Articles | Volume 15, issue 12
https://doi.org/10.5194/gmd-15-4913-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4913-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tree migration in the dynamic, global vegetation model LPJ-GM 1.1: efficient uncertainty assessment and improved dispersal kernels of European trees
Dynamic Macroecology/Land Change Science, Swiss Federal Institute for
Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, Sweden
Veiko Lehsten
Dynamic Macroecology/Land Change Science, Swiss Federal Institute for
Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, Sweden
Heike Lischke
Dynamic Macroecology/Land Change Science, Swiss Federal Institute for
Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Related authors
No articles found.
Karolina Janecka, Kerstin Treydte, Silvia Piccinelli, Loïc Francon, Marçal Argelich Ninot, Johannes Edvardsson, Christophe Corona, Veiko Lehsten, and Markus Stoffel
Clim. Past, 21, 1679–1697, https://doi.org/10.5194/cp-21-1679-2025, https://doi.org/10.5194/cp-21-1679-2025, 2025
Short summary
Short summary
Peatlands hold valuable insights about past climate, but the link between tree growth and water conditions remains unclear. We analyzed tree-ring stable isotopes from Scots pines in Swedish peatlands to study their response to water levels and climate. Unlike tree-ring widths, stable isotopes showed strong, consistent signals of water table levels and summer climate. This improves our ability to reconstruct past climate changes from peatland trees.
Joel Dawson White, Lena Ström, Veiko Lehsten, Janne Rinne, and Dag Ahrén
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-353, https://doi.org/10.5194/bg-2021-353, 2022
Revised manuscript not accepted
Short summary
Short summary
Microbes that produce CH4 play an important role to climate. Microbes which emit CH4 from wetlands is poorly understood. We observed that microbial community was of importance in explaining CH4 emission. We found, that microbes that produce CH4 hold the ability to produce and consume CH4 in multiple ways. This is important in terms of future climate scenarios, where wetlands are expected to shift. Therefore, we expect the community to be highly adaptive to future climate scenarios.
Cited articles
Albrich, K., Rammer, W., and Seidl, R.: Climate change causes critical
transitions and irreversible alterations of mountain forests, Glob. Change
Biol., 26, 4013–4027, https://doi.org/10.1111/gcb.15118, 2020.
Alexander, J. M., Chalmandrier, L., Lenoir, J., Burgess, T. I., Essl, F.,
Haider, S., Kueffer, C., McDougall, K., Nuñez, M. A., Pauchard, A.,
Rabitsch, W., Rew, L. J., Sanders, N. J., and Pellissier, L.: Lags in the
response of mountain plant communities to climate change, Glob. Change
Biol., 24, 563–579, https://doi.org/10.1111/gcb.13976, 2018.
Armstrong, E., Hopcroft, P. O., and Valdes, P. J.: A simulated Northern
Hemisphere terrestrial climate dataset for the past 60,000 years, Sci Data,
6, 1–16, https://doi.org/10.1038/s41597-019-0277-1, 2019.
Baskin, C. C. and Baskin, J. M. Seeds: ecology, biogeography, and,
evolution of dormancy and germination, Elsevier, https://doi.org/10.1016/B978-0-12-080260-9.X5000-3, 1998.
Beckman, N. G., Aslan, C. E., Rogers, H. S., Kogan, O., Bronstein, J. L.,
Bullock, J. M., Hartig, F., HilleRisLambers, J., Zhou, Y., Zurell, D.,
Brodie, J. F., Bruna, E. M., Cantrell, R. S., Decker, R. R., Efiom, E.,
Fricke, E. C., Gurski, K., Hastings, A., Johnson, J. S., Loiselle, B. A.,
Miriti, M. N., Neubert, M. G., Pejchar, L., Poulsen, J. R., Pufal, G.,
Razafindratsima, O. H., Sandor, M. E., Shea, K., Schreiber, S., Schupp, E.
W., Snell, R. S., Strickland, C., and Zambrano, J.: Advancing an
interdisciplinary framework to study seed dispersal ecology, AoB Plants, 12, https://doi.org/10.1093/aobpla/plz048, 2020.
Berg, M. P., Kiers, E. T., Driessen, G., Van Der Heijden, M., Kooi, B. W.,
Kuenen, F., Liefting, M., Verhoef, H. A., and Ellers, J.: Adapt or disperse:
understanding species persistence in a changing world, Glob. Change Biol.,
16, 587–598, https://doi.org/10.1111/j.1365-2486.2009.02014.x, 2010.
Binney, H. A., Willis, K. J., Edwards, M. E., Bhagwat, S. A., Anderson, P.
M., Andreev, A. A., Blaauw, M., Damblon, F., Haesaerts, P., Kienast, F.,
Kremenetski, K. V., Krivonogov, S. K., Lozhkin, A. V., MacDonald, G. M.,
Novenko, E. Y., Oksanen, P., Sapelko, T. V., Väliranta, M., and
Vazhenina, L.: The distribution of late-Quaternary woody taxa in northern
Eurasia: evidence from a new macrofossil database, Quaternary Sci. Rev., 28,
2445–2464, https://doi.org/10.1016/j.quascirev.2009.04.016, 2009.
Birks, H. J. B.: Contributions of Quaternary botany to modern ecology and
biogeography, Plant Ecol. Divers., 12, 189–385,
https://doi.org/10.1080/17550874.2019.1646831, 2019.
Birks, H. J. B. and Birks, H. H.: Biological responses to rapid climate
change at the Younger Dryas–Holocene transition at Kråkenes, western
Norway, Holocene, 18, 19–30, https://doi.org/10.1177/0959683607085572,
2008.
Briscoe, N. J., Elith, J., Salguero-Gómez, R., Lahoz-Monfort, J. J.,
Camac, J. S., Giljohann, K. M., Holde, M. H., Hradsky, B. A., Kearney, M.
R., McMahon, S. M., Phillips, B. L., Regan, T. J., Rhodes, J. R., Vesk, P.
A., Wintle, B. A., Yen, J. D. L., and Guillera-Arroita, G.: Forecasting
species range dynamics with process-explicit models: matching methods to
applications, Ecol. Lett., 22, 1940–1956,
https://doi.org/10.1111/ele.13348, 2019.
Bugmann, H.: On the ecology of mountainous forests in a changing climate: a simulation study, Doctoral dissertation, ETH Zurich, https://doi.org/10.3929/ethz-a-00094650, 1994.
Bullock, J. M. and Clarke, R. T.: Long distance seed dispersal by wind:
measuring and modelling the tail of the curve, Oecologia, 124, 506–521,
https://doi.org/10.1007/PL00008876, 2000.
Bullock, J. M., Mallada González, L., Tamme, R., Götzenberger, L.,
White, S. M., Pärtel, M., and Hooftman, D. A.: A synthesis of empirical
plant dispersal kernels, J. Ecol., 105, 6–19,
https://doi.org/10.1111/1365-2745.12666, 2017.
Cain, M. L., Damman, H., and Muir, A.: Seed dispersal and the Holocene
migration of woodland herbs, Ecol. Monogr, 68, 325–347,
https://doi.org/10.1890/0012-9615(1998)068[0325:SDATHM]2.0.CO;2, 1998.
Caswell, H., Lensink, R., and Neubert, M. G.: Demography and dispersal: life
table response experiments for invasion speed, Ecology, 84, 1968–1978,
https://doi.org/10.1890/02-0100, 2003.
Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrêne, E.,
François, C., Gritti, E. S., Legay, M., Pagé, C., Thuiller, W.,
Viovy, N., and Leadley, P.: Climate change impacts on tree ranges: model
intercomparison facilitates understanding and quantification of uncertainty,
Ecol. Lett., 15, 533–544,
https://doi.org/10.1111/j.1461-0248.2012.01764.x, 2012.
Chećko, E., Jaroszewicz, B., Olejniczak, K., and
Kwiatkowska-Falińska, A. J.: The importance of coarse woody debris for
vascular plants in temperate mixed deciduous forests, Can. J. Forest Res.,
45, 1154–1163, https://doi.org/10.1139/cjfr-2014-0473, 2015.
Clark, J. S.: Why trees migrate so fast: confronting theory with dispersal
biology and the paleorecord, Am. Nat., 152, 204–224,
https://doi.org/10.1086/286162, 1998.
Clark, J. S., Silman, M., Kern, R., Macklin, E., and HilleRisLambers, J.:
Seed dispersal near and far: patterns across temperate and tropical forests,
Ecology, 80, 1475–1494,
https://doi.org/10.1890/0012-9658(1999)080[1475:SDNAFP]2.0.CO;2, 1999.
Clark, J. S., Lewis, M., and Horvath, L.: Invasion by extremes: population
spread with variation in dispersal and reproduction, Am. Nat., 157,
537–554, https://doi.org/10.1086/319934, 2001.
Clark, J. S., Lewis, M., McLachlan, J. S., and HilleRisLambers, J. Estimating population spread: what can we forecast and how well?, Ecology, 84, 1979–1988, https://doi.org/10.1890/01-0618, 2003.
Collingham, Y. C. and Huntley, B. Impacts of habitat fragmentation and
patch size upon migration rates, Ecol. Appl., 10, 131–144,
https://doi.org/10.1890/1051-0761(2000)010[0131:IOHFAP]2.0.CO;2, 2000.
Corlett, R. T. and Westcott, D. A.: Will plant movements keep up with
climate change?, Trends Ecol. Evol., 28, 482–488,
https://doi.org/10.1016/j.tree.2013.04.003, 2013.
Cousens, R. D., Hughes, B. D., and Mesgaran, M. B.: Why we do not expect dispersal probability density functions based on a single mechanism to fit real seed shadows, J. Ecol., 106, 903–906, https://doi.org/10.1111/1365-2745.12891, 2018.
Daniell, J. R. G.: A dendrochronological study of subfossil Pinus sylvestris L. stumps from
peat deposits at Badanloch in the far north of Scotland, Doctoral
dissertation, Durham University, http://etheses.dur.ac.uk/6140/ (last access: 16 February 2022), 1992.
Daniell, J. R. G.: The Late-Holocene palaeoecology of Scots pine (Pinus sylvestris L.) in
north-west Scotland, Doctoral dissertation, Durham University,
http://etheses.dur.ac.uk/1219/ (last access: 16 February 2022), 1997.
De Meester, L., Stoks, R., and Brans, K. I. Genetic adaptation as a
biological buffer against climate change: Potential and limitations, Integr.
Zool., 13, 372–391, https://doi.org/10.1111/1749-4877.12298, 2018.
Downing, D. J., Gardner, R. H., and Hoffman, F. O.: An examination of
response-surface methodologies for uncertainty analysis in assessment
models, Technometrics, 27, 151–163,
https://doi.org/10.1080/00401706.1985.10488032, 1985.
Dullinger, S., Dirnböck, T., and Grabherr, G.: Modelling climate
change-driven treeline shifts: relative effects of temperature increase,
dispersal and invasibility, J. Ecol., 92, 241–252,
https://doi.org/10.1111/j.0022-0477.2004.00872.x, 2004.
Dullinger, S., Dendoncker, N., Gattringer, A., Leitner, M., Mang, T., Moser, D., Mücher, C. A., Plutzar, C., Mark Rounsevell, M., Willner, W., Zimmermann, N. E., and Hülber, K.: Modelling the effect of habitat fragmentation on
climate-driven migration of European forest understorey plants, Divers.
Distrib., 21, 1375–1387, https://doi.org/10.1111/ddi.12370, 2015.
Feurdean, A., Bhagwat, S. A., Willis, K. J., Birks, H. J. B., Lischke, H.,
and Hickler, T.: Tree migration-rates: narrowing the gap between inferred
post-glacial rates and projected rates, PLoS One, 8, e71797,
https://doi.org/10.1371/journal.pone.0071797, 2013.
Gear, A. J. and Huntley, B. Rapid changes in the range limits of Scots pine
4000 years ago, Science, 251, 544–547,
https://doi.org/10.1126/science.251.4993.544, 1991.
Giannakos, P.: Frugivory and seed dispersal by carnivores in the Rhodopi
mountains of northern Greece, Doctoral dissertation, Durham University,
http://etheses.dur.ac.uk/4900/ (last access: 16 February 2022), 1997.
Giesecke, T. and Brewer, S.: Notes on the postglacial spread of abundant
European tree taxa, Veg. Hist. Archaeobot., 27, 337–349,
https://doi.org/10.1007/s00334-017-0640-0, 2018.
Giesecke, T., Brewer, S., Finsinger, W., Leydet, M., and Bradshaw, R. H.:
Patterns and dynamics of European vegetation change over the last 15,000
years, J. Biogeogr., 44, 1441–1456, https://doi.org/10.1111/jbi.12974,
2017.
Goto, S., Shimatani, K., Yoshimaru, H., and Takahashi, Y.: Fat-tailed gene
flow in the dioecious canopy tree species Fraxinus mandshurica var. japonica
revealed by microsatellites, Mol. Ecol., 15, 2985–2996,
https://doi.org/10.1111/j.1365-294X.2006.02976.x, 2006.
Guo, F., Lenoir, J., and Bonebrake, T. C.: Land-use change interacts with
climate to determine elevational species redistribution, Nat. Commun., 9,
1–7, https://doi.org/10.1038/s41467-018-03786-9, 2018.
Hamby, D. M.: A comparison of sensitivity analysis techniques, Health Phys.,
68, 195–204, 1995.
Higgins, S. I., Clark, J. S., Nathan, R., Hovestadt, T., Schurr, F.,
Fragoso, J. M. V., Aguiar, M. R., Ribbens, E., and Lavorel, S.: Forecasting
plant migration rates: managing uncertainty for risk assessment, J. Ecol.,
91, 341–347, https://doi.org/10.1046/j.1365-2745.2003.00781.x, 2003a.
Higgins, S. I., Nathan, R., and Cain, M. L.: Are long-distance dispersal
events in plants usually caused by nonstandard means of dispersal?, Ecology,
84, 1945–1956, https://doi.org/10.1890/01-0616, 2003b.
Huntley, B.: Extreme temporal interpolation of sparse data is not a
sufficient basis to substantiate a claim to have uncovered Pleistocene
forest microrefugia, New Phytol., 204, 447–449,
https://doi.org/10.1111/nph.12941, 2014.
Huntley, B. and Birks, H. J. B. (Eds.): Atlas of past and present pollen
maps for Europe: 0–13,000 years ago, Cambridge University Press, https://doi.org/10.1017/S0079497X00007660, 1983.
Huntley, B., Daniell, J. R., and Allen, J. R. Scottish vegetation history:
the Highlands, Bot. J. Scot., 49, 163–175,
https://doi.org/10.1080/03746609708684864, 1997.
Huntley, B., Allen, J. R., Collingham, Y. C., Hickler, T., Lister, A. M.,
Singarayer, J., Stuart, A. J., Sykes, M. T., and Valdes, P. J.: Millennial
climatic fluctuations are key to the structure of last glacial ecosystems,
PLoS One, 8, e61963, https://doi.org/10.1371/journal.pone.0061963, 2013.
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C.,
Leadley, P., et al.: TRY plant trait database–enhanced coverage
and open access, Glob Change Biol., 26, 119–188,
https://doi.org/10.1111/gcb.14904, 2020.
Klein, E. K., Lavigne, C., Picault, H., Renard, M., and Gouyon, P. H.:
Pollen dispersal of oilseed rape: estimation of the dispersal function and
effects of field dimension, J. Appl. Ecol., 43, 141–151,
https://doi.org/10.1111/j.1365-2664.2005.01108.x, 2006.
Lehsten, V., Mischurow, M., Lindström, E., Lehsten, D., and Lischke, H.: LPJ-GM 1.0: simulating migration efficiently in a dynamic vegetation model, Geosci. Model Dev., 12, 893–908, https://doi.org/10.5194/gmd-12-893-2019, 2019.
Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne,
J., and Grenouillet, G.: Species better track climate warming in the oceans
than on land, Nature Ecol. Evol., 4, 1044–1059,
https://doi.org/10.1038/s41559-020-1198-2, 2020.
Lischke, H. and Löffler, T. J.: Intra-specific density dependence is
required to maintain species diversity in spatio-temporal forest simulations
with reproduction, Ecol. Model., 198, 341–361,
https://doi.org/10.1016/j.ecolmodel.2006.05.005, 2006.
Lischke, H., Zimmermann, N. E., Bolliger, J., Rickebusch, S., and
Löffler, T. J.: TreeMig: a forest-landscape model for simulating
spatio-temporal patterns from stand to landscape scale, Ecol. Model., 199,
409–420, https://doi.org/10.1016/j.ecolmodel.2005.11.046, 2006.
Lovas-Kiss, Á., Vizi, B., Vincze, O., Molnár V., A., and Green, A.
J.: Endozoochory of aquatic ferns and angiosperms by mallards in Central
Europe, J. Ecol., 106, 1714–1723, https://doi.org/10.1111/1365-2745.12913,
2018.
Lustenhouwer, N., Moran, E. V., and Levine, J. M.: Trait correlations
equalize spread velocity across plant life histories, Global Ecol.
Biogeogr., 26, 1398–1407, https://doi.org/10.1111/geb.12662, 2017.
Loehle, C.: Challenges of ecological complexity, Ecol. Complex., 1, 3–6,
https://doi.org/10.1016/j.ecocom.2003.09.001, 2004.
Manel, S., Gaggiotti, O. E., and Waples, R. S.: Assignment methods: matching
biological questions with appropriate techniques, Trends Ecol. Evol., 20,
136–142, https://doi.org/10.1016/j.tree.2004.12.004, 2005.
MacDonald, G. M.: Fossil pollen analysis and the reconstruction of plant
invasions, Adv. Ecol. Res., 24, 67–110,
https://doi.org/10.1016/S0065-2504(08)60041-0, 1993.
McKenzie, P. F., Duveneck, M. J., Morreale, L. L., and Thompson, J. R.:
Local and global parameter sensitivity within an ecophysiologically based
forest landscape model, Environ. Modell. Softw., 117, 1–13,
https://doi.org/10.1016/j.envsoft.2019.03.002, 2019.
Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., and Rudolph,
G.: Exploratory landscape analysis, in: Proceedings of the 13th annual
conference on Genetic and evolutionary computation, GECCO '11: Genetic and Evolutionary Computation Conference, Dublin, Ireland, 12–16 July 2011, 829–836,
https://doi.org/10.1145/2001576.2001690, July, 2011.
Mladenoff, D. J.: LANDIS and forest landscape models, Ecol. Modell., 180,
7–19, https://doi.org/10.1016/j.ecolmodel.2004.03.016, 2004.
Morales, P., Hickler, T., Rowell, D. P., Smith, B., and Sykes, M. T.:
Changes in European ecosystem productivity and carbon balance driven by
regional climate model output, Glob. Change Biol., 13, 108–122,
https://doi.org/10.1111/j.1365-2486.2006.01289.x, 2007.
Moran, E. V. and Clark, J. S.: Estimating seed and pollen movement in a
monoecious plant: a hierarchical Bayesian approach integrating genetic and
ecological data, Mol. Ecol., 20, 1248–1262,
https://doi.org/10.1111/j.1365-294X.2011.05019.x, 2011.
Nathan, R. and Katul, G. G.: Foliage shedding in deciduous forests lifts up
long-distance seed dispersal by wind, P. Natl. Aacad. Sci. USA, 102, 8251–8256,
https://doi.org/10.1073/pnas.0503048102, 2005.
Nathan, R., Schurr, F. M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., and Tsoar, A.: Mechanisms of long-distance seed dispersal, Trends Ecol. Evol., 23, 638–647, https://doi.org/10.1016/j.tree.2008.08.003, 2008.
Nathan, R., Klein, E. K., Robledo-Arnuncio, J. J., and Revilla, E.:
Dispersal kernels: review, in: Dispersal Ecology and Evolution, Oxford Scholarship Online, 187–210, https://doi.org/10.1093/acprof:oso/9780199608898.001.0001,
2012.
Nobis, M. P. and Normand, S.: KISSMig – a simple model for R to account
for limited migration in analyses of species distributions, Ecography, 37,
1282–1287, https://doi.org/10.1111/ecog.00930, 2014.
Normand, S., Ricklefs, R. E., Skov, F., Bladt, J., Tackenberg, O., and
Svenning, J. C.: Postglacial migration supplements climate in determining
plant species ranges in Europe, P. Roy. Soc. B-Biol. Sci., 278, 3644–3653,
https://doi.org/10.1098/rspb.2010.2769, 2011.
Nogués-Bravo, D., Rodríguez-Sánchez, F., Orsini, L., de Boer,
E., Jansson, R., Morlon, H., Fordham, D. A., and Jackson, S. T.: Cracking
the code of biodiversity responses to past climate change, Trends Ecol.
Evol., 33, 765–77, https://doi.org/10.1016/j.tree.2018.07.005, 2018.
Palmé, A. E., Su, Q., Rautenberg, A., Manni, F., and Lascoux, M.:
Postglacial recolonization and cpDNA variation of silver birch, Betula
pendula, Mol. Ecol., 12, 201–212,
https://doi.org/10.1046/j.1365-294X.2003.01724.x, 2003.
Pappas, C., Fatichi, S., Leuzinger, S., Wolf, A., and Burlando, P.:
Sensitivity analysis of a process-based ecosystem model: Pinpointing
parameterization and structural issues, J. Geophys. Res.-Biogeo., 118,
505–528, https://doi.org/10.1002/jgrg.20035, 2013.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T.
C., Chen, I. C., Clark, T. D., Colwel, R. K., Danielsen, F., Evengård,
B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B.,
Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., Lenoir,
J., Linnetved, H. I., Martin, V. Y., McCormack, P. C., McDonald, J.,
Mitchell, N. J., Mustonen, T., Pandolfi, J. M., Pettorelli, N., Popova, E.,
Robinson, S. A., Scheffers, B. R., Shaw, J. D., Sorte, C. J. B., Strugnell,
J. M., Sunday, J. M., Tuanmu, M.-N., Vergés, A., Villanueva, C.,
Wernberg, T., Wapstra, E., and Williams, S. E.: Biodiversity redistribution
under climate change: Impacts on ecosystems and human well-being, Science,
355, eaai9214, https://doi.org/10.1126/science.aai9214, 2017.
Petit, R. J., Brewer, S., Bordács, S., Burg, K., Cheddadi, R., Coart,
E., Cottrell, J., Csaikl, U. M., van Dam, B., Deans, J. D., Espinel, S.,
Fineschi, S., Finkeldey, R., Glaz, I., Goicoechea, P. G., Jensen, J. S.,
König, A. O., Lowe, A. J., Madsen, S. F., Mátyás, G., Munro, R.
C., Popescu, F., Slade, D., Tabbener J., de Vries, S. G. M., Ziegenhagen,
B., de Beaulieu J.-L., and Kremer, A.: Identification of refugia and
post-glacial colonisation routes of European white oaks based on chloroplast
DNA and fossil pollen evidence, Forest Ecol. Manag., 156, 49–74,
https://doi.org/10.1016/S0378-1127(01)00634-X, 2002.
Petter, G., Mairota, P., Albrich, K., Bebi, P., Brůna, J., Bugmann, H.,
Haffenden, A., Scheller, R. M., Schmatz, D. R., Seidl, R., Speich, M.,
Vacchiano, G., and Lischke, H.: How robust are future projections of forest
landscape dynamics? Insights from a systematic comparison of four forest
landscape models, Environ. Modell. Softw., 134, 104844,
https://doi.org/10.1016/j.envsoft.2020.104844, 2020.
Powell, J. A. and Zimmermann, N. E.: Multiscale analysis of active seed dispersal contributes to resolving Reid's paradox, Ecology, 85, 490–506, https://doi.org/10.1890/02-0535, 2004.
Reid, C.: The origin of the British flora, Dulau, London, https://doi.org/10.1038/062268a0, 1899.
Rogers, H. S., Beckman, N. G., Hartig, F., Johnson, J. S., Pufal, G., Shea,
K., Zurell, D., Bullock, J. M., Cantrell, R. S., Loiselle, B., Pejchar, L.,
Razafindratsima, O. H., Sandor, M. E., Schupp, E. W., Strickland, W. C., and
Zambrano, J.: The total dispersal kernel: a review and future directions,
AoB Plants, 11, https://doi.org/10.1093/aobpla/plz042, 2019.
Royal Botanic Gardens Kew: Seed Information Database (SID), Version 7.0.,
http://data.kew.org/sid/, last access: 19 December 2019.
Saltelli, A., Tarantola, S., and Campolongo, F.: Sensitivity analysis as an
ingredient of modeling, Stat. Sci., 15, 377–395,
https://doi.org/10.1214/ss/1009213004, 2000.
Saltré, F., Duputié, A., Gaucherel, C., and Chuine, I.: How climate,
migration ability and habitat fragmentation affect the projected future
distribution of European beech, Glob. Change Biol., 21, 897–910,
https://doi.org/10.1111/gcb.12771, 2015.
Scherrer, D., Vitasse, Y., Guisan, A., Wohlgemuth, T., and Lischke, H.:
Competition and demography rather than dispersal limitation slow down upward
shifts of trees' upper elevation limits in the Alps, J. Ecol., 108,
2416–2430, https://doi.org/10.1111/1365-2745.13451, 2020.
Schumacher, S., Bugmann, H., and Mladenoff, D. J.: Improving the formulation
of tree growth and succession in a spatially explicit landscape model, Ecol.
Modell., 180, 175–194, https://doi.org/10.1016/j.ecolmodel.2003.12.055,
2004.
Schurr, F. M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., Tsoar, A., and Nathan, R.: Long-distance seed dispersal, in: Annual Plant Reviews, Fruit Development and Seed Dispersal, edited by: Østergaard, L., Blackwell Publishing Ltd., 38, 204–237, https://doi.org/10.1002/9781444314557.ch6, 2009.
Seidl, R., Rammer, W., Scheller, R. M., and Spies, T. A.: An
individual-based process model to simulate landscape-scale forest ecosystem
dynamics, Ecol. Modell., 231, 87–100,
https://doi.org/10.1016/j.ecolmodel.2012.02.015, 2012.
Shifley, S. R., He, H. S., Lischke, H., Wang, W. J., Jin, W., Gustafson, E.
J., Thompson, J. R., Thompson, F. R., Dijak,W. D., and Yang, J.: The past
and future of modeling forest dynamics: from growth and yield curves to
forest landscape models, Landscape Ecol., 32, 1307–1325,
https://doi.org/10.1007/s10980-017-0540-9, 2017.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation
dynamics in the modelling of terrestrial ecosystems: comparing two
contrasting approaches within European climate space, Global Ecol.
Biogeogr., 10, 621–637, 2001.
Smith, B., Arneth, A., Arvanitis, T., Bondeau, A., Chaudhary, N., Cramer, W., Eliasson, P., Gerten, D., Hickler, T., Holmér, J., Kaplan, J., Knorr, W., Lehsten, D., Lehsten, V., Lindeskog, M., Lucht, W., Miller, P., Mishurov, M., Olin, S., Poska, A., Pugh, T., Prentice, C., Rammig, A., Schaphoff, S., Schurgers, G., Siltberg, J., Sitch, S., Sykes, M., Thonicke, K., Venevsky, S., Wania, R., Wårlind, D., Wolf, A., Wramneby, A., and Zaehle, S.: LPJ-GUESS Education 3.0, https://web.nateko.lu.se/lpj-guess/, last access: 28 October 2021.
Snell, R. S., Huth, A., Nabel, J. E., Bocedi, G., Travis, J. M., Gravel, D.,
Bugmann, H., Gutiérrez, A. G., Hickler, T., Higgins, S. I., Reineking,
B., Scherstjanoi, M., Zurbriggen, N., and Lischke, H.: Using dynamic
vegetation models to simulate plant range shifts, Ecography, 37, 1184–1197,
https://doi.org/10.1111/ecog.00580, 2014.
Soons, M. B., Heil, G. W., Nathan, R., and Katul, G. G.: Determinants of
long-distance seed dispersal by wind in grasslands, Ecology, 85, 3056–3068,
https://doi.org/10.1890/03-0522, 2004.
Snowling, S. D. and Kramer, J. R.: Evaluating modelling uncertainty for
model selection, Ecol. Modell., 138, 17–30,
https://doi.org/10.1016/S0304-3800(00)00390-2, 2001.
Stewart, J. R. and Lister, A. M.: Cryptic northern refugia and the origins
of the modern biota, Trends Ecol. Evol., 16, 608–613,
https://doi.org/10.1016/S0169-5347(01)02338-2, 2001.
Stork, J., Eiben, A. E., and Bartz-Beielstein, T.: A new taxonomy of global
optimization algorithms, Nat. Comput., 21, 219–242,
https://doi.org/10.1007/s11047-020-09820-4, 2020.
Svenning, J. C. and Sandel, B.: Disequilibrium vegetation dynamics under
future climate change, Am. J. Bot., 100, 1266–1286,
https://doi.org/10.3732/ajb.1200469, 2013.
Tamme, R., Götzenberger, L., Zobel, M., Bullock, J. M., Hooftman, D. A.,
Kaasik, A., and Pärtel, M.: Predicting species' maximum dispersal
distances from simple plant traits, Ecology, 95, 505–513,
https://doi.org/10.1890/13-1000.1, 2014.
Thompson, P. L. and Fronhofer, E. A.: The conflict between adaptation and
dispersal for maintaining biodiversity in changing environments, P. Natl. Aacad. Sci. USA, 116,
21061–21067, https://doi.org/10.1073/pnas.1911796116, 2019.
Tomiolo, S. and Ward, D.: Species migrations and range shifts: A synthesis
of causes and consequences, Perspect. Plant Ecol., 33, 62–77,
https://doi.org/10.1016/j.ppees.2018.06.001, 2018.
Tzedakis, P. C., Emerson, B. C., and Hewitt, G. M.: Cryptic or mystic?
Glacial tree refugia in northern Europe, Trends Ecol. Evol., 28, 696–704,
https://doi.org/10.1016/j.tree.2013.09.001, 2013.
Vittoz, P. and Engler, R.: Seed dispersal distances: a typology based on
dispersal modes and plant traits, Bot. Helv., 117, 109–124,
https://doi.org/10.1007/s00035-007-0797-8, 2007.
Wilkinson, D. M.: Plant colonization: are wind dispersed seeds really
dispersed by birds at larger spatial and temporal scales?, J. Biogeogr., 24,
61–65, https://doi.org/10.1111/j.1365-2699.1997.tb00050.x, 1997.
Wilson, G. A. and Rannala, B.: Bayesian inference of recent migration rates
using multilocus genotypes, Genetics, 163, 1177–1191,
https://doi.org/10.1093/genetics/163.3.1177, 2003.
Wramneby, A., Smith, B., Zaehle, S., and Sykes, M. T.: Parameter
uncertainties in the modelling of vegetation dynamics–effects on tree
community structure and ecosystem functioning in European forest biomes,
Ecol. Model., 216, 277–290,
https://doi.org/10.1016/j.ecolmodel.2008.04.013, 2008.
Zaehle, S., Sitch, S., Smith, B., and Hatterman, F.: Effects of parameter
uncertainties on the modeling of terrestrial biosphere dynamics, Global
Biogeochem. Cy., 19, https://doi.org/10.1029/2004GB002395, 2005.
Zani, D.: Input climate and landscape data to “Tree migration in the dynamic, global vegetation model LPJ-GM 1.1”, DatGURU [data set], https://doi.org/10.18161/20211127, 2021.
Zani, D. and Lehsten, V.: LPJ-GMINT, Dynamic vegetation model (LPJ-Guess) with migration (M) and interacting non-tree species (INT) modules, GitHub [code], https://github.com/zanid90/LPJ-GMINT (last access: 1 November 2021), 2022.
Short summary
The prediction of species migration under rapid climate change remains uncertain. In this paper, we evaluate the importance of the mechanisms underlying plant migration and increase the performance in the dynamic global vegetation model LPJ-GM 1.0. The improved model will allow us to understand past vegetation dynamics and predict the future redistribution of species in a context of global change.
The prediction of species migration under rapid climate change remains uncertain. In this paper,...