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Abstract. The Comprehensive Automobile Research System
(CARS) is an open-source Python-based automobile emis-
sions inventory model designed to efficiently estimate high-
quality emissions from motor vehicle emission sources. It
can estimate air pollutant, greenhouse gas, and air toxin crite-
ria at any spatial resolution based on the spatiotemporal reso-
lutions of input datasets. The CARS is designed to utilize lo-
cal vehicle activity data, such as vehicle travel distance, road-
link-level network geographic information system (GIS) in-
formation, and vehicle-specific average speed by road type,
to generate an automobile emissions inventory for policy-
makers, stakeholders, and the air quality modeling commu-
nity. The CARS model adopted the European Environment
Agency’s on-road automobile emissions calculation method-
ologies to estimate the hot exhaust, cold start, and evapora-
tive emissions from on-road automobile sources. It can op-
tionally utilize average speed distribution (ASD) of all road
types to reflect more realistic vehicle speed variations. In ad-
dition, through utilizing high-resolution road GIS data, the
CARS can estimate the road-link-level emissions to improve
the inventory’s spatial resolution. When we compared the of-
ficial 2015 national mobile emissions from Korea’s Clean Air
Policy Support System (CAPSS) against the ones estimated
by the CARS, there is a significant increase in volatile or-
ganic compounds (VOCs) (33 %) and carbon monoxide (CO)
(52 %) measured, with a slight increase in fine particulate
matter (PM2.5) (15 %) emissions. Nitrogen oxide (NOx) and

sulfur oxide (SOx) measurements are reduced by 24 % and
17 %, respectively, in the CARS estimates. The main differ-
ences are driven by different vehicle activities and the incor-
poration of road-specific ASD, which plays a critical role in
hot exhaust emission estimates but was not implemented in
Korea’s CAPSS mobile emissions inventory. While 52 % of
vehicles use gasoline fuel and 35 % use diesel, gasoline ve-
hicles only contribute 7.7 % of total NOx emissions, whereas
diesel vehicles contribute 85.3 %. However, for VOC emis-
sions, gasoline vehicles contribute 52.1 %, whereas diesel ve-
hicles are limited to 23 %. Diesel buses comprise only 0.3 %
of vehicles and have the largest contribution to NOx emis-
sions (8.51 % of NOx total) per vehicle due to having longest
daily vehicle kilometer travel (VKT). For VOC emissions,
compressed natural gas (CNG) buses are the largest contrib-
utor at 19.5 % of total VOC emissions. For primary PM2.5,
more than 98.5 % is from diesel vehicles. The CARS model’s
in-depth analysis feature can assist government policymakers
and stakeholders in developing the best emission abatement
strategies.

1 Introduction

Globally, ambient pollution causes more than 4.2 million pre-
mature deaths every year (Cohen et al., 2017), and Burnett
et al. (2018) estimated the health burden is closer to 9 mil-
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lion deaths from ambient PM concentrations. To effectively
mitigate air pollutants, governments have been implement-
ing stringent air pollution control policies to reduce harmful
regional air pollutants (Hogrefe et al., 2001a, b; Dennis et
al., 2010; Rao et al., 2011; Appel et al., 2013; Luo et al.,
2019). The chemical transport model (CTM) simulation re-
sults strongly rely on precise input data, such as emission in-
ventory, meteorology, land surface parameters, and chemical
mechanisms in the atmosphere.

The transportation sector is one of the major anthro-
pogenic emission sources in urban areas. Tailpipe emissions
from vehicle combustion processes contain many air pollu-
tants, including nitrogen oxides (NOx), volatile organic com-
pounds (VOCs), carbon monoxide (CO), ammonia (NH3),
sulfur dioxide (SO2), and primary particulate matter (PM),
which participate in the formation of detrimental secondary
pollutants like ozone and PM2.5 in the atmosphere. In the
Seoul Metropolitan Area (SMA) in South Korea, transporta-
tion automobile sources contribute the most to the total NOX
and primary PM2.5 emissions across all emission sources
(Choi et al., 2014; Kim et al., 2017a, b, c). Thus, it is crit-
ical to understand and better represent the emission patterns
from transportation automobile sources in the CTM model.
The use of process-based automobile emission models is
highly recommended to meet the needs in CTM model be-
cause it can estimate high-resolution spatiotemporal automo-
bile emissions (Moussiopoulos et al., 2009; Russell and Den-
nis, 2000).

There are two methodologies known in emission inven-
tory development: top-down and bottom-up approaches. The
choice of methods is determined by the input data availabil-
ity. The top-down approach primarily relies on the aggre-
gated and generalized country or regional information and
is typically used in developing countries where only limited
datasets and information are available. It has its limitations
when representing the vehicle emission process realistically
due to the lack of detailed activity and ancillary support-
ing data. However, the bottom-up approach requires higher-
quality spatiotemporal activity datasets like road network in-
formation, vehicle composition (vehicle type, engine size,
vehicle age, and fuel technology), pollutant-specific emis-
sions factors, road segment length, traffic activity data, and
fuel consumption (EEA, 2019; Ibarra-Espinosa et al., 2018;
IEMA, 2017). It can generate more accurate and detailed au-
tomobile emissions across various operating processes, such
as hot exhaust, evaporative, idling, and hot soak processes
(Nagpure et al., 2016; Ibarra-Espinosa et al., 2018).

There are several bottom-up mobile emissions models
available, like MOVES (MOtor Vehicle Emissions Simula-
tor) from the U.S. Environmental Protection Agency (U.S.
EPA), the COPERT (COmputer Programmed to calculate
Emissions from Road Transport) model from the European
Environment Agency (EEA), HERMES (High-Elective Res-
olution Modelling Emission System) from Barcelona Super-
computing Center (Guevara et al., 2019), the VEIN (Ve-

hicular Emissions INventory) model developed by Ibarra-
Espinosa et al. (2017), and the VAPI (Vehicular Air Pollution
Inventory) model developed by Nagpure and Gurjar (2016)
for India (Nagpure et al., 2016). While these models are all
bottom-up emission inventory models, a single model cannot
meet all modelers, policymakers, and stakeholders’ needs be-
cause each model holds its own pros and cons. They are de-
veloped differently to meet specific user needs based on the
types of traffic activity and emission factors, emission calcu-
lation methodologies, and other traffic-related inputs, such as
average speed distribution and geographical resolution. Each
model is developed with different levels of specificity, under-
lying datasets, and modeling assumptions.

The MOVES model has the ability to generate high-
quality emissions for up to 16 different emission processes
(running exhaust, start exhaust, evaporative, refueling, ex-
tended idling, brake, tire, etc.). It can simulate not only
county-level but also road-segment-level emissions depend-
ing on data availability. It can also reflect local meteorologi-
cal conditions, such as ambient temperature and relative hu-
midity, which can significantly impact both pollutants and
emissions processes (Choi et al., 2017; Perugu et al., 2018).
One major disadvantage of this model is that it is difficult to
update and apply to countries outside of the US because it
has a high degree of specificity. The COPERT model, widely
used in European countries, can model emissions at high res-
olution, is fully integrated with the EEA’s on-road vehicle
emissions factors guidelines, and can generate a complete
quality assurance (QA) and visualization summary (Ntzi-
achristos et al., 2009). The cons are that it is a proprietary
commercial licensed software, limited to EEA guidance, and
challenging to modify and update with any key input datasets
like the latest emission factors from non-European countries
(Lejri et al., 2018; Rodriguez-Rey et al., 2021; Li et al., 2019;
Lv et al., 2019; Smit et al., 2019).

HERMES and VEIN are both recently released bottom-up
inventory models. They have their pros in that they are both
open-source models based on open-source computing lan-
guages (Python and R), which provide transparency regard-
ing the emission calculations with a considerable amount of
data behind them (Ibarra-Espinosa et al., 2018; Guevara et
al., 2019). Both models are driven by comma-separated value
(CSV) formatted input files, making it very easy for users to
modify the input datasets. They are also based on the EEA’s
emission calculation method and equipped with a complete
QA and visualization tool based on Python and R libraries.
However, it is not an easy task to develop the emission fac-
tors and other required input datasets for other countries and
implement any control strategy plan feature to generate a re-
sponsive reduced emissions inventory.

Overall, there are multiple shortcomings in incorporat-
ing these bottom-up models into CTM studies. They require
strong programming skills to operate, such as collecting and
preparing the input data to fit the model requirements, con-
figuring the model variables, and changing specific variables
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that may be embedded in the code. Another downside is that
while the geographical administration-level (e.g., county-
level) emissions inventory can be estimated by these models,
it requires a third-party emissions processor like the SMOKE
(Sparse Matrix Operator Kernel Emissions) modeling system
(Baek and Seppanen, 2021) to process and generate spatially
and temporally resolved emissions inputs for CTM. Some
detailed information, like link-level hourly driving patterns,
can be lost in the emissions processing steps.

There is no single model capable of meeting all the re-
quirements across various spatial and temporal scales (Pinto
et al., 2020). However, transparency, simplicity, and a user-
friendly interface are requirements for those who mainly
work in transportation policy and air quality modeling de-
velopment (Fallahshorshani et al., 2012; Kaewunruen et al.,
2016; Sallis et al., 2016; Sun et al., 2016; Tominaga and
Stathopoulos, 2016). Thus, the ideal motor vehicle emissions
modeling system would be computationally optimized, easy-
to-use, and user-friendly in terms of its interface. Addition-
ally, the model should easily adapt detailed local activity in-
formation and the state-of-the-art emission factors as inputs
to represent them in the highest resolution possible both tem-
porally and spatially.

We have developed the Comprehensive Automobile Re-
search System (CARS) to meet these requirements, espe-
cially for the air quality research community, policymakers,
and air quality modelers. The CARS is a stand-alone, fully
modularized, computationally optimized, Python-based au-
tomobile emission model. The modularization improves the
efficiency of processing times as once district and road-link-
level annual, monthly, and daily total emissions are com-
puted; the rest of the processes are optional. It can gener-
ate chemically speciated, spatially gridded, hourly emissions
for CTMs without any third-party programs to develop the
highest-quality CTM-ready emission inputs. Details on mod-
ularization will be discussed later. The CARS model can be
easily adopted and is simple for users to add new functions
or modules to in the future. The application of the CARS to
South Korea will be described in detail later.

2 CARS emissions calculation

The CARS is an open-source Python-based customizable
motor vehicle emissions processor that estimates on-road and
off-road emissions for specific criteria and toxic air pollu-
tants. Figure 1 is a schematic of the CARS overview. It ap-
plies vehicle-, engine-, and fuel-specific emission factors to
traffic data to estimate the local-level annual, monthly, and
daily total emissions inventory. The emissions inventory cal-
culations require a list of pollutant-specific emissions factors
by vehicle age, local activity data, average speed profile or
distribution by road type, and geographic information sys-
tem (GIS) road segment shapefile inputs. The spatial resolu-
tion of vehicle kilometer travel (VKT) determines the CARS

geographic scale (i.e., district, county, state, and country) for
emission calculations. Unlike the district-level Korea Clean
Air Policy Support System (CAPSS) automobile emission
inventory (Lee et al., 2011a, b), the CARS applies high-
resolution annual average daily traffic (AADT) data from
the road GIS shapefiles to distribute the total district emis-
sions into road-link-level emissions. Optionally, these road-
link-level emissions can be used to generate spatially gridded
CTM-ready emissions input data once the output modeling
domain is defined. The summary of input files by categories
are presented in Appendix H. How the CARS estimates spa-
tially and temporally enhanced automobile emissions inven-
tories will be discussed in detail in Sect. 3.

South Korean traffic databases from the Korea National In-
stitute of Environmental Research (NIER) CAPSS team (Lee
et al., 2011b) were used in this study to compute the updated
on-road automobile emissions inventory. The databases in-
clude individual vehicle activity data (daily total VKT), road
activity data (average speed distribution by road), vehicle-
age-specific emission factors, road type information, surface
weather data, and GIS road shapefiles.

2.1 Individual daily average VKT activity data

The individual vehicle VKT data is used to reflect human
activity. This study imported the national registered vehicle-
specific daily total VKT from South Korea’s Vehicle Inspec-
tion Management System (VIMS), which belongs to the Ko-
rea Transportation Safety Authority (KTSA). It contains over
50 million records of vehicle-specific daily total VKT from
2013 to 2017. For the CARS model, we first sorted these
records by the vehicle identification number (VIN) to remove
any duplicates and then built vehicle-specific daily total VKT
traffic activity data in the CSV format. The summary of those
vehicle numbers and VKTs is presented in Fig. 2. Sedan ve-
hicles using gasoline fuel comprise the greatest percentage of
total vehicles at 47 % (∼ 10.4 million) and have the highest
VKT. While most vehicles demonstrate a paired pattern be-
tween the number of vehicles and daily VKT, LPG (liquefied
petroleum gas)-fueled taxis shows high VKT with low vehi-
cle numbers due to their long-distance daily travel patterns.

The VIN (vin) information is used to calculate vehicle-
specific daily average VKT (VKTvin, km d−1). In Eq. (1), the
individual daily average vehicle VKT (VKTvin) is calculated
based on the cumulative mileage (Mf ;vin) between the last
inspection date (Df ;vin) and registration date (D0;vin). Each
vehicle is categorized with Korea’s NIER based on a combi-
nation of vehicle types (e.g., sedan, truck, bus), engine sizes
(e.g., compact, full size, midsize), and fuel types (e.g., gaso-
line, diesel, LPG). Full details of vehicle types and daily total
VKT are shown in Appendix A and B.

VKTvin =
Mf ;vin

Df ;vin − D0; vin
(1)
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Figure 1. CARS schematic methodology to estimate mobile emissions.

Figure 2. (a) The number of vehicles by vehicle and fuel types and (b) the total daily VKT by vehicle and fuel type in South Korea.

2.2 Emission calculations

Automobile emission sources include motorized engine
sources on the paved road network and off the road net-
work (e.g., driveways and parking lots). The CARS model
does not currently simulate emissions from non-road emis-
sion sources, such as those from aviation, railways, construc-
tion, agriculture, lawnmowers, and boats. The CARS model
simulates the on-road automobile emissions from network
roads using their local traffic-related datasets. The follow-
ing section explains the approach of the on-road automobile
emission processes. The on-road emission (Eonroad) in the

CARS is defined in Eq. (2), which includes three major emis-
sion processes (Ntziachristos and Samaras, 2000):

Eonroad = Ehot+Ecold+Evap. (2)

The “hot exhaust” emissions (Ehot) are the vehicle’s tailpipe
emissions when the internal combustion engine (ICE) com-
busts the fuel to generate energy under the average operat-
ing temperature. The “cold start” emissions (Ecold) are the
tailpipe emissions from the ICE when the cold vehicle engine
is ignited and the operational temperature is below the aver-
age conditions. The evaporative VOC emissions (Evap) are
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the emissions evaporated or permeated from the fuel systems
(fuel tanks, injection systems, and fuel lines) of vehicles.

The CARS first applies the hot exhaust emission factors by
vehicle type, age, fuel, engine, and pollutants to individual
daily total VKT to compute the hot exhaust emissions. The
rest of the processes for cold start and evaporative emissions
are calculated afterwards. The emission calculation method-
ologies used in the CARS model are based on tier 2 and tier
3 methodologies from the EEA’s mobile emission inventory
guidebook (EEA, 2019) to be consistent with Korea’s Na-
tional Emission Inventory System (NEIS) (Lee et al., 2011a).

2.2.1 Hot exhaust emissions

Hot exhaust emissions are the exhaust gases produced by
the combustion process in an ICE. The ICE combustion cy-
cle generally causes incomplete combustion processes which
emit hydrocarbons, carbon monoxide (CO), and particulate
matter (PM). These are not completely controlled by the
after-treatment equipment, such as a three-way catalytic con-
verter, and released into the atmosphere. The sulfur com-
pounds in the fuel are oxidized and become sulfur oxides
(SOx). Nitrogen oxides (NOx) are produced due to the abun-
dance of nitrogen (N2) and oxygen (O2) during the combus-
tion process.

Equation (3) represents the calculation of daily individ-
ual vehicle hot exhaust emission rate,Ehot;p,vin,vyr (g d−1), of
the pollutant (p). An individual vehicle-specific daily VKTvin
(km d−1) is estimated by Eq. (1). The EFhot;p,v,vyr,s (g km−1)
is the hot exhaust emission factor of pollutants (p) for the
vehicle type (v), vehicle manufacture year (vyr), and aver-
age vehicle speed (spd). The district’s total emission rate is
the total hot exhaust emissions from all individual vehicles
within the same district.

Ehot;p,vin,vyr = DFp,v,vyr×VKTvin×EFhot;p,v,vyr,spd (3)

The deterioration factor (DF) in Eq. (3) is an optional func-
tion in the CARS. The deterioration process is caused by ve-
hicle aging and can lead to the increase of vehicle emissions.
The vehicle DF is varied by vehicle type (v), pollutant (p),
and vehicle manufacture year (vyr). The CARS model com-
putes vehicle ages based on the vehicle manufacture year
and model simulation year. According to NIER’s guidance
on calculating deterioration factors, there is no deterioration
in a new vehicle during their first 5 years. After 5 years, the
deterioration factors can range from 5 % to 10 % depending
on the type of vehicle and pollutant. Deterioration processes
can cause up to an 100 % increase of emissions in 15-year-
old vehicles. Currently, the DF is an empirical coefficient that
varies by vehicle age (Lee et al., 2011a).

The hot exhaust emission factor, EFhot;p,v,s (g km−1), is
a function of vehicle speed (spd) with other empirical co-
efficients: a,b,c,d,f,k. The emission factor formula and
those coefficients were developed by NIER’s CAPSS (Lee
et al., 2011a). These coefficients are varied by pollutants (p),

vehicle type (v), vehicle manufacture year (vyr), and vehi-
cle speed (s). The vehicle speed affects the combustion effi-
ciency of an ICE and impacts the emission rates and its com-
position from the tailpipe.

EFhot;p,v,vyr,spd = k(a× spd
b
+ c× spdd + f ) (4)

While vehicle speed plays a critical role in hot exhaust
emissions from most vehicles, NOx emissions from some
diesel vehicles show sensitivity to local ambient tempera-
ture and humidity due to the atmospheric moisture suppres-
sion of high combustion temperatures that both lower NOx
emissions at higher humidity (Choi et al., 2017; Ntziachris-
tos and Samaras, 2000). Figure 3 shows the dependency of
NOx emission factors from compact diesel vehicles on ve-
hicle speed (Fig. 3a) and ambient temperature (Fig. 3b).
Figure 3a shows a significant decrease in NOx emissions
when the speed increases between 0 and 70 km. Figure 3b
demonstrates the significance of local meteorology regarding
NOx emissions from a compact diesel sedan. Based on these
NIER’s CAPSS emission factors, the sensitivity to local am-
bient temperature is limited to NOx pollutant emissions from
diesel vehicles.

Due to its high sensitivity to the vehicle operating speed,
it is important for the CARS to simulate realistic speed pat-
terns for accurate emissions estimates. When a single speed
is assigned to compute hot exhaust emissions, it will not re-
flect the emissions under low-speed circumstances. To over-
come this limitation, the CARS has adopted the 16 average
speed bins concepts for a better representation of vehicle
speed distribution that varies by road type (i.e., local, high-
way, expressway). We have implemented a feature for the
CARS optionally to apply road-specific average speed dis-
tributions (ASDs) (Abin,r) by 16 speed bins (bin) (from 0 to
121 km h−1 defined in Appendix E) for eight different road
types (r) (nos. 101–108, shown in Appendix C) as classified
by CAPSS (Fig. 4a). Although ASD patterns vary by region
and time, the current CARS model version does not support
ASD application by region and time of day due to the lack its
availability in South Korea.

We first developed the ASD (Fig. 4a) for eight different
road types (nos. 101–108) in South Korea based on the latest
road-link-specific average speed and the length of the link
from the South Korean (SK) GIS road network shapefiles
(NIER, 2018). However, the ASD based on the SK GIS road
shapefiles did not capture low-speed (< 16 km h−1) driving
(Fig. 4a). This causes a significantly lower estimation of NOx
and VOC emissions compared to the CAPSS (Appendix G).
We believe the SK average speed distribution is missing low-
speed driving that can occur due to traffic congestion. To ad-
dress this absence of low-speed driving in the SK ASD, we
incorporated data from the ASD (Fig. 4b) from the state of
Georgia to the low speed ranges (speed bin nos. 1 and 2 for
road types 1 to 7). We increased the total fractions of low
speed bins (the 2 : 1 ratio of fractions of bin nos. 1 and 2) by
2 % for interstate expressways, 3 % for urban expressways,
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Figure 3. Variation of NOx emission factors from diesel compact engines by vehicle speed and ambient temperatures: (a) NOx emission
factors in relation to vehicle speed and (b) NOx emission factors of diesel compact trucks in relation to both vehicle speed and ambient
temperature.

Figure 4. (a) South Korean speed distribution by road type. (b) The speed distribution by road type for the state of Georgia (US). (c) The
average speed distribution (ASD) by road type used in this study for South Korea.
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7 % for all highways, and 15 % for all local roads. The in-
creases in low-speed bins lowered the distributions of other
higher-speed bins homogeneously due to the renormalization
of fractions by road type. Figure 4c shows the renormalized
hybrid ASDs of all road types based on the SK and Georgia
ASDs. We understand that the hybrid ASD approach is not
ideal for SK on-road emission inventory development, but it
clearly demonstrates the CARS’s capability and sensitivity to
the vehicle speed representation.

While the application of an ASD with 16 speed bins is crit-
ical to computing more realistic hot exhaust emissions, there
should be some restrictions for certain road types. Users can
adjust the restricted roads control table input file to limit the
vehicle types that are only operated on a particular road type.
For example, motorcycles are limited on local roads (nos.
104, 106, and 107) but not on expressways (nos. 101, 102,
103, 105, and 108) due to its traffic regulation rules. Heavy
trucks are only allowed on the highway (nos. 101, 102, 103,
105, and 108.) by law. The details of the road restriction con-
trol table format can be found on the CARS’s user’s guide
from the CARS version 1 used in this paper (Baek et al.,
2021).

The 16-speed-bin ASDs from Eq. (13) are added to the
CARS hot exhaust emissions equation (Eq. 3). The hot ex-
haust emissions from individual vehicles (Ehot;p,vin,vyr) can
be calculated by considering a road-specific speed bin distri-
bution (Eq. 5). Although the vehicles may be operated in dif-
ferent districts from their registered district, this is our best
method to estimate the vehicle speed for hot exhaust emis-
sions.

Ehot;p,vin,vyr = DFp,v,vyr×
∑

bin

(VKTvin×EFhot;p,v,vyr,spd×Abin,r) (5)

2.2.2 Cold start emissions

The cold start emissions occur when a cold engine vehicle
is ignited. Lower temperatures of the ICE are not optimal
conditions for complete fuel combustion. This process low-
ers the combustion efficiency (CE) and increases the emis-
sions of hydrocarbon and CO pollutants from the tailpipe ex-
haust (Lee et al., 2011). The CARS can estimate the cold
start emissions for vehicles using gasoline, diesel, or lique-
fied petroleum gas (LPG) fuel. Besides the vehicle and en-
gine type, road type also plays a critical role in the quantity
of cold start emissions because it occurs mostly in parking
lots and rarely occurs on highways.

The cold start emission, Ecold (g d−1), is derived from the
hot exhaust emissions, the ratio of hot to cold exhaust emis-
sions (EFcold/EFhot −1.0), and the percentage of the traveled
distance with a cold engine (Eq. 6).

Ecold; p,v = βT ×Ehot; p,v×

(
EFcold; p,v

EFhot; p,v
− 1.0

)
(6)

The emission factor of cold start emissions (EFcold) is not
directly calculated from measurement data like hot exhaust

emissions (Ehot;p,v) but measured under different ambient
temperatures (T ). The CARS model applies linear regression
models developed by CAPSS to estimate the increasing ratio
of cold start to hot exhaust emissions (EFcold/EFhot) under
different temperatures (T ) (Eq. 7). In this equation, A and B
are the empirical coefficients that vary by the pollutant (p)
and vehicle type (v).(

EFcold; p,v

EFhot; p,v

)
= Ap,v+Bp,v× T (7)

β is the percentage of the distance traveled under a cold
engine and also depends on the ambient temperature. Cold
ambient temperatures cause a longer distance traveled un-
der a cold engine due to the slower heating time. Accord-
ing to the CAPSS database for the city of Seoul (Lee et
al., 2011a), the empirical linear equation for β is shown in
Eq. (8). This formula represents how ambient temperature af-
fects β. For example, when the average temperature is−2 ◦C,
β is 34.8 %. In summer, the monthly average temperature is
25.7 ◦C, which causes β to drop to 21 %.

β = 0.647− 0.025× 12.35− (0.00974− 0.000385

× 12.35)× T (8)

2.2.3 Evaporative VOC emissions

Evaporative emissions are emissions from vehicle fuel that
are evaporated into the atmosphere. This occurs in the fuel-
ing system inside the vehicle, such as fuel tanks, injection
systems, and fuel lines. Diesel vehicles, however, can be ex-
empted due to diesel fuel’s low vapor pressure. The primary
sources of evaporative emissions are breathing losses through
tank vents and fuel permeation/leakage. The CARS model
adopted the EEA’s emission inventory guidebook (EEA,
2019) to account for diurnal emissions from the tank (ed),
hot and warm soak emissions by fuel injection type (Sfi), and
running loss emissions (R) (Eq. 9). Unlike CAPSS, there is a
conversion factor (0.075) applied to Evap for motorcycles to
prevent an overestimation of VOCs.

Evap; p,v =
(
ed; p,v+ Sfi; p,v+Rl; p,v

)
(9)

Diurnal emissions, ed (g d−1), during the daytime are caused
by the ambient temperature increase and the expansion of
fuel vapors inside the fuel tank. Most of the current fuel tank
systems have emission control systems to limit this kind of
evaporative VOC emissions. The ed can be calculated with
the empirical Eq. (10), which was developed by CAPSS. Tl is
the monthly average of the daily lowest temperatures, and Th
is the monthly average of the daily highest temperatures. The
empirical coefficient α is 0.2, which represents how 80 % of
emissions are eliminated by the vehicle emission control sys-
tem.

ed = α× 9.1exp[0.3286+ 0.0574× (Tl)+ 0.0614

× (Th− Tl− 11.7)] (10)
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Soak emissions (Sfi) occur when a hot ICE is turned off; the
remaining heat from the ICE can increase the fuel tempera-
ture in the system, which causes the increase of evaporative
VOC emissions. This carburetor float bowls are the major
source of the soak emissions. Newer vehicles with fuel injec-
tion and returnless fuel systems do not emit soak emissions.
Because most of the current vehicles in South Korea have a
new fuel system, soak emissions (Sfi) in the CARS model are
set to 0.

The running loss emissions (Rl) are from vapors gener-
ated in the fuel tank when a vehicle is in operation (Eq. 11).
In some older vehicles, the carburetor and engine operation
can increase the temperature in the fuel tank and carburetor,
which can cause a significant increase in evaporative VOC
emissions. VOC emissions from running loss can be greatly
increased during warmer weather. However, newer vehicles
with fuel injection and returnless fuel systems are not af-
fected by the ambient temperature. Because most vehicles
in South Korea do not use carburetor technology, we expect
running loss emissions to have the least impact (Lee et al.,
2011b).

Rl = α×Lr,v×[(1−β)×Rh+β ×Rw] (11)

The empirical coefficient α is 0.1 here, which represents that
90 % of the running loss is avoided by the newer fuel sys-
tem. L is the distance traveled (km) by road and is the same
variable used in hot exhaust emission calculations. β is the
same parameter from Eq. (8). The Rh and Rw are the average
emission factors from running loss under hot and warm or
cold conditions, respectively.

2.3 Road-link-level emissions calculations

In general, district-level automobile emissions calculations
are driven by district-level averaged vehicle activity and op-
erating data, which do not reflect realistic spatial patterns of
on-road automobile emissions. The CARS model introduces
road-link-specific traffic data by default to develop spatially
enhanced road-link-specific emissions that are more repre-
sentative of the emissions. This high-resolution traffic data
is a GIS shapefile that is composed of many connected seg-
ments, which are called “road links”. All road links hold in-
formation such as start and end location coordinates, AADT,
road link length, averaged vehicle speed, and road type (nos.
101–108).

The CARS model applies link-level AADT (AADTd,r,l,
d−1) and road length (Ld,r,l) to compute the road-link-
specific VKT (VKTd,r,l, km d−1) in Eq. (12). The road links
are identified by district (dst), road type (r), and link (l) la-
bels. The road VKT is a parameter that reflects the traffic
activity of each road link and it is different from individual
daily vehicle activity data (VKTv,age) in Eq. (1).

VKTdst,r,l = AADTdst,r,l× Ldst,r,l (12)

Road-link-specific VKT (VKTdst,r,l) is used to redistribute
the district total emissions (Eonroad) from Eq. (2) into road-
link-level emissions. The following three weight factors are
computed: the district weight factors, ωdst (Eq. 13), the road
type weight factors, ωdst,r (Eq. 14), and the road link weight
factors, ωdst,l (Eq. 15). The weight district factors (ωdst) are
the renormalization of each district’s total VKT over state-
level total VKT (N is the number of districts). The main rea-
son we performed the renormalization over state-level total
VKT is to reflect daily traffic patterns from multiple districts
under the assumption that most vehicles travel within the
same state. The road type weight factors by district (ωr,dst)
are used to compute road-specific emissions, while road-
specific averaged speed distributions (ASD; Aspd,r) from
Eq. (5) are applied to capture vehicle operating speeds by
road type. The road link weight factors (ωdst,l) are then ap-
plied to redistribute the district emissions into road-link-level
emissions.

ωdst =

∑
r
∑

lVKTdst,r,l
1
N

∑
dst
∑

r
∑

lVKTdst,r,l
(13)

ωdst,r =

∑
lVKTdst,r,l∑

r
∑

lVKTdst,r,l
(14)

ωdst,l =
VKTdst,r,l∑

r
∑

lVKTdst,r,l
(15)

3 CARS configuration

The CARS model is an open-source program based on
Python (Van and Drake, 2009) that allows users to efficiently
apply open-source modules to develop programs. Users can
easily install Python development tools and load customized
packages and modules to set up the CARS development en-
vironment. All CARS modules are developed using Python
v3.6. Other than the GIS road shapefiles, all input files are
based in the ASCII CSV format, which can be easily han-
dled by both spreadsheet programs and programming lan-
guages, making it more accessible for users of all skill sets.
The CARS is not only able to estimate district-level and spa-
tially enhanced road-link-level emissions but is also able to
generate hourly chemically speciated gridded emissions for
CTMs. In addition, the CARS also generates various sum-
mary reports, graphics, and georeferenced plots for quality
assurance.

The required Python modules for the CARS are “geopan-
das”, “shapely.geometry”, and “csv” modules to read the
shapefiles and table data files. The “NumPy” and “pandas”
modules are used to operate the memory arrays and scien-
tific calculations, while the “pyproj” module deals with con-
verting the projection coordinate systems. The “matplotlib”
module is for generating any type of figures and plots. Fur-
thermore, the CARS model can also read and write Climate
and Forecast (CF)-compliant NetCDF-formatted files using
“NetCDF4”.
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Figure 5. The schematic of modules and their functions in the CARS.

The first process in the CARS is “Load-
ing_function_path”, which allows users to define and
check the input file paths. Once all input files are checked,
there are six process modules in CARS to process inputs,
compute emissions, and generate various output files,
including QA reports. Figure 5 is the schematic of the CARS
that consists of six process modules with various functions.
The six process modules are (1) “process activity data”,
(2) “process emission factors”, (3) “process shapefile”,
(4) “calculate district emissions”, (5) “Grid4AQM”, and
(6) “plot figures”. The main purpose of modularizing the
CARS is to meet the needs of various communities, such
as policymakers, stakeholders, and air quality modelers.
While modules (1) through (4) are required to develop
the district-level and road-link-level emissions inventories,
module (5) is optional depending on whether users want
to develop chemically speciated gridded hourly emissions
for CTMs. In addition, the modularity of the CARS allows
users to bypass certain modules if it has been previously
processed without any changes. For example, if there is
no change in traffic activity, emission factors table, or GIS
shapefiles, users do not need to run these modules and can
simply read the data frame outputs and then run Grid4AQM
for the modeling dates and domain. The Grid4AQM module
will not only improve the computational time for CTMs but
also eliminate the need for a third-party emissions modeling
system like SMOKE (Baek and Seppanen, 2021).

The rectangular boxes in Fig. 5 represent the data array and
the boxes with rounded edges are the functions in the CARS.
Details on the CARS code, input table format, and function
setup information can be found on the CARS GitHub website
(Pedruzzi et al., 2020).

The process activity data module first reads the vehicle ac-
tivity data, such as an individual vehicle’s daily total VKT
based on its registered district. The process emission factors
module reads and stores the emission factors table that holds
all pollutant emission factors to estimate the emissions for
all vehicles. Meteorology-sensitive emission factors are only

limited to NOx pollutants. District boundary GIS shapefiles
and road network shapefiles are processed through the pro-
cess shape file module to generate the VKT-based redistri-
bution weighting factors from Eqs. (13), (14), and (15) for
the calculate district emissions module to compute district-
level and road-link-level emission rates (metric tons per year,
t yr−1).

The redistributed emission rates (t yr−1) from the calcu-
late district emissions module present annual total emission
rates until district-level VKTs from the process activity data
module are added. Following this, the Grid4AQM module
can generate CTM-ready chemically speciated emissions.
The “read_chemical” function from the Grid4AQM mod-
ule is designed to process the chemical speciation profile
that can convert the inventory pollutants, such as CO, NOX,
SO2, PM10, PM2.5, VOCs, and NH3, into the chemically
lumped model species that CTM requires for chemical mech-
anisms, such as Statewide Air Pollution Research Center
(SAPRC) chemical mechanism (Carter and Heo, 2013) and
Carbon Bond version 6 (CB6) (Yarwood and Jung, 2010).
The “read_temporal” function processes the complete set of
monthly, weekly, and hourly temporal allocation profiles that
can convert annual total emissions to hourly emissions. The
“read_griddesc” function defines the CTM-ready modeling
domain and computes the gridding fractions for all road-link-
level emissions by overlaying the modeling domain over the
GIS shapefiles. Once annual total emissions are chemically
speciated, spatially gridded, and temporally allocated into
hourly emissions, the “gridded_emis” function will com-
bine emission source-level conversion fractions from each
function (read_chemical, read_temporal, and read_griddesc)
to generate the CTM-ready chemically speciated, gridded
hourly emissions in the NetCDF binary format. The plot fig-
ures module is designed for generating various summary re-
ports and graphics to assist users in understanding the es-
timated automobile emissions inventory computed by the
CARS. The following section will describe the detailed pro-
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cesses of the Grid4AQM module, which includes chemical,
spatial, and temporal allocations.

The influence of temperature on emission processes is
considered in the CARS model. There are three tempera-
ture parameters in current CARS model: “temp_max” for
maximum temperature, “temp_mean” for mean temperature,
and “temp_min” for minimum temperature. These temper-
ature parameters will be applied over the entire modeling
domain during the simulation period. The current CARS
model version does not yet support to process gridded me-
teorology data from third-party meteorology models like the
Meteorology–Chemistry Interface Processor (MCIP) from
the U.S. EPA and the Weather Research Forecasting (WRF)
model from the National Center for Atmospheric Research
(NCAR). However, CARS can easily adopt various tempo-
rally resolved temperature values by adjusting the CARS
simulation period (i.e., day, week, month, season, or year).

3.1 Chemical speciation

To support CTM applications, the CARS needs to be able
to convert inventory pollutants into chemical lumped model
species based on the choice of CTM chemical mechanisms.
NOx includes nitric oxide (NO), nitrogen dioxide (NO2), and
nitrous acid (HONO). VOCs can represent hundreds of dif-
ferent organic carbon species, such as benzene, acetaldehyde,
and formaldehyde. These grouped inventory pollutants can-
not be directly imported into the chemical mechanism mod-
ules in the CTM system and require chemical speciation al-
location for CTMs to process them during their chemical
reactions. Therefore, the Grid4AQM module performs the
chemical species allocation step prior to the temporal and
spatial allocations to generate the gridded hourly emissions.
The read_chemical function in the Grid4AQM module al-
lows users to assign these emission inventory pollutants to
CTM-ready surrogate chemical species (i.e., lumped chemi-
cal species) by vehicle, engine, and fuel type. For example,
VOC emissions from diesel buses can be converted into the
following composition based on its chemical allocation pro-
file when the CB6 chemical mechanism is selected: alkanes
(68 %), toluene (9 %), xylenes (8 %), alkenes (4 %), ethylene
(2 %), benzene (1.3 %), and unreactive compounds (7 %).
Further details on the chemical speciation profile input for-
mats are available in the CARS user’s guide.

3.2 Spatial allocation

The calculate district emissions module calculates both total
district and road link specific emissions based on road-link-
specific AADT data from road network GIS shapefiles. The
calculate district emissions module first gets the district total
vehicle emissions (Eq. 2) based on the district-level VKTs
and then the normalized district total emissions by district
weight factor, ωd (Eq. 13). Afterwards, the normalized dis-
trict total emissions are redistributed into every road link us-

ing road-link-level weight factors (ωd,l) (Eq. 15). The district
total emissions from Eq. (2) and Eq. (15) remain the same.
Thus, the computed road-link-level emissions will then be
converted into grid cell emissions using the modeling domain
grid cell fractions computed in the Read_griddesc function in
the Grid4AQM module.

3.3 Temporal allocation

Once chemical and spatial allocations are completed, the
final step to support CTM application is a temporal allo-
cation that converts the annual total emissions from the
calculate district emissions module into hourly emissions.
The Read_temporal temporal allocation function in the
Grid4AQM module converts the annual emission rate (t yr−1)
to the hourly emission rate (mol h−1) using monthly, weekly,
and weekday–weekend diurnal temporal profiles. This mod-
ule processes these temporal profile inputs, which are the
monthly (January–December), weekly (Monday–Sunday),
and weekday–weekend 24 h profile tables (00:00–23:00 LT,
local time). The users can assign these temporal profiles with
a combination of vehicle, engine, fuel, and road types to en-
hance their temporal representations in detail.

3.4 Chemical transport model emissions

The main goal of the Grid4AQM module is to generate tem-
porally, chemically, and spatially enhanced CTM-ready grid-
ded hourly emissions. First, it reads the CTM modeling do-
main configuration and then overlays it over the road net-
work GIS shapefile and district boundary shapefile to define
the modeling domain. This overlaying process between the
road network, district boundary GIS shapefiles, and model-
ing domain allows the Grid4AQM module to compute the
fraction of road links that intersects with each grid cell. Fig-
ure 6 demonstrates how the district boundary and road net-
work GIS shapefiles are used to perform the spatial allo-
cation processes in CARS. Figure 6a is a native road link
shapefile of Seoul with AADT, VKT, district ID, and road
type. Figure 6b presents an overlay of two districts’ road
links (purple and blue) over the selected region. State to-
tal emissions will be renormalized into weighed district to-
tal emission data and then redistributed into the road link.
Figure 6c illustrates how the weighted road-link-level emis-
sions get allocated into modeling grid cells for CTMs. The
link-level VKT (VKTd,r,l) from Eq. (12) will be used to com-
pute a total of traffic activity fractions by grid cell and then
use that to assign the link-level emissions from Eq. (2) into
each grid cell. When a road link intersects with multiple grid
cells, the “Grid4AQM” module will weigh the emissions by
the length of the link that intersects with each grid cell. It
should be noted that current CARS model can only gener-
ate the Community Multiscale Air Quality (CAMQ)-ready
gridded hourly emissions in the IOAPI (Input/Output Appli-

Geosci. Model Dev., 15, 4757–4781, 2022 https://doi.org/10.5194/gmd-15-4757-2022



B. H. Baek et al.: The Comprehensive Automobile Research System 4767

Figure 6. (a) The road network GIS shapefile of Seoul, South Korea. (b) Two districts differentiated using different colors (purple and blue).
(c) The modeling grid cells shown over the road segments.

cations Programming Interface) format, which is based on
the NetCDF format.

Through the overlay process, the CARS model can gener-
ate various types of output data, such as total district emis-
sions, link-level emissions, and CTM-ready gridded emis-
sions. For example, the CO vehicle emissions from the Seoul
metropolitan area in South Korea are presented in three dif-
ferent output formats in Fig. 7. Figure 7a shows the annual
mobile PM2.5 emissions by district. The road link level an-
nual emissions are presented in Fig. 7b. Furthermore, the
CARS applies the link-level emissions from Fig. 7b to gen-
erate the hourly grid cell emission data with a 1km× 1km
resolution for the CTM in Fig. 7c.

3.5 National control strategy application

One of the unique features in the CARS compared to other
mobile emissions models is that it can promptly develop a
strategy to control automobile emissions in response to na-
tional emergency high PM2.5 episodes. It is very common to
experience high PM2.5 episodes, especially during the win-
tertime in South Korea due to domestic and international
primary and secondary air pollutants emissions. When the
72 h forecasted PM2.5 concentration exceeds the average.
50 µg m−3 (00:00–16:00 LT), the national PM2.5 emergency
control strategy is activated for 10 d. It applies a nationwide
vehicle restriction policy within 24 h. It enforces a limit on
what kind of vehicles can be operated on a certain date. The
restrictions can be closures of public parks and government
facilities and of certain vehicles based on their fuel type and
age, which is a major factor of engine deterioration. This pol-
icy will limit the number of vehicles on the network roads
significantly, which could reduce primary PM2.5 and precur-
sor pollutant (NOx , NH3, and VOCs) emissions, especially
from heavily populated metropolitan regions (Choi et al.,
2014; Kim et al., 2017a, b, c).

To understand the impacts of an even or odd vehicle num-
ber restriction policy in real time, we need to quickly de-
velop a rapid controlled response to emissions for the air
quality forecast modeling system based on the reduced num-

ber of vehicles on the road. The process of generating the
controlled mobile emission inventory can take a long time if
we start fresh. Thus, we have implemented this control strat-
egy as an optional “control factors” function in the calculate
district emissions in the module for users to quickly and eas-
ily generate the controlled mobile emission inventory with
consideration of the limited number of vehicles based on the
vehicle, engine, fuel, and vehicle manufacture year. A 100 %
control factor means that there are no emissions from those
selected vehicles.

Because of the modularization system in the CARS, we
can bypass some computationally expensive data processing
modules (i.e., process activity data, process emission factors,
and process shape file) and let the calculate district emissions
module quickly apply control factors while it computes the
district-level mobile emission inventory from Eq. (2). This
will allow users to reduce the computational time to generate
the controlled mobile emissions under a specific control sce-
nario and develop the controlled CTM-ready gridded hourly
emissions using the Grid4AQM module.

3.6 Computational time

While the CARS can generate a high-quality spatiotempo-
ral emission inventory, it is quite critical for the CARS to
generate them effectively and accurately without being at the
expense of computational time. This is especially important
to meet the needs for an air quality forecast modeling system
responding to a national emergency control strategy imple-
mentation.

In this section, we will discuss the details of the CARS
computational modeling performance. While the CARS
model has been highly optimized, the modularization of
CARS has also improved its modeling performance with its
optional module runs. The breakdown of module-specific
computational time estimates based on the benchmark CARS
runs are listed in Table 1. The benchmark CARS case in-
cludes a total of 24 383 578 daily VKT datasets from KTSA
over 2 different years, 84 608 emission factors for all pol-
lutants across a combination of vehicle age and engine and

https://doi.org/10.5194/gmd-15-4757-2022 Geosci. Model Dev., 15, 4757–4781, 2022



4768 B. H. Baek et al.: The Comprehensive Automobile Research System

Figure 7. Three different formats of CO emissions from CARS: (a) district-level total emissions (t yr−1), (b) link-level total emissions
(t yr−1), (c) and CTM-ready gridded hourly total emissions (mol s−1).

Table 1. Computational processing time by CARS module based on the modeling setup. The total number of activity data is 24 383 578, there
are 84 608 emission factors, there are 385 795 GIS road links, there are 5150 districts and 16 states; there are 5494 total 9km× 9km grid
cells (82 columns×67 columns). The numbers in parentheses beside the Grid4AQM module is the computational time for 31 d (as opposed
to a single day).

No. Module Desktop i7 Laptop i9 Averaged time
(min) (min) (min)

1 Process activity data 1.8 1.5 1.7
2 Process emission factors 1.1 0.8 1.0
3 Process shape file 9.9 7.3 8.6
4 Calculate district emissions 6.4 5.7 6.1
5 Grid4AQM [31 d] 4.8 [75.9] 5.0 [87.2] 4.9 [81.6]
6 Plot figures 6.2 5.4 5.8

Total [31 d] 30.2 [101.3] 25.7 [107.9] 28.1 [104.8]

fuel types, 385 795 road links from the GIS road network
shapefiles, a 5150-district and 16-state boundary GIS shape-
file, and 5494 grid cells (82 rows and 67 columns) for CTMs.
Without any computational parallelization, the total process-
ing time of all six modules usually takes around half an hour
to generate a single-day CTM-ready gridded hourly emission
file. However, it can be further shortened to 25–30 min on a
higher-performance computer. Because of the modular sys-
tem implemented in the CARS, generating 1 month (31 d)
of gridded hourly emissions from CTMs takes 100 min on
high-performance computers. The maximum usage of RAM
can reach up to 11 GB. Table 1 shows the breakdown of
computational time by each module from two different hard-
ware setups (desktop and laptop computers). The numbers
in parentheses beside the Grid4AQM module is the compu-
tational time for 31 d. While the Grid4AQM module takes
an average of 4.9 min for the generation of a single day of
emissions, processing a 31 d consecutively saves 46 % more
time, decreasing it from 151.9 min (= 4.9 min d−1

×31 d) to
81.6 min.

Table 2. The total emissions comparison between CARS and
CAPSS for 2015 emissions.

Pollutants (t yr−1)

Emission NOx VOCs PM2.5 CO SOx NH3
inventory

CARS 2015 301 794 61 186 10 108 373 864 172 12 453
CAPSS 2015 369 585 46 145 8817 245 516 209 10 079

4 Results

4.1 CARS and CAPSS Comparison

The CARS model calculates the 2015 on-road automobile
emissions based on the latest 2015 emission factors and the
2015–2017 vehicle activity database in South Korea. The an-
nual total emissions from CARS are compared against the
ones from NIER’s CAPSS in Table 2. The CARS model esti-
mated the following annual total emissions in units of metric
tons per year (t yr−1): NOx (301 794), VOCs (61 186), CO
(373 864), NH3 (12 453), PM2.5 (10 108), and SOx (172.0).
Compared to NIER’s CAPSS, the CARS underestimated
NOx (−18 % decrease) and SOx (−17 % decrease) and over-
estimated the emissions of VOCs by 33 %, PM2.5 by 15 %,
CO by 52 %, and NH3 by 24 %. Both NIER’s CAPSS and
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CARS shared the same emission factor tables, which hold
over 84 608 emission factors for all pollutants across a com-
bination of vehicle, age, engine, and fuel types.

The difference in results between CAPSS and CARS are
caused by the three following reasons. First, the number of
vehicles used in CARS is slightly higher (6 %) than CAPSS
data (1.3 out of 23 million), as well as other key traffic-
related activity inputs (i.e., vehicle age distribution, averaged
speed distribution, etc). Secondly, the vehicle speed infor-
mation assigned by vehicle and road type play a critical role.
The CAPSS calculation was based on the road-specific a sin-
gle average speed value or 80 % of the speed limit of the
road as an input of vehicle operating speed for three road
types (rural, urban, and expressway) (Lee et al., 2011b). In
other words, CAPSS only assigns a “single-speed value” for
each road type and does not encounter the variation of vehi-
cle speed during its operation on roads into the emissions
calculation. Most running exhaust emissions occur during
a vehicle’s low-speed operation due to its incomplete com-
bustion of fuel, and it is critical to accurately represent the
emissions across various speed bins in order to compute the
accurate emissions (Fig. 4). A detailed analysis of the im-
pact of vehicle speed will be discussed later in this chapter.
Lastly, other advanced processes in the CARS, such as link-
level AADT and district-level vehicle data (5150 districts in
South Korea), can reflect more spatial detail and variation
than the CAPSS. The CAPSS only considers state-level data
(17 states in South Korea) and five road types (interstate ex-
pressway, urban highway, rural highway, urban local, and ru-
ral local).

Figure 8 illustrates more details about the difference in
annual emissions between CARS and CAPSS by pollutant
and vehicle types. Sedan vehicles show the largest increase
in VOCs (33 %), CO (41 %), and NH3 (23 %) in the CARS
relative to CAPSS because almost 56 % of total vehicle count
(13.5 million) is composed of sedan vehicles (Appendix B).
In Table 3, sedan vehicles contribute 51 % of total VOCs and
61 % of total CO annual emissions. The VOC and CO emis-
sions from sedans are largely affected by the average speed
distribution process when compared to other vehicle types.
Similarly, the largest decreases of NOx (−16 %) and SOx
(−18 %) are from trucks because they are significant NOx
(∼ 50 %) and SOx contributors (∼ 27 %) and their emission
factors are sensitive to vehicle speed.

4.2 On-road emissions analysis

The CARS is a bottom-up emissions model that utilizes local
individual vehicle activity data, detailed local emission fac-
tors for every vehicle and fuel type, and localized inputs such
as average speed distribution by road type and deterioration
factor. It allows users to assess a detailed breakdown of local-
ized emission contributions. Table 3 represents the individual
air pollutants (NOx , VOCs, PM2.5, CO, NH3, and SOx) emis-
sion contributions (t yr−1), fractions (%), and impact factors

(IFs) by vehicle type and fuel system. The IF is defined by
the normalized annual emissions with vehicle counts of each
category (kg yr−1 per vehicle). The CARS also can provide
the average daily VKT per vehicle, which is the total daily
VKT divided by vehicle numbers, to explain the emission
contributions in Appendix D.

Diesel-fueled vehicles contribute the most NOx emis-
sions at over 85.3 % (257 305 t yr−1), although the number
of diesel vehicles only amounts to approximately 35 % of
the total vehicles (Table 3a). While diesel trucks emitted
49.1 % (148 246 t yr−1) of total NOx with an IF value of 47.9
(kg yr−1), the highest impact (IF = 340 kg yr−1) occurred
from diesel buses with only an 8.51 % contribution to the
total NOx emissions. This is caused by the highest average
daily VKT from diesel buses compared to other vehicles,
which is expected in a highly populated metropolitan area
like Seoul, South Korea. A diesel bus generally has a 3–5
times higher daily VKT (180 km d−1) than other common ve-
hicles (gasoline sedan: 34 km d−1; diesel truck: 57 km d−1).
The second-largest vehicle type is the compressed natural gas
(CNG) bus (248 kg yr−1), which also has a high VKT at a
daily average of 212 km d−1 with only a 3.1 % NOx contri-
bution.

For VOC emissions, over 12 million gasoline vehicles
cause 52.1 % (31 885 t yr−1) of the total VOC emissions,
with the gasoline sedan as the highest contributor (46.5 %
at 14 070 t yr−1) across all vehicle types (Table 3b). Diesel
vehicles only contribute 23.0 % (14 070 t yr−1) of the total
VOC emissions. The IF values from VOC indicate that CNG
buses have the highest, which is 247 kg yr−1 (19 % over total
VOC) with a low number of heavy CNG vehicles. The IF of
the CNG bus is the highest, which is 320 kg yr−1 and emits
19.5 % of the total VOC. Comparing the IFs of buses across
fuel types, the CNG bus emits less NOx but more VOCs than
a diesel vehicle. Each CNG bus has about 33 times higher IF
of VOCs (320 kg yr−1) than a diesel bus (9.51 kg yr−1), and
CNG buses release slightly lower NOx (248 kg yr−1) than
diesel buses (340 kg yr−1) (Table 3a and b).

The South Korean NIER does not currently have the PM
emission factors from tire and brake wear, which are the
highest contributors of PM2.5 emissions from on-road vehi-
cles (Denier van der Gon et al., 2013; Fulvio et al., 2014).
Once the emission factors of tire and brake wear are pre-
pared, those emissions can be computed by CARS. For that
reason, diesel vehicles become the major source of PM2.5
emissions, which contributes over 98.5 % (9959 t yr−1) of the
PM2.5 emissions based on the CARS 2015 emissions (Ta-
ble 3c). The diesel truck, SUV, and van categories are the
three major sources of total PM2.5 at 53.6 %, 21.4 %, and
11.2 %, respectively. Although over 52 % of the vehicles are
gasoline vehicles, their primary PM2.5 contribution is limited
to 1.44 %. The diesel bus has the highest IF (2.83 kg yr−1),
which is caused by the largest average daily VKTs.

Similar to VOC emissions, CO is mostly emitted through
the tailpipe due to incomplete internal combustion of fuel and
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Table 3. Summary table of emissions (t yr−1), contributions (%) and impact factors (IFs, kg yr−1) per vehicle for criteria air pollutants
(CAPs) by vehicle and fuel type (a) for NOx , (b) VOCs, (c) PM2.5, (d) CO, (e) SOx , and (f) NH3. The bold font indicates the major
contributors to vehicle type and fuel type.

(a) NOx

Gasoline Diesel LPG CNG Hybrid Total

Vehicle Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF

Sedan 20 219 (6.70 %) 1.94 14 783 (4.90 %) 12.8 8159 (2.77 %) 4.49 12 (0.00 %) 1.26 65 (0.02 %) 0.39 43 239 (14.3 %) 3.19
Truck 23 (0.01 %) 5.54 148 246 (49.1 %) 47.9 920 (0.31 %) 4.55 88 (0.03 %) 66.4 – – 149 277 (49.5 %) 45.2

Bus 0 (0.00 %) 0.97 25 677 (8.51 %) 340 – – 9260 (3.07 %) 248 0 (0.00 %) 1.77 34 938 (11.6 %) 333
SUV 159 (0.05 %) 1.19 39 565 (13.1 %) 11.4 175 (0.06 %) 8.54 0 (0.00 %) 1.60 1 (0.00 %) 0.42 39 900 (13.2 %) 11.0
Van 14 (0.00 %) 4.78 16 659 (5.52 %) 22.6 1337 (0.44 %) 6.80 0 (0.00 %) 1.25 0 (0.00) 0.37 18 012 (6.00 %) 19.2
Taxi – – – – 1217 (0.40 %) 2.11 – – – – 1217 (0.40 %) 2.11
Special 1 (0.00 %) 20.1 12 347 (4.10 %) 152 0 (0.00 %) 0.52 – – – – 12 375 (4.10 %) 151
Motorcycle 2836 (0.94 %) 1.31 – – – – – – – 2836 (0.94 %) 1.32

Total 23 253 (7.70 %) 1.83 257 305 (85.3 %) 29.9 11 809 (3.91 %) 4.20 9361 (3.10 %) 36.7 66 (0.02 %) 0.39 301 794 (100 %) 13.3

(b) VOCs

Gasoline Diesel LPG CNG Hybrid Total

Vehicle Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF

Sedan 28 434 (46.5 %) 2.73 629 (1.03 %) 0.55 2107 (3.44 %) 1.16 3 (0.01 %) 0.33 77 (0.13 %) 0.47 31 250 (51.1 %) 2.30
Truck 23 (0.04 %) 5.44 8194 (13.4 %) 2.65 286 (0.47 %) 1.41 102 (0.17 %) 77.2 – – 8605 (14.1 %) 2.61
Bus 0 (0.00 %) 1.65 717 (1.17 %) 9.51 – – 11 942 (19.5 %) 320 0 (0.00 %) 0 12 659 (20.7 %) 112
SUV 246 (0.40 %) 1.84 2441 (3.99 %) 0.71 46 (0.08 %) 2.25 0 (0.00 %) 0.75 1 (0.00 %) 0.55 2733 (4.47 %) 0.76
Van 21 (0.03 %) 7.04 1185 (1.94 %) 1.61 393 (0.64 %) 2.00 0 (0.00 %) 0.45 0 (0.00 %) 0 1599 (2.61 %) 1.71
Taxi – – – – 273 (0.45 %) 0.47 – – – – 273 (0.45 %) 0.47
Special 1 (0.00 %) 25.8 904 (1.48 %) 11.1 0 (0.00 %) 0.23 – – – – 905 (1.48 %) 11.0
Motorcycle 3160 (5.16 %) 1.46 – – – – – – – 3160 (5.16 %) 1.46

Total 31 885 (52.1 %) 2.50 14 070 (23.0 %) 1.64 3106 (5.08 %) 1.10 12 047 (19.7 %) 247 78 (0.13 %) 0.47 61 186 (100 %) 2.51

(c) PM2.5

Gasoline Diesel LPG CNG Hybrid Total

Vehicle Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF

Sedan 144 (1.42 %) 0.01 809 (8.00 %) 0.70 0 0 0 0 3 (0.03 %) 0.02 956 (9.46 %) 0.07
Truck 0 (0.01 %) 0 5415 (53.6 %) 1.75 0 0 0 0 – – 5415 (53.6 %) 1.64
Bus 0 0 214 (2.11 %) 2.83 – – 0 0 0 (0.01 %) 0.09 214 (2.11 %) 1.89
SUV 2 (0.02 %) 0.02 2165 (21.4 %) 0.63 0 0 0 0 0 0.02 2167 (21.4 %) 0.60
Van 0 0 1127 (11.2 %) 1.53 0 0 0 0 0 0.02 1127 (11.2 %) 1.20
Taxi – – – – 0 0 – – – – 0 0
Special 0 0 230 (2.28 %) 2.82 0 0 – – – – 230 (2.28 %) 2.81
Motorcycle 0 0 – – – – – – – 0 0

Total 146 (1.44 %) 0.01 9959 (98.5 %) 1.16 0 0 0 0 3 (0.03 %) 0.02 10 108 (100 %) 0.41

(d) CO

Gasoline Diesel LPG CNG Hybrid Total

Vehicle Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF

Sedan 178 121 (47.6 %) 17.1 3436 (0.92 %) 2.98 42 886 (11.5 %) 23.6 29 (0.01 %) 2.91 177 (0.05 %) 1.07 224 649 (60.1 %) 16.6
Truck 254 (0.07 %) 61.1 47 065 (12.6 %) 15.2 9088 (2.43 %) 44.9 68 (0.02 %) 51.4 – – 56 475 (15.1 %) 17.1
Bus 0 (0.00 %) 19.3 7633 (2.05 %) 101 – – 1542 (0.41 %) 41.3 1 (0.00 %) 4.64 9176 (2.45 %) 81.2
SUV 2616 (0.70 %) 19.6 13 401 (3.58 %) 3.87 791 (0.21 %) 38.6 0 (0.00 %) 4.09 2 (0.00 %) 1.15 16 808 (4.50 %) 4.65
Van 131 (0.04 %) 43.4 6611 (1.77 %) 8.97 8032 (2.15 %) 40.9 2 (0.00 %) 6.53 0 (0.00 %) 1.00 14 777 (3.95 %) 15.8
Taxi – – – – 8481 (2.27 %) 14.7 – – – – 8481 (2.27 %) 14.7
Special 13 (0.00 %) 269 4224 (1.13 %) 51.7 1 (0.00 %) 3.69 – – – – 4239 (1.13 %) 51.7
Motorcycle 39 256 (10.5 %) 18.2 – – – – – – – 39 256 (10.5 %) 18.2

Total 220 390 (59.0 %) 17.3 82 372 (22.0 %) 9.57 69 281 (18.5 %) 24.6 1641 (0.44 %) 33.6 180 (0.05 %) 1.07 373 864 (100 %) 15.4

(e) SOx

Gasoline Diesel LPG CNG Hybrid Total

Vehicle Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF

Sedan 51.3 (29.8 %) 0.005 6.5 (3.79 %) 0.006 8.28 (4.81 %) 0.005 0 0 1.14 (0.67 %) 0.007 67.2 (39.1 %) 0.005
Truck 0.03 (0.02 %) 0.008 45.5 (26.5 %) 0.015 0.97 (0.57 %) 0.005 0 0 – – 46.5 (27.1 %) 0.014
Bus 0 (0.00 %) 0.003 10.8 (6.26 %) 0.143 – – 0 0 0.01 (0.01 %) 0.047 10.8 (6.26 %) 0.095
SUV 0 (0.00 %) 0.000 18.2 (10.6 %) 0.005 0.00 (0.00 %) 0.000 0 0 0.01 (0.01 %) 0.007 18.2 (10.6 %) 0.005
Van 0.02 (0.01 %) 0.006 5.5 (3.20 %) 0.007 0.77 (0.45 %) 0.004 0 0 0 (0.00 %) 0.010 6.30 (3.66 %) 0.007
Taxi – – – – 7.71 (4.49 %) 0.013 – – – – 7.71 (4.48 %) 0.013
Special 0 (0.00 %) 0.003 7.3 (4.27 %) 0.090 0.00 (0.00 %) 0.005 – – – – 7.34 (4.27 %) 0.090
Motorcycle 7.94 (4.62 %) 0.004 – – – – – – – 7.94 (4.62 %) 0.004

Total 59.3 (34.5 %) 0.006 93.8 (54.5 %) 0.011 17.7 (10.3 %) 0.006 0 0 1.17 (0.68 %) 0.007 172 (100 %) 0.007
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Table 3. Continued.

(f) NH3

Gasoline Diesel LPG CNG Hybrid Total

Vehicle Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF

Sedan 12 225 (98.3 %) 1.17 20 (0.16 %) 0.02 0 0.00 0 0 19 (0.15 %) 0.11 12 284 (98.6 %) 0.91
Truck 0 (0.00 %) 0.03 82 (0.66 %) 0.03 0 0.00 0 0 – – 82 (0.66 %) 0.02
Bus 0 (0.00 %) 0.09 15 (0.12 %) 0.19 – – 0 0 0 (0.00 %) 0.51 15 (0.12 %) 0.13
SUV 0 (0.00 %) 0.00 0 (0.00 %) 0.00 0 0.00 0 0 0 (0.00 %) 0.16 0 (0.00 %) 0.00
Van 0 (0.00 %) 0.02 14 (0.11 %) 0.02 0 0.00 0 0 0 (0.00 %) 0.09 14 (0.11 %) 0.01
Taxi – – – – 0 0.00 – – – – 0 (0.00 %) 0.00
Special 0 (0.00 %) 0.01 10 (0.08 %) 0.12 0 0.00 – – – – 10 (0.08 %) 0.12
Motorcycle 49 (0.39 %) 0.02 – – – – – – – 49 (0.39 %) 0.02

Total 12 293 (98.7 %) 0.97 141 (1.13 %) 0.02 0 0.00 0 0 19 (0.16 %) 0.12 12 453 (100 %) 0.51

Figure 8. Comparison between CARS 2015 and CAPSS 2015 on-road mobile emissions inventories by vehicle type. The standard line is
CAPSS 2015 data.

shares similar emissions distributions across vehicle and fuel
types (Table 3d). Gasoline vehicles contribute most of the CO
(220 390 t yr−1, 59.0 %), and sedan vehicles are the primary
source (178 121 t yr−1, 47.6 %) of CO out of all gasoline ve-
hicles. Across vehicle types, buses show the highest IF of CO
(81.2 kg yr−1) due to its largest daily VKT. CO is the most
abundant pollutant released from vehicles (373 864 t yr−1)
across all pollutants from on-road automobile sources. Al-
though CO is much less reactive than other vehicle VOCs
(Rinke and Zetzsch, 1984; Liu and Sander, 2015), CO emis-
sions play a critical role in generating 30 % of all hydroper-
oxyl radicals (HO2) and cause ozone formation in urban ar-
eas (Pfister et al., 2019). Thus, CO is also another crucial
precursor to ozone formation in urban areas.

SOx emissions are related to the sulfur content within the
fuel component. Diesel has the highest sulfur content of any
fuels, and consequently most SOx is contributed by diesel
vehicles (93.8 t yr−1, 54.5 %) (Table 3e). Within diesel vehi-
cles, trucks provide 26.5 % of SOx (45. t yr−1). Although the

SOx from sedan vehicles are slightly higher (∼ 3.3 %) than
diesel trucks, the number of diesel trucks is only 29.6 % of
the number of gasoline sedans. Thus, diesel trucks have a
higher IF than gasoline sedans. Across vehicle types, buses
have the highest IF (0.095 kg yr−1) of SOx , and diesel buses
in particular have the largest IF at 0.143 kg yr−1.

The NH3 emissions table (Table 3f) indicates that 98.7 %
of NH3 is from gasoline vehicles, whereas diesel trucks
only contribute 1.13 %. The IF result also shows that the
gasoline sedan has the most significant impact per vehicle
(1.17 kg yr−1).

According to the vehicle activity and the CARS model
results, nearly half of the total vehicles (24.3 million) are
gasoline sedans (10.4 million, 42.8 %), and gasoline sedan
vehicles contribute the majority of VOC and CO emis-
sions (46.5 % and 47.6 %) but only 7.7 % of the total NOx
emissions. The number of diesel vehicles is at 8.6 million
(35.4 %); however, they emit about 85.3 % of the total NOx
and 98.5 % of the primary PM2.5. These results indicate that
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Figure 9. The impacts of emissions between the ASD and single-speed approach: (a) the total emission differences by pollutant and (b) the
road-specific difference (%) by pollutant.

the annual traffic-related automobile emissions are affected
not only by the number of vehicles but also by vehicle and
fuel types and the age of vehicles. Therefore, this study nor-
malized the annual emissions by the number of vehicles
to confirm the emission composition by individual vehicle
types.

4.3 Average speed impact study

The CARS can also optionally apply the average speed dis-
tribution (ASD) by road type to compute more realistic mo-
bile emissions on the road network when compared to using
a current single average speed value for each road type (Ap-
pendix E). Applying the ASD will generate a better represen-
tation of actual traffic patterns from each road type. To under-
stand the impacts of ASD application, we performed sensi-
tivity runs between using a single speed to the ASD appli-
cation (Appendix F). The ASD data was described in Fig. 4,
and the road-specific average single-speed values were devel-
oped based on the weighted average method using the same
ASD data. Appendix E and S6 describe the details of ASD
and road-specific speed values.

Figure 9a shows the differences in total emissions between
two scenarios and is organized by pollutant. The single-speed
scenario largely underestimates the emissions across all pol-
lutants compared to the ones from the ASD scenario. NOx
(16 %), VOC (40 %), and CO (30 %) were especially un-
derestimated. The difference is caused by the lack of low-
speed bin (< 16 km h−1) representation when a single aver-
age speed approach was used. Higher emissions are emitted
while vehicles are operated with low-speed bins, which de-
creases the combustion efficiency of ICE and releases more
pollutants.

Figure 9b shows the road-specific emissions breakdown
between the ASD and single-speed approaches to display the

impacts of vehicle operating speeds on on-road automobile
emissions. In this figure, each color indicates the emissions
percentage differences by road types. Other than NH3, the
most significant discrepancies are from urban local roads,
highways, and urban highways, respectively. This pattern
is caused by a better presentation of low-speed conditions
(< 16 km h−1) in CAR simulation (Appendix C). The lower
speeds cause the incomplete combustion of ICE and increase
the emission rate. In addition, local urban roads, highways,
and urban highways have higher road VKT contributions
than rural ones, at 17 %, 18 %, and 12 %, respectively (Ap-
pendix C). A better presentation of low-speed operating vehi-
cles from highly traveled roads (urban local, urban highway,
and highway) caused these significant differences between
the ASD and single-speed approaches. Although the inter-
state expressway has the largest VKT contribution (41 %), it
also has the lowest fraction of low-speed bins (2 %). That is
why the difference between the ASD and single-speed sce-
narios on interstate expressways is less than 1 %. In general,
NH3 emission factors do not change by vehicle operating
speed, and thus the ASD impact is quite minimal.

5 Conclusions

The CARS is a bottom-up automobile emissions model that
utilizes the localized traffic-related activity and emission fac-
tors input datasets to generate high-quality localized emis-
sions inventories for policymakers, stakeholders, and re-
search community as well as temporally and spatially en-
hanced hourly gridded emissions for CTMs. First, the CARS
model employs the daily VKTs for all registered vehicles and
the emission factors function to compute district-level total
daily emissions for each vehicle. To reflect realistic traffic
patterns, the CARS model computes and utilizes link-level
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VKTs (= link length×AADT) from the road network GIS
shapefiles to redistribute the original district-level total emis-
sions into spatially enhanced road-link-level emissions. It
can also optionally implement a control strategy as well as
road restriction rules to improve the quality of local emission
inventories and meet the needs of users.

The CARS model is a fully modularized and computa-
tionally optimized Python-based model that can effectively
process a huge dataset to calculate high quality spatiotem-
poral county-level, road-link-level, and grid-cell-level mo-
bile emissions. We believe that the implementation of the
ASD into the CARS improves the representation of on-road
automobile emissions from the road network when com-
pared to a single speed for each road type. It addition-
ally allows the CARS to have a better representation of
low-speed (< 16 km h−1) vehicle emissions. We believe that
the CARS model’s versatile spatiotemporal bottom-up au-
tomobile emissions and in-depth analysis feature can assist
government policymakers and stakeholders to quickly de-
velop responsive emission strategies to South Korea’s na-
tional PM2.5 emergency control strategy that enforces the na-
tionwide vehicle restriction policy within 24 h.
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Appendix A

Table A1. The vehicle types classified by fuel type, vehicle body type, and engine size. The emission factors of the diesel vehicles indicated
with an asterisk (∗) are dependent on the ambient temperature (T ).

Fuel types

Vehicle Gasoline Diesel LPG CNG HYBRID_G HYBRID_D HYBRID_L HYBRID_C
types

Sedan Super-compact Super-compact∗ Super-compact – – – – –
Compact Compact∗ Compact Compact Compact Compact Compact –
Full size Full size∗ Full size Full size Full size Full size Full size –
Midsize Midsize∗ Midsize Midsize Midsize Midsize Midsize –

Truck Super-compact Super-compact Super-compact – – – – –
Compact Compact∗ Compact Compact – – – –
Full size Concrete – Full size – – – –
Midsize Full size Midsize Midsize – – – –
– Midsize – – – – – –
– Dump – – – – – –
– Special Special Special – – – –

Bus Urban Urban Urban Urban – Urban – –
– Rural – Rural - Rural – Rural

SUV Compact Compact∗ Compact – – – – –
Midsize Midsize∗ Midsize Midsize Midsize – – –

Van Super-compact Super-compact Super-compact – – – – –
Compact Compact Compact Compact – – – –
– – Full size Full size Full size Full size Full size Full size
Midsize Midsize Midsize Midsize Midsize Midsize Midsize Midsize

Taxi – – Compact – – – – –
– – Full size – – – – –
– – Midsize – – – – –

Special – Tow – – – – – –
Wrecking Wrecking Wrecking Wrecking – – – –
Others Others Others – – – – –

Motorcycle Compact – – – – – – –
Midsize – – – – – – –
Full size – – – – – – –

A dash indicates that the category is not applicable to the vehicle type. ∗ Ambient-temperature-dependent diesel vehicle. LPG stands for liquefied petroleum gas. CNG stands for Connecticut
natural gas. Hybrid_G stands for hybrid vehicle with gasoline. Hybrid_D stands for hybrid vehicle with diesel. Hybrid_L stands for hybrid vehicle with LPG. Hybrid_C stands for hybrid
vehicle with CNG.
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Appendix B

Table B1. A summary of the activity data (number of vehicles and daily total VKTs) in South Korea by vehicle type and engine size.

Fuel types

Gasoline Diesel LPG CNG Hybrid

Vehicle types Engine sizes Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT

Sedan Super-compact 1 792 471 50 197 345 46 1761 83 226 4 000 067 6 237 – –
Compact 1 372 317 39 543 668 51 324 2 570 086 8040 257 060 276 12 115 3802 137 360
Full size 2 403 327 100 632 702 428 831 20 928 552 292 850 15 910 588 5296 323 852 21 533 1 086 509
Midsize 4 858 533 167 454 032 672 960 33 126 318 1 431 970 66 640 378 4310 625 717 140 527 6 717 856

Truck Super-compact 850 9595 816 354 111 051 6 550 476 – – – –
Compact 3185 143 510 2 655 089 133 480 216 87 650 3 567 109 42 2694 – –
Full size 3 422 180 991 25 774 819 – – 72 4676 – –
Midsize 98 7430 258 509 17 477 685 1434 47 870 14 483 – –
Dump – – – – – – – – – –
Special 20 970 – – 2292 99 124 1194 60 886 – –

Bus Urban 1 126 40 448 7 282 593 1 652 6543 1 466 854 2 282
Rural – – 34 997 6 334 278 – – 30 792 6 460 001 216 50 873

SUV Compact 42 348 1 395 153 2 341 397 105 962 626 6946 275 728 13 551 –
Midsize 91 002 3 520 552 1 120 128 5 277 861 13 567 595 426 15 706 1719 88 683

Van Super-compact 88 1645 – – 44 947 2 058 014 – – – –
Compact 2937 87 507 685 317 34 781 937 151 654 6 135 138 7 255 – –
Full size – – 19 452 1 318 221 1 14 97 7598 3 136
Midsize 2 1 303 795 31 790 1 433 407 15 416 160 15 216 2 85
Special – – – – – – – –

Taxi Compact – – – – 8380 576 378 – – – –
Full size – – – – 92 861 10 827 756 – – – –
Midsize – – – – 474 455 69 087 721 – – – –

Special Tow – – 40 807 7 447 773 – – – – – –
Wrecking 2 138 12 568 813 746 128 6607 3 94 – –
Others 47 553 28 275 989 988 180 9966 – – – –

Motorcycle Compact 184 822 3 507 948 – – – – – – – –
Full size 65 964 3 493 728 – – – – – – – –
Midsize 1 910 988 61 676 824 – – – – – – – –

A dash indicates that the category is not applicable to the vehicle type. LPG stands for liquefied petroleum gas. CNG stands for Connecticut natural gas. Hybrid is used to indicate all hybrid vehicles, i.e., electrical power
mixed with fossil fuels (gasoline, diesel, LPG, or CNG).

Appendix C

Table C1. Eight road types with assigned average vehicle operating speed and VKT fractions.

Road types Description Average speed (km h−1) Road VKT fraction

101 Interstate expressway 90 41 %
102 Urban expressway 60 5 %
103 Highway 58 18 %
104 Urban highway 36 12 %
105 Rural highway 55 3 %
106 Rural local road 45 4 %
107 Urban local road 32 17 %
108 Ramp 50 0.4 %
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Appendix D

Table D1. The daily average VKT (km d−1) per vehicle by vehicle
and fuel type.

Fuel types

Vehicle types Gasoline Diesel LPG CNG Hybrid Average

Sedan 34 49 48 97 48 38
Truck 39 57 51 52 – 57
Bus 126 180 – 212 237 191
SUV 37 46 42 45 52 46
VAN 29 51 42 87 44 49
Taxi – – 140 – – 140
Special 14 113 54 31 – 113
Motorcycle 32 – – – – 32

Appendix E

Table E1. Average speed distribution (ASD) for each road type. The
table columns are different road types, and the table rows are speed
ranges of each speed bin.

Road types

Speed bins Speed range (km h−1) 101 102 103 104 105 106 107 108

1 speed < 4 1.50 % 2.00 % 5.00 % 5.00 % 5.00 % 10.00 % 10.00 % 0.00 %
2 4≤ speed < 8 0.50 % 1.00 % 2.00 % 2.00 % 2.00 % 5.00 % 5.00 % 0.00 %
3 8≤ speed < 16 0.00 % 0.33 % 0.40 % 3.59 % 0.41 % 0.30 % 2.76 % 0.11 %
4 16≤ speed < 24 0.00 % 1.09 % 3.64 % 14.35 % 1.45 % 2.91 % 11.75 % 5.85 %
5 24≤ speed < 32 0.01 % 3.04 % 6.82 % 35.25 % 6.85 % 6.15 % 40.80 % 12.80 %
6 32≤ speed < 40 0.17 % 6.43 % 9.28 % 17.14 % 14.70 % 12.00 % 12.69 % 24.53 %
7 40≤ speed < 48 0.52 % 14.76 % 10.70 % 10.86 % 16.20 % 23.30 % 7.49 % 23.74 %
8 48≤ speed < 56 0.53 % 16.66 % 12.52 % 5.72 % 15.42 % 20.72 % 4.24 % 6.60 %
9 56≤ speed < 64 1.94 % 23.49 % 12.83 % 2.68 % 6.08 % 10.06 % 2.56 % 10.90 %
10 64≤ speed < 72 5.05 % 16.30 % 10.51 % 1.90 % 13.21 % 3.84 % 1.45 % 5.30 %
11 72≤ speed < 80 11.70 % 10.19 % 12.69 % 0.74 % 9.98 % 2.85 % 0.53 % 5.30 %
12 80≤ speed < 89 28.73 % 4.30 % 12.21 % 1.04 % 6.75 % 2.21 % 0.65 % 4.59 %
13 89≤ speed < 97 34.24 % 0.51 % 1.82 % 0.15 % 1.90 % 0.62 % 0.08 % 0.00 %
14 97≤ speed < 105 14.99 % 0.00 % 0.02 % 0.00 % 0.04 % 0.03 % 0.00 % 0.30 %
15 105≤ speed < 113 0.18 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
16 113≤ speed < 121 0.01 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
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Appendix F

Table F1. Speed range for each road type.

Road types

Speed bins Speed range (km h−1) 101 102 103 104 105 106 107 108

1 speed < 4 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
2 4≤ speed < 8 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
3 8≤ speed < 16 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
4 16≤ speed < 24 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
5 24≤ speed < 32 0 % 0 % 0 % 0 % 0 % 0 % 100 % 0 %
6 32≤ speed < 40 0 % 0 % 0 % 100 % 0 % 0 % 0 % 0 %
7 40≤ speed < 48 0 % 0 % 0 % 0 % 0 % 100 % 0 % 100 %
8 48≤ speed < 56 0 % 0 % 100 % 0 % 100 % 0 % 0 % 0 %
9 56≤ speed < 64 0 % 100 % 0 % 0 % 0 % 0 % 0 % 0 %
10 64≤ speed < 72 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
11 72≤ speed < 80 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
12 80≤ speed < 89 100 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
13 89≤ speed < 97 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
14 97≤ speed < 105 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
15 105≤ speed < 113 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
16 113≤ speed < 121 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

Appendix G

Table G1. The annual emission rate between original road type
ASD, adjusted road type ASD, and CAPSS result for 2015.

Gg yr−1 CO NOx SOx PM10 PM2.5 VOC NH3

CARS data 2015 (orig) ASD 269.3 258.4 0.2 9.5 8.8 38.9 12.4
CARS data 2015 (adj) ASD 373.9 301.8 0.2 11.0 10.1 61.2 12.5
CAPSS 2015 245.5 369.6 0.2 9.6 8.8 46.1 10.1
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Appendix H

Table H1. CARS model input data summary table.

Input data type Parameters Variable name in CARS File format

Human activity data Fuel, vehicle, type, daily VKT, activity_file csv
of each vehicle region code, manufacture data

Emission factor table Vehicle, engine, fuel, SCC, emis_factor_list csv
Pollutant, year, temperature, a,b,c,d,f,k

Link level shape file Link ID, region code, region name, Link_shape shape file
road rank, speed, VKT, Link length, geometry

County shape file Region code, region name county_shape shape file

Average speed distribution table Speed bins, the distribution of each road type avg_SPD_Dist_file csv

Road restriction table Vehicle, engine, fuel, road types road_restriction csv

Vehicle deterioration table Vehicle, engine, SCC, fuel, pollutant, deterioration_list csv
manufacture date

Control strategy factors table Vehicle, engine, fuel, year, data, control_list csv
region code, control factor

Model domain description Projection method name, parameters for gridfile_name text file in griddesc
Projection method, domain name, bottom-left corner format
x and y, grid cell size, numbers of
grid cell in x, y, and z axes

Temporal profile tables Profile reference number, year to monthly temporal _monthly_file csv
profile (12 columns)

Profile reference number, week to daily temporal _week_file csv
profile (7 columns)

Profile reference number, weekday to hourly temporal_weekday_file csv
profile (24 columns)

Profile reference number, weekend day to hourly temporal_weekend_file csv
profile (24 columns)

Vehicle, types, fuel, road type, month temporal_CrossRef csv
reference number, week reference number,
weekday reference number, weekend
reference number

Chemical profile table Species code, species name, target species name, chemical_profile txt or csv
fraction, molecular weight,

Vehicle, engine, fuel, species reference codes speciation_CrossRef csv

Geosci. Model Dev., 15, 4757–4781, 2022 https://doi.org/10.5194/gmd-15-4757-2022
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Code availability. The source code of the CARS model pub-
lic release version 1.0 can be downloaded from the GitHub re-
lease website: https://doi.org/10.5281/zenodo.5033314 (Baek et
al., 2021). Digital Object Identifier (DOI) for the CARS version
1.0 is as follows: https://doi.org/10.5281/zenodo.5033314 (Baek
et al., 2021). The CARS version 1.0 installation package comes
with the complete input and output datasets for users to con-
firm the program’s proper installation on their computer and
can be downloaded for the CARS version 1 used in this pa-
per (Baek et al., 2021) at https://doi.org/10.5281/zenodo.5033314
The CARS version user’s guide documentation can be ac-
cessed for the CARS version 1 used in this paper (Baek et
al., 2021) at https://doi.org/10.5281/zenodo.5033314 https://github.
com/bokhaeng/CARS/tree/master/docs/User_Manual (last access:
18 May 2022).

Data availability. All the datasets, Excel information, and Python
scripts used in this paper for the data analysis have been uploaded
to: https://doi.org/10.5281/zenodo.5033314 (Baek et al., 2021).
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