Articles | Volume 15, issue 12
https://doi.org/10.5194/gmd-15-4757-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4757-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Comprehensive Automobile Research System (CARS) – a Python-based automobile emissions inventory model
Bok H. Baek
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA, USA
Rizzieri Pedruzzi
Department of Sanitary and Environmental Engineering, Federal
University of Minas Gerais, Belo Horizonte, Brazil
Minwoo Park
Department of Technology Fusion Engineering, College of Engineering,
Konkuk University, Seoul, Republic of Korea
Chi-Tsan Wang
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA, USA
Younha Kim
Energy, Climate, and Environment Program, International Institute for
Applied Systems Analysis, Laxenburg, Austria
Chul-Han Song
School of Earth and Environmental Engineering, Gwangju Institute
Science and Technology, Gwangju, Republic of Korea
Jung-Hun Woo
CORRESPONDING AUTHOR
Department of Technology Fusion Engineering, College of Engineering,
Konkuk University, Seoul, Republic of Korea
Civil and Environmental Engineering, College of Engineering, Konkuk
University, Seoul, Republic of Korea
Related authors
Chi-Tsan Wang, Patrick C. Campbell, Paul Makar, Siqi Ma, Irena Ivanova, Bok H. Baek, Wei-Ting Hung, Zachary Moon, Youhua Tang, Barry Baker, Rick Saylor, and Daniel Tong
EGUsphere, https://doi.org/10.5194/egusphere-2025-485, https://doi.org/10.5194/egusphere-2025-485, 2025
Short summary
Short summary
Forests influence air quality by altering ozone levels, but most air pollution models overlook canopy effects. Our study improves ozone predictions by incorporating forest canopy shading and turbulence into a widely used model. We found that tree cover reduces near-surface ozone by decreasing photolysis rates and diffusion inside canopy, resulting in lower ozone concentrations in densely forested areas. These findings enhance ozone surface prediction accuracy and improve air quality modeling.
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Kiyeon Kim, Chul Han Song, Kyung Man Han, Greg Yarwood, Ross Beardsley, and Saewung Kim
Atmos. Chem. Phys., 25, 10293–10314, https://doi.org/10.5194/acp-25-10293-2025, https://doi.org/10.5194/acp-25-10293-2025, 2025
Short summary
Short summary
Despite the crucial role of halogen radicals in the atmosphere, current chemical transport models (CTMs) do not account for multi-phase halogen processes. To address this issue, we incorporated 177 halogen reactions, together with anthropogenic and natural halogen emissions into the CTMs. Our findings reveal that incorporation of these halogen processes significantly improves model performances compared to observations. In addition, we emphasize the influence of halogen radicals on air quality.
Sara L. Farrell, Quazi Z. Rasool, Havala O. T. Pye, Yue Zhang, Ying Li, Yuzhi Chen, Chi-Tsan Wang, Haofei Zhang, Ryan Schmedding, Manabu Shiraiwa, Jaime Greene, Sri H. Budisulistiorini, Jose L. Jimenez, Weiwei Hu, Jason D. Surratt, and William Vizuete
EGUsphere, https://doi.org/10.5194/egusphere-2025-2253, https://doi.org/10.5194/egusphere-2025-2253, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Fine particulate matter (PM2.5) has become increasingly important to regulate and model. In this study, we parameterize non-ideal aerosol mixing and phase state into the Community Multiscale Air Quality (CMAQ) model and analyze its impact on the formation of a globally important source of PM2.5, isoprene epoxydiol (IEPOX)-derived PM2.5. Incorporating these features furthers model bias in IEPOX-derived PM2.5, however, this work provides potential phase state bounds for future PM2.5 modeling work.
Chi-Tsan Wang, Patrick C. Campbell, Paul Makar, Siqi Ma, Irena Ivanova, Bok H. Baek, Wei-Ting Hung, Zachary Moon, Youhua Tang, Barry Baker, Rick Saylor, and Daniel Tong
EGUsphere, https://doi.org/10.5194/egusphere-2025-485, https://doi.org/10.5194/egusphere-2025-485, 2025
Short summary
Short summary
Forests influence air quality by altering ozone levels, but most air pollution models overlook canopy effects. Our study improves ozone predictions by incorporating forest canopy shading and turbulence into a widely used model. We found that tree cover reduces near-surface ozone by decreasing photolysis rates and diffusion inside canopy, resulting in lower ozone concentrations in densely forested areas. These findings enhance ozone surface prediction accuracy and improve air quality modeling.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Kyoung-Min Kim, Si-Wan Kim, Seunghwan Seo, Donald R. Blake, Seogju Cho, James H. Crawford, Louisa K. Emmons, Alan Fried, Jay R. Herman, Jinkyu Hong, Jinsang Jung, Gabriele G. Pfister, Andrew J. Weinheimer, Jung-Hun Woo, and Qiang Zhang
Geosci. Model Dev., 17, 1931–1955, https://doi.org/10.5194/gmd-17-1931-2024, https://doi.org/10.5194/gmd-17-1931-2024, 2024
Short summary
Short summary
Three emission inventories were evaluated for East Asia using data acquired during a field campaign in 2016. The inventories successfully reproduced the daily variations of ozone and nitrogen dioxide. However, the spatial distributions of model ozone did not fully agree with the observations. Additionally, all simulations underestimated carbon monoxide and volatile organic compound (VOC) levels. Increasing VOC emissions over South Korea resulted in improved ozone simulations.
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Soon-Young Park, Uzzal Kumar Dash, Jinhyeok Yu, Keiya Yumimoto, Itsushi Uno, and Chul Han Song
Geosci. Model Dev., 15, 2773–2790, https://doi.org/10.5194/gmd-15-2773-2022, https://doi.org/10.5194/gmd-15-2773-2022, 2022
Short summary
Short summary
An EnKF was applied to CMAQ for assimilating ground PM2.5 observations from China and South Korea. The EnKF performed better than that without assimilation and even superior to 3D-Var. The reduced MBs in 24 h predictions were 48 % and 27 % by improving ICs and BCs, respectively.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Cited articles
Appel, W., Chemel, C., Roselle, S., Francis, X., Hu, R.-M., Sokhi, R., Rao,
S. T., and Galmarini, S.: Examination of the Community Multiscale Air
Quality (CMAQ) model performance over the North American and European
domains, Atmos. Environ., 53, 142–155,
10.1016/j.atmosenv.2011.11.016, 2013.
Baek, B. H. and Seppanen, C., SMOKE v4.8.1 Public Release (29 January
2021). (Version SMOKEv481_Jan2021),
https://doi.org/10.5281/zenodo.4480334, 2021.
Baek, B. H., Pedruzzi, R., Wang, C.-T., and Woo, J.-H.:
bokhaeng/CARS: CARS (Comprehensive Automobile Emissions Research Simulator)
version 1.0 Public Release (CARSv1.0), Zenodo,
https://doi.org/10.5281/zenodo.5033314, 2021.
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston,
G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D.,
Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L.,
Martin, R. V., Peters, P., Pinault, L., Tjepkema, M., van Donkelaar, A.,
Villeneuve, P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N.
A. H., Marra, M., Atkinson, R. W., Tsang, H., Quoc Thach, T., Cannon, J. B.,
Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F.,
Weinmayr, G., Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Global
estimates of mortality associated with long-term exposure to outdoor fine
particulate matter, P. Natl. Acad. Sci. USA, 115,
9592, 10.1073/pnas.1803222115, 2018.
Carter, W. P. L. and Heo, G.: Development of revised SAPRC aromatics mechanisms, Atmos. Environ., 77, 404–414, https://doi.org/10.1016/j.atmosenv.2013.05.021, 2013.
Choi, D., Beardsley, M., Brzezinski, D., Koupal, J., and Warila, J.: MOVES
Sensitivity Analysis: The Impacts of Temperature and Humidity on Emissions, https://www3.epa.gov/ttn/chief/conference/ei19/session6/choi.pdf (last access: 18 May 2022), 2017.
Choi, K.-C., Lee, J.-J., Bae, C. H., Kim, C.-H., Kim, S., Chang, L.-S., Ban,
S.-J., Lee, S.-J., Kim, J., and Woo, J.-H.: Assessment of transboundary
ozone contribution toward South Korea using multiple source–receptor
modeling techniques, Atmos. Environ., 92, 118–129,
https://doi.org/10.1016/j.atmosenv.2014.03.055, 2014.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,
K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y.,
Martin, R., Morawska, L., Pope, C. A., III, Shin, H., Straif, K., Shaddick,
G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J.
L., and Forouzanfar, M. H.: Estimates and 25-year trends of the global
burden of disease attributable to ambient air pollution: an analysis of data
from the Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918,
https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
Denier van der Gon, H. A. C., Gerlofs-Nijland, M. E., Gehrig, R.,
Gustafsson, M., Janssen, N., Harrison, R. M., Hulskotte, J.,
Johansson, C., Jozwicka, M., Keuken, M., Krijgsheld, K.,
Ntziachristos, L., Riediker, M., and Cassee, F. R.: The Policy
Relevance of Wear Emissions from Road Transport, Now and in the Future – An
International Workshop Report and Consensus Statement, J. Air
Waste Manage., 63, 136–149, https://doi.org/10.1080/10962247.2012.741055, 2013.
Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C.,
Irwin, J., Rao, S. T., Scheffe, R., Schere, K., Steyn, D., and Venkatram,
A.: A framework for evaluating regional-scale numerical photochemical
modeling systems, Environ. Fluid. Mech., 10, 471–489,
https://doi.org/10.1007/s10652-009-9163-2, 2010.
EEA: EMEP/EEO air pollutant emission inventory guidebook 2019,
Passenger cars, light commercial trucks, heavy-duty vehicles including buses and motor cycles, 1.A.3.b.i-iv, European Enviromnent Agency, 2019.
Fallahshorshani, M., André, M., Bonhomme, C., and Seigneur, C.: Coupling
Traffic, Pollutant Emission, Air and Water Quality Models: Technical Review
and Perspectives, Proced. Soc. Behav., 48, 1794–1804,
https://doi.org/10.1016/j.sbspro.2012.06.1154, 2012.
Fulvio, A., Cassee, F. R., Denier van der Gon, H. A. C.,
Gehrig, R., Gustafsson, M., Hafner, W., Harrison, R. M.,
Jozwicka, M., Kelly, F. J., Moreno, T., Prevot, A. S. H., Schaap, M.,
Sunyer, J., and Querol, X.: Urban air quality:The challenge of traffic
non-exhaust emissions, J. Hazard. Mater., 275, 31–36,
https://doi.org/10.1016/j.jhazmat.2014.04.053, 2014.
Guevara, M., Tena, C., Porquet, M., Jorba, O., and Pérez García-Pando, C.: HERMESv3, a stand-alone multi-scale atmospheric emission modelling framework – Part 1: global and regional module, Geosci. Model Dev., 12, 1885–1907, https://doi.org/10.5194/gmd-12-1885-2019, 2019.
Hogrefe, C., Rao, S. T., Kasibhatla, P., Hao, W., Sistla, G., Mathur, R.,
and McHenry, J.: Evaluating the performance of regional-scale photochemical
modeling systems: Part II – ozone predictions, Atmos. Environ., 35,
4175–4188, https://doi.org/10.1016/S1352-2310(01)00183-2,
2001a.
Hogrefe, C., Rao, S. T., Kasibhatla, P., Kallos, G., Tremback, C. J., Hao,
W., Olerud, D., Xiu, A., McHenry, J., and Alapaty, K.: Evaluating the
performance of regional-scale photochemical modeling systems: Part
I – meteorological predictions, Atmos. Environ., 35, 4159–4174,
https://doi.org/10.1016/S1352-2310(01)00182-0, 2001b.
Ibarra-Espinosa, S., Ynoue, R., O'Sullivan, S., Pebesma, E., Andrade, M. D. F., and Osses, M.: VEIN v0.2.2: an R package for bottom–up vehicular emissions inventories, Geosci. Model Dev., 11, 2209–2229, https://doi.org/10.5194/gmd-11-2209-2018, 2018.
IEMA: Inventário de Emissões Atmosféricas do Transporte
Rodoviário de Passageiros no Município de São Paulo,
http://emissoes.energiaeambiente.org.br, last access: 1 May 2017.
Kaewunruen, S., Sussman, J. M., and Matsumoto, A.: Grand Challenges in
Transportation and Transit Systems, Frontiers in Built Environment, 2, 1–5,
https://doi.org/10.3389/fbuil.2016.00004, 2016.
Kim, B.-U., Bae, C., Kim, H. C., Kim, E., and Kim, S.: Spatially and
chemically resolved source apportionment analysis: Case study of high
particulate matter event, Atmos. Environ., 162, 55–70,
https://doi.org/10.1016/j.atmosenv.2017.05.006, 2017a.
Kim, H. C., Kim, E., Bae, C., Cho, J. H., Kim, B.-U., and Kim, S.: Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation and sensitivity to meteorology and emissions inventory, Atmos. Chem. Phys., 17, 10315–10332, https://doi.org/10.5194/acp-17-10315-2017, 2017b.
Kim, H. C., Kim, S., Kim, B.-U., Jin, C.-S., Hong, S., Park, R., Son, S.-W.,
Bae, C., Bae, M., Song, C.-K., and Stein, A.: Recent increase of surface
particulate matter concentrations in the Seoul Metropolitan Area, Korea,
Sci. Rep.-UK, 7, 4710, https://doi.org/10.1038/s41598-017-05092-8, 2017c.
Lee, D., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung,
S.-W., Park, J.-M., Lee, S.-B., Han, J.-S., Hong, J.-H., and Lee, S.-J.:
Korean National Emissions Inventory System and 2007 Air Pollutant Emissions,
Asian J. Atmos. Environ., 5–4, 278–291, 2011a.
Lee, D.-G., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung,
S.-W., Park, J.-M., Lee, S.-B., Han, J.-S., Hong, J.-H., and Lee, S.-J.:
Korean National Emissions Inventory System and 2007 Air Pollutant Emissions,
Asian J. Atmos. Environ., 5, 278–291, https://doi.org/10.5572/ajae.2011.5.4.278,
2011b.
Lejri, D., Can, A., Schiper, N., and Leclercq, L.: Accounting for traffic
speed dynamics when calculating COPERT and PHEM pollutant emissions at the
urban scale, Transport. Res. D Tr. E., 63,
588–603, https://doi.org/10.1016/j.trd.2018.06.023, 2018.
Li, F., Zhuang, J., Cheng, X., Li, M., Wang, J., and Yan, Z.: Investigation
and Prediction of Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using
a COPERT Model, Atmosphere, 10, 106, https://doi.org/10.3390/atmos10030106, 2019.
Liu, Y. and Sander, S. P.: Rate Constant for the OH + CO Reaction at Low
Temperatures, J. Phys. Chem. A, 119, 10060–10066,
https://doi.org/10.1021/acs.jpca.5b07220, 2015.
Luo, H., Astitha, M., Hogrefe, C., Mathur, R., and Rao, S. T.: A new method
for assessing the efficacy of emission control strategies, Atmos. Environ., 199, 233–243, https://doi.org/10.1016/j.atmosenv.2018.11.010, 2019.
Lv, W., Hu, Y., Li, E., Liu, H., Pan, H., Ji, S., Hayat, T., Alsaedi, A.,
and Ahmad, B.: Evaluation of vehicle emission in Yunnan province from 2003
to 2015, J. Clean Prod., 207, 814–825,
https://doi.org/10.1016/j.jclepro.2018.09.227, 2019.
Moussiopoulos, N., Vlachokostas, C., Tsilingiridis, G., Douros, I.,
Hourdakis, E., Naneris, C., and Sidiropoulos, C.: Air quality status in
Greater Thessaloniki Area and the emission reductions needed for attaining
the EU air quality legislation, Sci. Total Environ., 407, 1268–1285,
https://doi.org/10.1016/j.scitotenv.2008.10.034, 2009.
Nagpure, A. S., Gurjar, B. R., Kumar, V., and Kumar, P.: Estimation of
exhaust and non-exhaust gaseous, particulate matter and air toxics emissions
from on-road vehicles in Delhi, Atmos. Environ., 127, 118–124,
https://doi.org/10.1016/j.atmosenv.2015.12.026, 2016.
NIER: Study on Air Pollutant Emission Estimation Method in Transportation
section(II) 11-1480523-003573-01, National Archives of Korea,
https://www.archives.go.kr/next/manager/publishmentSubscriptionDetail.do?prt_seq=114054&page=1554&prt_arc_title=&prt_pub_kikwan=&prt_no (last access: 18 May 2022), 2018.
Ntziachristos, L. and Samaras, Z.: Speed-dependent representative emission
factors for catalyst passenger cars and influencing parameters, Atmos. Environ., 34, 4611–4619, https://doi.org/10.1016/S1352-2310(00)00180-1, 2000.
Ntziachristos, L., Gkatzoflias, D., Kouridis, C., and Samaras, Z.: COPERT: A European Road Transport Emission Inventory Model, in: Information Technologies in Environmental Engineering, Environmental Science and Engineering, edited by: Athanasiadis, I. N., Rizzoli, A. E., Mitkas, P. A., and Gómez, J. M., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-88351-7_37, 2009.
Pedruzzi, R., Baek, B. H., and Wang, C.-T.: CARS, https://github.com/CMASCenter/CARS, last access: 1 May 2020.
Perugu, H., Ramirez, L., and DaMassa, J.: Incorporating temperature effects
in California's on-road emission gridding process for air quality model
inputs, Environ. Pollut., 239, 1–12, https://doi.org/10.1016/j.envpol.2018.03.094, 2018.
Pfister, G., Wang, C.-t., Barth, M., Flocke, F., Vizuete, W., and Walters,
S.: Chemical Characteristics and Ozone Production in the Northern Colorado
Front Range, J. Geophys. Res.-Atmos., 124, 13397–13419, https://doi.org/10.1029/2019jd030544, 2019.
Pinto, J. A., Kumar, P., Alonso, M. F., Andreão, W. L., Pedruzzi, R.,
dos Santos, F. S., Moreira, D. M., and Albuquerque, T. T. D. A.: Traffic
data in air quality modeling: A review of key variables, improvements in
results, open problems and challenges in current research, Atmos.
Pollut. Res., 11, 454–468, https://doi.org/10.1016/j.apr.2019.11.018, 2020.
Rao, S. T., Galmarini, S., and Puckett, K.: Air Quality Model Evaluation
International Initiative (AQMEII): Advancing the State of the Science in
Regional Photochemical Modeling and Its Applications,
B.
Am. Meteorol. Soc., 92, 23–30, https://doi.org/10.1175/2010BAMS3069.1, 2011.
Rodriguez-Rey, D., Guevara, M., Linares, M. P.,
Casanovas, J., Salmerón, J., Soret, A., Jorba, O., Tena, C., and Pérez
García-Pando, C.: A coupled macroscopic traffic and pollutant emission
modelling system for Barcelona, Transport. Res. D Tr. E., 92, 102725,
https://doi.org/10.1016/j.trd.2021.102725, 2021.
Rinke, M. and Zetzsch, C.: Rate Constants for the Reactions of OH Radicals
with Aromatics: Benzene, Phenol, Aniline, and 1,2,4-Trichlorobenzene,
Berichte der Bunsengesellschaft für physikalische Chemie, 88, 55–62,
https://doi.org/10.1002/bbpc.19840880114, 1984.
Russell, A. and Dennis, R.: NARSTO critical review of photochemical models
and modeling, Atmos. Environ., 34, 2283–2324,
https://doi.org/10.1016/S1352-2310(99)00468-9, 2000.
Sallis, P., Bull, F., Burdett, P., Frank, P., Griffiths, P., Giles-Corti,
P., and Stevenson, M.: Use of science to guide city planning policy and
practice: How to achieve healthy and sustainable future cities, Lancet,
388, 2936–2947, https://doi.org/10.1016/S0140-6736(16)30068-X, 2016.
Smit, R., Kingston, P., Neale, D. W., Brown, M. K., Verran, B., and Nolan,
T.: Monitoring on-road air quality and measuring vehicle emissions with
remote sensing in an urban area, Atmos. Environ., 218, 116978,
https://doi.org/10.1016/j.atmosenv.2019.116978, 2019.
Sun, W., Duan, N., Yao, R., Huang, J., and Hu, F.: Intelligent in-vehicle
air quality management: a smart mobility application dealing with air
pollution in the traffic, https://www.semanticscholar.org/paper/Intelligent-in-vehicle-air-quality-management-:-a-Sun-Duan/2ca548319ebb8a6aee7adb02ddf341aed6d6107f, last access: 19 May 2022, 2016.
Tominaga, Y. and Stathopoulos, T.: Ten questions concerning modeling of
near-field pollutant dispersion in the built environment, Build. Environ.,
105, 390–402, https://doi.org/10.1016/j.buildenv.2016.06.027,
2016.
Van, R. G. and Drake, F.: Python 3 reference manual, Scotts Valley, CA, CreateSpace, 10, 1593511, 2009.
Yarwood, G. and Jung, J.: Development, Evaluation and Testing of Version 6 of the Carbon Bond Chemical Mechanism (CB6), the 9th Annual CMAS Conference, Chapel Hill, NC, 11–13 October 2010, Chapel Hill, https://www.cmascenter.org/conference/2010/abstracts/emery_updates_carbon_2010.pdf, (last access: 19 May 2022), 2010.
Short summary
The Comprehensive Automobile Research System (CARS) is an open-source Python-based automobile emissions inventory model designed to efficiently estimate high-quality emissions. The CARS is designed to utilize the local vehicle activity database, such as vehicle travel distance, road-link-level network information, and vehicle-specific average speed by road type, to generate a temporally and spatially enhanced inventory for policymakers, stakeholders, and the air quality modeling community.
The Comprehensive Automobile Research System (CARS) is an open-source Python-based automobile...