Articles | Volume 15, issue 7
https://doi.org/10.5194/gmd-15-2791-2022
https://doi.org/10.5194/gmd-15-2791-2022
Development and technical paper
 | 
06 Apr 2022
Development and technical paper |  | 06 Apr 2022

Landslide Susceptibility Assessment Tools v1.0.0b – Project Manager Suite: a new modular toolkit for landslide susceptibility assessment

Jewgenij Torizin, Nick Schüßler, and Michael Fuchs

Related authors

FACA v1 – Fully Automated Co-Alignment of UAV Point Clouds
Nick Schüßler, Jewgenij Torizin, Claudia Gunkel, Karsten Schütze, Lars Tiepolt, Dirk Kuhn, Michael Fuchs, and Steffen Prüfer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-209,https://doi.org/10.5194/gmd-2024-209, 2025
Preprint under review for GMD
Short summary

Related subject area

Climate and Earth system modeling
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025,https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025,https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025,https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
The ensemble consistency test: from CESM to MPAS and beyond
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025,https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary

Cited articles

Agterberg, F. P. and Cheng, Q.: Conditional independence Test for Weight-of-Evidence Modeling, Nat. Resour. Res., 11, 249–255, https://doi.org/10.1023/A:1021193827501, 2002. 
Aleotti, P. and Chowdhury, R.: Landslide hazard assessment: summary review and new perspectives, Bull. Eng. Geol. Envir., 58, 21–44, https://doi.org/10.1007/s100640050066, 1999. 
Alimohammadlou, Y., Najafi, A., and Gokceoglu, C.: Estimation of rainfall-induced landslides using ANN and fuzzy clustering methods: A case study in Saeen Slope, Azerbaijan province, Iran. Catena, 120, 149–162, https://doi.org/10.1016/j.catena.2014.04.009, 2014. 
Balzer, D., Dommaschk, P., Ehret, D., Fuchs, M., Glaser, S., Henscheid, S., Kuhn, D., Strauß, R., Torizin, J., and Wiedenmann, J.: Massenbewegungen in Deutschland (MBiD) – Beiträge zur Modellierung der Hangrutschungsempfindlichkeit. Ein Kooperationsprojekt zwischen den Staatlichen Geologischen Diensten der Bundesländer Baden-Württemberg, Bayern, Nordrhein-Westfalen, Sachsen und der Bundesanstalt für Geowissenschaften und Rohstoffe im Auftrag des Direktorenkreises der Staatlichen Geologischen Dienste in Deutschland, Abschlussbericht, Augsburg, Freiberg, Freiburg, Hannover und Krefeld, https://www.bgr.bund.de/DE/Themen/Erdbeben-Gefaehrdungsanalysen/Downloads/igga_mbid_abschlussbericht.html?nn=1542304 (last access: 31 March 2022), 2020. 
Barbieri, G. and Cambuli, P.: The weight of evidence statistical method in landslide susceptibility mapping 424 of the Rio Pardu Valley (Sardinia, Italy), 18th World IMACS/MODSIM Congress, Cairns, Australia, 2009. 
Download
Short summary
With LSAT PM we introduce an open-source, stand-alone, easy-to-use application that supports scientific principles of openness, knowledge integrity, and replicability. Doing so, we want to share our experience in the implementation of heuristic and data-driven landslide susceptibility assessment methods such as analytic hierarchy process, weights of evidence, logistic regression, and artificial neural networks. A test dataset is available.
Share