Articles | Volume 15, issue 7
https://doi.org/10.5194/gmd-15-2791-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2791-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Landslide Susceptibility Assessment Tools v1.0.0b – Project Manager Suite: a new modular toolkit for landslide susceptibility assessment
Federal Institute for Geosciences and Natural Resources (BGR),
30655 Hanover, Germany
Nick Schüßler
Federal Institute for Geosciences and Natural Resources (BGR),
30655 Hanover, Germany
Michael Fuchs
Federal Institute for Geosciences and Natural Resources (BGR),
30655 Hanover, Germany
Related authors
Nick Schüßler, Jewgenij Torizin, Claudia Gunkel, Karsten Schütze, Lars Tiepolt, Dirk Kuhn, Michael Fuchs, and Steffen Prüfer
Geosci. Model Dev., 18, 5913–5935, https://doi.org/10.5194/gmd-18-5913-2025, https://doi.org/10.5194/gmd-18-5913-2025, 2025
Short summary
Short summary
FACA – Fully Automated Co-Alignment – is a tool designed to generate co-aligned point clouds. We aim to accelerate the application of the co-alignment method and achieve fast results with evolving temporal data and minimal site-specific preparation. FACA offers multiple ways to interact with the workflow, enabling new users to quickly generate initial results through the custom interface, as well as integration into larger automated workflows via the command line. Test datasets are provided.
Nick Schüßler, Jewgenij Torizin, Claudia Gunkel, Karsten Schütze, Lars Tiepolt, Dirk Kuhn, Michael Fuchs, and Steffen Prüfer
Geosci. Model Dev., 18, 5913–5935, https://doi.org/10.5194/gmd-18-5913-2025, https://doi.org/10.5194/gmd-18-5913-2025, 2025
Short summary
Short summary
FACA – Fully Automated Co-Alignment – is a tool designed to generate co-aligned point clouds. We aim to accelerate the application of the co-alignment method and achieve fast results with evolving temporal data and minimal site-specific preparation. FACA offers multiple ways to interact with the workflow, enabling new users to quickly generate initial results through the custom interface, as well as integration into larger automated workflows via the command line. Test datasets are provided.
Cited articles
Agterberg, F. P. and Cheng, Q.: Conditional independence Test for
Weight-of-Evidence Modeling, Nat. Resour. Res., 11, 249–255,
https://doi.org/10.1023/A:1021193827501, 2002.
Aleotti, P. and Chowdhury, R.: Landslide hazard assessment: summary review
and new perspectives, Bull. Eng. Geol. Envir., 58, 21–44,
https://doi.org/10.1007/s100640050066, 1999.
Alimohammadlou, Y., Najafi, A., and Gokceoglu, C.: Estimation of
rainfall-induced landslides using ANN and fuzzy clustering methods: A case
study in Saeen Slope, Azerbaijan province, Iran. Catena, 120, 149–162,
https://doi.org/10.1016/j.catena.2014.04.009, 2014.
Balzer, D., Dommaschk, P., Ehret, D., Fuchs, M., Glaser, S., Henscheid, S.,
Kuhn, D., Strauß, R., Torizin, J., and Wiedenmann, J.: Massenbewegungen
in Deutschland (MBiD) – Beiträge zur Modellierung der
Hangrutschungsempfindlichkeit. Ein Kooperationsprojekt zwischen den
Staatlichen Geologischen Diensten der Bundesländer
Baden-Württemberg, Bayern, Nordrhein-Westfalen, Sachsen und der
Bundesanstalt für Geowissenschaften und Rohstoffe im Auftrag des
Direktorenkreises der Staatlichen Geologischen Dienste in Deutschland,
Abschlussbericht, Augsburg, Freiberg, Freiburg, Hannover und Krefeld, https://www.bgr.bund.de/DE/Themen/Erdbeben-Gefaehrdungsanalysen/Downloads/igga_mbid_abschlussbericht.html?nn=1542304 (last access: 31 March 2022), 2020.
Barbieri, G. and Cambuli, P.: The weight of evidence statistical method in
landslide susceptibility mapping 424 of the Rio Pardu Valley (Sardinia,
Italy), 18th World IMACS/MODSIM Congress, Cairns, Australia, 2009.
Bonham-Carter, G. F.: Geographic information systems for geoscientists:
Modelling with GIS, Pergamon Press, Ottawa, https://doi.org/10.1016/C2013-0-03864-9, 1994.
Bonham-Carter, G. F., Agterberg, F. P., and Wright, D. F.: Weights of
evidence modelling: a new approach to mapping mineral potential, Stat. Appl.
Earth. Sci. Geol. Survey Can. Paper, 89–9, 171–183, 1989.
Bouziat, A., Schmitz, J., Deschamps, R., and Labat, K.: Digital
transformation and geoscience education: New tools to learn, new skills to
grow, European Geologist, 50, 15–19, https://doi.org/10.5281/zenodo.4311379, 2020
Brabb, E. E.: Innovative approaches to landslide hazard and risk
mapping, Proceedings of the 4th International Symposium on Landslides,
Toronto, 1, 307–324, 1985.
Bragagnolo, L., da Silva, R. V., and Grzybowski, J. M. V.: Artificial neural
network ensembles applied to the mapping of landslide susceptibility,
Catena, 184, 104240, https://doi.org/10.1016/j.catena.2019.104240, 2020a.
Bragagnolo, L., da Silva, R. V., and Grzybowski, J. M. V.: Landslide
susceptibility mapping with r.landslide: A free open-source GIS-integrated
tool based on Artificial Neural Networks, Environ. Model.
Softw., 123, 104565, https://doi.org/10.1016/j.envsoft.2019.104565, 2020b.
Brenning, A.: Statistical geocomputing combining R and SAGA: The example of
landslide susceptibility analysis with generalized additive models, in: SAGA – Seconds Out (=
Hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie, edited by:
Boehner, J., Blaschke, T., and Montanarella, L., vol.
19), 23–32, 2008.
Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G.: A systematic review of
landslide probability mapping using logistic
regression, Landslides, 12, 419–436,
https://doi.org/10.1007/s10346-014-0550-5, 2015.
Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel,
O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R.,
VanderPlas, J., Joly, A., Holt, B., and Varoquaux, G.: API design for machine
learning software: experiences from the scikit-learn project, ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, 23 to 27 September, Prague, 108–122,
https://doi.org/10.48550/arXiv.1309.0238, 2013.
Calkins, J. A., Offield, T. W., Abdullah, S. K. M., and Ali, T.: Geology of
the Southern Himalaya in Hazara, Pakistan, and Adjacent Areas. Geological
Survey Professional Paper 716-C, United States Government Printing Office,
Washington, U.S. Govt. Print. Off.,
https://doi.org/10.3133/pp716C, 1975.
Canny, S.: python-docx – A Python library for creating and updating
Microsoft Word (.docx) files,
https://pypi.org/project/python-docx, last access: 4 May 2018.
Chung, C.-J. and Fabbri, A. G.: Validation of spatial prediction models for
landslide hazard mapping, Nat. Hazards, 30, 451–472, 2003.
Chung, C.-J. and Fabbri, A. G.: Predicting landslides for risk analysis –
Spatial models tested by a cross-validation technique, Geomorphology,
94, 438–452, https://doi.org/10.1016/j.geomorph.2006.12.036, 2008.
Crozier, M. J.: Deciphering the effect of climate change on landslide
activity: A review, Geomorphology, 124, 260–268,
https://doi.org/10.1016/j.geomorph.2010.04.009, 2010.
Egan, K.: Myanmar_Landslide_Models, GitHub [code],
https://github.com/katharineegan/Myanmar_Landslide_Models, last access: 17 December 2021.
Ermini, L., Catani, F., and Casagli, N.: Artificial Neural Networks applied
to landslide susceptibility assessment, Geomorphology, 66, 327–343,
https://doi.org/10.1016/j.geomorph.2004.09.025, 2005.
Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett., 27,
861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Fuchs, M. and Khalid, N.: Land Cover Map for the Districts of Mansehra &
Torghar, Province Khyber Pakhtunkhwa, Islamic Republic of Pakistan, Final
Report, 44 p., Islamabad/Hannover, https://zsn.bgr.de/mapapps4/resources/apps/zsn/index.html?lang=de¢er=8738580.027271974%2C2528672.44753847%2C3857&lod=4&itemid=LAFtPD4i3WpmghNb&search=105338 (last access: 31 March 2022), 2015.
Gazoni, E. and Clark, C.: openpyxl – A Python library to read/write Excel
2010 xlsx/xlsm files, https://openpyxl.readthedocs.io, last access: 11 June 2018.
GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software
Library, Open Source Geospatial Foundation, https://gdal.org (last access: 30 March 2022), 2021.
Georisk Assessment Northern Pakistan: BGR-EGHA/LSAT-TestData: LSAT- PMS – TestData (1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.5109620, 2021.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS)
Software, Version 7.2.1 Open Source Geospatial Foundation,
http://grass.osgeo.org (last access: 31 March 2022), 2021.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide
hazard evaluation: a review of current techniques and their application in a
multi-scale study, Central Italy, Geomorphology, 31, 181–216,
https://doi.org/10.1016/s0169-555x(99)00078-1, 1999.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F.:
Probabilistic landslide hazard assessment at the basin scale, Geomorphology,
72, 272–299, https://doi.org/10.1016/j.geomorph.2005.06.002, 2005.
Hall-Wallace, M. K.: Integrating Computing Across a Geosciences Curriculum
Through an Applications Course, J. Geosci. Educ., 47,
119–123, https://doi.org/10.5408/1089-9995-47.2.119, 1999.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Picus, M.,
Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del
Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T.
E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020.
Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., and
Navarro-Colorado, B.: A Systematic Review of Deep Learning Approaches to
Educational Data Mining, Complexity, 2019, 1306039,
https://doi.org/10.1155/2019/1306039, 2019.
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
JAXA: ALOS Global DSM AW3D30 Dataset Product Format Description for V 1.1,
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/aw3d30v11_format_e.pdf (last access: 31 March 2022), 2017.
Jebur, M. N., Pradhan, B., Shafri, H. Z. M., Yusoff, Z. M., and Tehrany, M. S.: An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications, Geosci. Model Dev., 8, 881–891, https://doi.org/10.5194/gmd-8-881-2015, 2015.
Kamp, U., Growley, B. J., Khattak, G. A., and Owen, L. A.: GIS-based
landslide susceptibility mapping for the 2005 Kashmir earthquake region,
Geomorphology, 101, 631–642, https://doi.org/10.1016/j.geomorph.2008.03.003,
2008.
Kamp, U., Owen, L. A., Growley, B. J., and Khattak, G. A.: Back analysis of
landslide susceptibility zonation mapping for the 2005 Kashmir earthquake:
an assessment of the reliability of susceptibility zoning maps, Nat.
Hazards, 54, 1–25, https://doi.org/10.1007/s11069-009-9451-7, 2010.
Keefer, D. K.: Investigating Landslides Caused by Earthquakes – A
Historical Review, Surv. Geophys., 23, 473–510,
https://doi.org/10.1023/A:1021274710840, 2002.
Lee, S.: Application of logistic regression model and its validation for
landslide susceptibility mapping using GIS and remote sensing data,
Int. J. Remote Sens., 26, 1477–1491,
https://doi.org/10.1080/01431160412331331012, 2005.
Lee, S. and Evangelista, D. G.: Earthquake-induced landslide-susceptibility mapping using an artificial neural network, Nat. Hazards Earth Syst. Sci., 6, 687–695, https://doi.org/10.5194/nhess-6-687-2006, 2006.
Lombardo, L. and Mai, M. P.: Presenting logistic regression-based landslide
susceptibility results, Eng. Geol., 244, 14–24,
https://doi.org/10.1016/j.enggeo.2018.07.019, 2018.
Makkawi, M. H., Hariri, M. M., and Ghaleb, A. R.: Computer Utilization in
Teaching Earth Sciences: Experience of King Fahd University of Petroleum and
Minerals, Int. Educ. J., 4, 89–97, 2003.
Mathew, J., Jha, V. K., and Rawat, G. S.: Weights of evidence modelling for
landslide hazard zonation mapping of Bhagirathi Valley, Uttarakhand, Current
Sci., 92, 628–638, 2007.
Merghadi, A.: An R Project for landslide susceptibility mapping in Mila
basin (v1.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.1000431, 2018.
Merghadi, A.: An R Project for landslide susceptibility mapping in Sihjhong
basin, Taiwan (1.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3238689, 2019.
Miller, G. A.: The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information, The Psychological Review, 63,
81–97, https://doi.org/10.1037/h0043158, 1956.
Moghaddam, M. H. R., Khayyam, M., Ahmadi, M., and Farajzadeh, M.: Mapping
susceptibility Landslide by using Weight-of Evidence Model: A case study in
Merek Valley, Iran, J. Appl. Sci., 7, 3342–3355,
https://doi.org/10.3923/jas.2007.3342.3355, 2007.
Neuhäuser, B., Damm, B., and Terhorst, B.: GIS-based assessment of
landslide susceptibility on the base of the Weights-of-Evidence model,
Landslides, 9, 511–528, https://doi.org/10.1007/s10346-011-0305-5, 2012.
Osna, T., Sezer, E. A., and Akgun, A.: GeoFIS: an integrated tool for the
assessment of landslide susceptibility, Comput. Geosci., 66, 20–30,
https://doi.org/10.1016/j.cageo.2013.12.016, 2014.
Panchal, S. and Shrivastava, A. K.: Application of analytic hierarchy
process in landslide susceptibility mapping at regional scale in GIS
environment, J. Statist. Manag. Syst., 23, 199–206,
https://doi.org/10.1080/09720510.2020.1724620, 2020.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-Learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011.
Petley, D.: Global patterns of loss of life from landslides, Geology, 40,
927–930, https://doi.org/10.1130/G33217.1, 2012.
Petschko, H., Brenning, A., Bell, R., Goetz, J., and Glade, T.: Assessing the quality of landslide susceptibility maps – case study Lower Austria, Nat. Hazards Earth Syst. Sci., 14, 95–118, https://doi.org/10.5194/nhess-14-95-2014, 2014.
Polat, A.: An innovative, fast method for landslide susceptibility mapping
using GIS-based LSAT toolbox, Environ. Earth Sci., 80, 217,
https://doi.org/10.1007/s12665-021-09511-y, 2021.
Polemio, M. and Petrucci, O.: Rainfall as a Landslide Triggering Factor: an
overview of recent international research, in: Landslides in Research, Theory
and Practice: Proceedings of the 8th International Symposium on Landslides, edited by:
Bromhead, E., Dixon, N., Ibsen, M.-L., Thomas Telford, London, UK,
1219–1226, http://hdl.handle.net/2122/7936 (last access: 5 April 2022), 2000.
Pradhan, B. and Lee, S.: Landslide susceptibility assessment, and factor
effect analysis: back propagation artificial neural networks and their
comparison with frequency ratio and bivariate logistic regression modelling,
Environ. Model. Softw., 25, 747–759,
https://doi.org/10.1016/j.envsoft.2009.10.016, 2010.
QGIS Development
Team: QGIS Geographic Information System, QGIS Association, http://www.qgis.org (last access: 31 March 2022), 2022.
Raffa, M.: Shallow landslide susceptibility analysis using Random Forest method
in Val D”Aosta D'Aosta Valley, GitHub [code],
https://github.com/MattiaRaffa/RF-VDA-landslide-map, last access: 17.
December 2021.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0,
http://www.R-project.org/ (last access: 31 March 2022), 2013.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A
review of statistically-based landslide susceptibility models, Earth Sci.
Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Rossi, M. and Reichenbach, P.: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0, Geosci. Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-2016, 2016.
Rossi, P. H., Guzzetti, F., Reichenbach, P., Mondini, A. C., and Perruccacci,
S.: Optimal landslide susceptibility zonation based on multiple forecasts,
Geomorphology, 114, 129–142,
https://doi.org/10.1016/j.geomorph.2009.06.020, 2010.
Saaty, T. L.: A scaling method for priorities in hierarchical structures,
J. Math. Psychol., 15, 234–281, 1977.
Saaty, T. L.: The analytic hierarchy process, McGraw-Hill, New York, ISBN-13 978-0070543713, 1980.
Sahin, E. K., Colkesen, I., Acmali, S. S., Akgun, A., and Aydinoglu, A. C.:
Developing comprehensive geocomputation tools for landslide susceptibility
mapping: LSM tool pack, Comput. Geosci.,
104592, https://doi.org/10.1016/j.cageo.2020.104592, 2020.
Schmidhuber, J.: Deep Learning in neural networks: An overview, Neural
Networks, 61, 85–117, 2015.
Senger, K., Betlem, P., Grundvåg, S.-A., Horota, R. K., Buckley, S. J., Smyrak-Sikora, A., Jochmann, M. M., Birchall, T., Janocha, J., Ogata, K., Kuckero, L., Johannessen, R. M., Lecomte, I., Cohen, S. M., and Olaussen, S.: Teaching with digital geology in the high Arctic: opportunities and challenges, Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, 2021.
Tanyaş, H., Allstadt, K. E., and van Westen, C. J.: An updated method for
estimating landslide-event magnitude, Earth Surf. Process. Landf.,
43, 1836–1847, https://doi.org/10.1002/esp.4359, 2018.
Teerarungsigul, S., Torizin, J., Fuchs, M., Kühn, F., and Chonglakmani,
C.: An integrative approach for regional landslide susceptibility assessment
using weight of evidence method: a case study of Yom River Basin, Phrae
Province, Northern Thailand, Landslides, 13, 1151–1165,
https://doi.org/10.1007/s10346-015-0659-1, 2015.
Thiery, Y., Malet, J.-P., Sterlacchini, S., Puissant, A., and Maquaire, O.:
Landslide susceptibility assessment by bivariate methods at large scales:
Application to a complex mountainous environment, Geomorphology, 92,
38–59, https://doi.org/10.1016/j.geomorph.2007.02.020, 2007.
Tian, T., Balzer, D., Wang, L., Torizin, J., Wan, L., Li, X., Chen, L., Li,
A., Kuhn, D., Fuchs, M., Lege, T., and Tong, B.: Landslide hazard and risk
assessment Lanzhou, province Gansu, China – Project introduction and
outlook, in: Advancing
culture of living with landslides, edited by: Mikoš, M., Tiwari, B., Yin, Y., and Sassa, K., WLF 2017, Springer, Cham, 1027–1033,
https://doi.org/10.1007/978-3-319-53498-5_116, 2017.
Titti, G., Sarretta, A., and Lombardo, L.: CNR-IRPI-Padova/SZ: SZ plugin
(v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5693351, 2021.
Torizin, J.: Landslide Susceptibility Assessment Tools for ArcGIS 10 and
their Application, in: Proceedings of 34th IGC, 5–10 August 2012, Brisbane,
730, ISBN 978-0-646-57800-2, 2012.
Torizin, J.: Elimination of informational redundancy in the weight of
evidence method: An application to landslide susceptibility assessment,
Stoch. Env. Res. Risk A., 30, 635–651,
https://doi.org/10.1007/s00477-015-1077-6, 2016.
Torizin, J. and Schüßler, N.: BGR-EGHA/LSAT: LSAT PM v1.0.0b2 (1.0.0b2), Zenodo [code], https://doi.org/10.5281/zenodo.5909726, 2022a.
Torizin, J. and Schüßler, N.: BGR-EGHA/LSAT-Documentation: LSAT PM v1.0.0b2 - Documentation (1.0.0b2), Zenodo [code], https://doi.org/10.5281/zenodo.5909744, 2022b.
Torizin, J. and Schüßler, N.: Python scripts to plot figures in LSAT PM article, Zenodo [code], https://doi.org/10.5281/zenodo.5913626, 2022c.
Torizin, J., Fuchs, M., Balzer, D., Kuhn, D., Arifianti, Y., and Kusnadi:
Methods for generation and evaluation of landslide susceptibility maps: a
case study of Lombok Island, Indonesia, Proceedings of 19th Conference on
Engineering Geology, Munich, 253–258, 2013.
Torizin, J., Fuchs, M., Awan, A. A., Ahmad, I., Akhtar, S. S., Sadiq, S.,
Razzak, A., Weggenmann, D., Fawad, F., Khalid, N., Sabir, F., and Khan, A.
H.: Statistical landslide susceptibility assessment of the Mansehra and
Thorgar districts, Khyber Pakhtunkhwa Province, Pakistan, Nat. Hazards,
89, 757–784, https://doi.org/10.1007/s11069-017-2992-2, 2017.
Torizin, J., Wang, L. C., Fuchs, M., Tong, B., Balzer, D., Wan, L., Kuhn,
D., Li, A., and Chen, L.: Statistical landslide susceptibility assessment in
a dynamic environment: A case study for Lanzhou City, Gansu Province, NW
China, J. Mt. Sci., 15, 1299–1318,
https://doi.org/10.1007/s11629-017-4717-0, 2018.
Torizin, J., Fuchs, M., Kuhn, D., Balzer, D., and Wang, L.: Practical
Accounting for Uncertainties in Data-Driven Landslide Susceptibility Models.
Examples from the Lanzhou Case Study, in: Understanding
and Reducing Landslide Disaster Risk, edited by: Guzzetti, F., Mihalić, Arbanas,
S., Reichenbach, P., Sassa, K., Bobrowsky, P. T., and Takara, K., WLF 2020, ICL Contribution to
Landslide Disaster Risk Reduction, Springer, Cham,
https://doi.org/10.1007/978-3-030-60227-7_27, 2021.
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, CreateSpace, Scotts Valley,
CA, ISBN 978-1-4414-1269-0, 2009.
Van Westen, C., Van Asch, T. W., and Soeters, R.: Landslide hazard and risk
zonation – why is it still so difficult?, B. Eng. Geol.
Environ., 65, 167–184, 2006.
Van Westen, C. J., Castellanos Abella, E. A., and Sekhar, L. K.: Spatial data
for landslide susceptibility, hazards and vulnerability assessment: an
overview, Eng. Geol., 102, 112–131,
https://doi.org/10.1016/j.enggeo.2008.03.010, 2008.
Varnes, D. J.: Landslide hazard zonation: a review of principles and
practice, Natural Hazards, 3, UNESCO, Paris, 63 pp., ISBN 978-92-3-101895-4, 1984.
Xu, Y. and Goodacre, R.: On Splitting Training and Validation Set: A
Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for
Estimating the Generalization Performance of Supervised Learning, J. Anal.
Test., 2, 249–262, https://doi.org/10.1007/s41664-018-0068-2, 2018.
Short summary
With LSAT PM we introduce an open-source, stand-alone, easy-to-use application that supports scientific principles of openness, knowledge integrity, and replicability. Doing so, we want to share our experience in the implementation of heuristic and data-driven landslide susceptibility assessment methods such as analytic hierarchy process, weights of evidence, logistic regression, and artificial neural networks. A test dataset is available.
With LSAT PM we introduce an open-source, stand-alone, easy-to-use application that supports...