality
Network

Bear Lake 12 Utah DNR Unknown https://stateparks.utah.gov/parks/bear-lake/current-conditions/
State Parks (last access: 26 August 2022)

Lake 13 USGS Unknown https://waterdata.usgs.gov/monitoring-location/06330000/#parameterCode=00065&period=P7D
Sakakawea @ (last access: 26 August 2022)
near Williston,
Missouri River
ND

since 2018 to initialize lake temperatures in each pre-
diction. These models are the 3 km HRRRv4 (D22, J22)
and 13 km RAPv5 hourly updated models, both of which
became operational in December 2020 after cycling since
August 2018. At 3 km grid spacing, the HRRR model
applied this small-lake modeling and assimilation to 1864
small lakes varying in size from about 10 km2 (single grid
point) to 14 larger lakes over 1000 km2 in surface area but
not including the Laurentian Great Lakes. The effectiveness
of introducing the multi-layer lake model into the HRRR
and RAP models was completely dependent on the initial-
ization for lake temperatures. The introduction of a cycling
capability through the hourly assimilation allowed the lake
temperatures to evolve to accurate values, consistent with
recent weather. In this paper, we describe the lake cycling
applied for the NOAA regional 3 km HRRR and 13 km RAP
weather models including the coupled 1-D CLM lake model.
We also show some comparisons with other estimates of lake
surface temperatures. From those comparisons, the cycled
lake surface temperatures from the 3 km HRRR model

were found to be reasonably accurate. HRRR lake surface
temperatures were found to be generally within 1 K of in situ
observations and within 2 K of the SPoRT estimates. Finally,
NSST estimates of small-lake temperatures were found to
often differ from in situ observations and HRRR estimates
by 5–12 K. Other differences between lake-cycled HRRR
estimates and SST-based estimates were up to 10–15 K.

From these initial results, we conclude that the lake-
cycling initialization for small lakes has been effective over-
all, owing to accurate hourly estimates of near-surface tem-
perature, moisture and winds, and shortwave and longwave
estimates provided to the 1-D CLM lake model every time
step (20 s for the 3 km HRRR model). The HRRR–CLM
treatment also allows some inland lakes to freeze in win-
ter, which is more consistent with observations. The lake cy-
cling strategy is similar to that initialization method used by
ECMWF for its 9 km (as of 2021) IFS (Integrated Forecast
System) and using a binary lake mask in the 3 km HRRR
model.
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Figure 9. HRRRv4-CLM lake surface temperature (K) for
15:00 UTC on 31 July 2021 for the area over northern Min-
nesota (US) and southwestern Ontario (Canada).

One deficiency noted was the development of a too-cold
lake surface for a few lakes on their western boundary. We
attribute this to the incorrect bathymetry data with constant
lake depth (e.g., see caption for Table 5) causing an exces-
sive 1-D upwelling from too-deep lake depth at the west-
ern shores for these lakes. This issue is being addressed
with a current project to improve lake bathymetry data for
which results will be reported in the future. Also, HRRR–
CLM cycling gave poorer results than NSST at least for Lake
Pontchartrain (Lake 6 in Table 5), suggesting to use NSST
for near-ocean lagoon areas. More investigation is needed for
strong intralake variations overall in HRRR–CLM-cycling
representation (e.g., Lake of the Woods in Fig. 9) and pos-
sible introduction of horizontal diffusion of temperature be-
tween adjacent lake points.

US NWS forecasters have reported much improved near-
surface temperature and dew point predictions in the vicinity
of small lakes from the 3 km HRRR model in 2021 since the
implementation of the 1-D CLM lake model and lake-cycling
initialization. Again, this effort complements the coupling
of the HRRR model with the 3-D FVCOM hydrodynam-
ical lake model for the Laurentian Great Lakes (Fujisaki-
Manome et al., 2020) design to improve lake-effect snow pre-
dictions. These efforts are the most advanced lake-coupling
and lake-initialization efforts at this point in US NOAA
weather models.

Overall, the improved lake temperatures from the lake cy-
cling initialization technique driven over a 3-year period by
accurate atmospheric conditions described here result in im-
proved fluxes of heat and moisture over using SST interpo-
lation and improved nearby predictions of atmospheric 2 m
temperature and 2 m moisture.
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