

Supplement of

Landslide Susceptibility Assessment Tools v1.0.0b – Project Manager Suite: a new modular toolkit for landslide susceptibility assessment

Jewgenij Torizin et al.

Correspondence to: Jewgenij Torizin (jewgenij.torizin@bgr.de)

The copyright of individual parts of the supplement might differ from the article licence.

LSAT PM

Release 1.0.0b2

Federal Institute for Geosciences and Natural Resources

Jan 27, 2022

CONTENTS:

1	INTF	RODUC	TION 3
	1.1	Abstrac	t3
	1.2	General	Information
		1.2.1	Installation
		1.2.2	License
		1.2.3	First start and start menu
		1.2.4	System Requirements
		1.2.5	Uninstall
2	PRO,	JECT	7
	2.1	Project	7
		2.1.1	New Project
		2.1.2	Open Project
		2.1.3	Project Info
	2.2	View .	12
		2.2.1	Catalog 12
		2.2.2	Feature Attribute Table 15
		223	Feature Info
		2.2.3 2 2 4	Main Log
		2.2.4	Model Info
		2.2.5	Parameter Selection 19
		2.2.0	Pacter Attribute Table 10
		2.2.7	Raster Info
		2.2.8	
		2.2.9	Results - AHP
		2.2.10	Results - ANN
		2.2.11	Results - LR
	• •	2.2.12	Results - WofE
	2.3	Settings	30
		2.3.1	Language 30
	2.4	Help .	
		2.4.1	Manual
•			
3	DATA	Ą	33
	3.1	Import	
		3.1.1	Import Inventory
		3.1.2	Import Raster
	3.2	Vector 7	Fools
		3.2.1	Geoprocessing Tools
		3.2.2	Random Sampling 38
		3.2.3	Subset By Attributes

	3.3	DEM T	ools
		3.3.1	Aspect
		3.3.2	Hillshade 41
		3.3.3	Roughness
		3.3.4	Slope
		3.3.5	Topographic Position Index (TPI) 44
		3.3.6	Terrain Ruggedness Index (TRI) 45
	3.4	Raster 7	$Fools \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $
		3.4.1	Combine
		3.4.2	Contingency analysis
		3.4.3	Euclidean distance
		3.4.4	Lookup
		3.4.5	Reclassify
		3.4.6	Sensitivity Reclassification
	3.5	Viewer	
		3.5.1	Geodata Viewer
4	ANA	LYSIS	57
	4.1	ANALY	/SIS
		4.1.1	Analytic Hierarchy Process (AHP)
		4.1.2	Artificial Neural Network (ANN)
		4.1.3	Logistic Regression (LR)
		4.1.4	Weight of Evidence (WofE)
	4.2	Model 1	Managment
		4.2.1	Model Builder
		4.2.2	Zoning

5 Indices and tables

This manual provides a brief overview of LSAT PM v1.0.0b2 and its basic functionalities.

CHAPTER

ONE

INTRODUCTION

Introducing LSAT PM.

1.1 Abstract

The Landslide Susceptibility Assessment Tools – Project Manager Suite (LSAT PM) provides a framework for conducting landslide susceptibility analyses on regional scales based on heuristic and statistical approaches and machine learning algorithms. However, the application is not limited to this issue and applies to any supervised binary classification analysis with spatial data. The current version of LSAT PM incorporates algorithms for heuristic Analytical Hierarchy Process (AHP), bivariate statistical analysis with Weights of Evidence (WoE), and multivariate statistical analysis/ machine learning with Logistic regression (LR) and artificial neural networks (ANN).

1.2 General Information

General Information about LSAT and how to use it.

1.2.1 Installation

LSAT is distributed in two ways: Installer for Windows and as source code.

Installation with the installer (Windows)

- 1. Download the newest LSAT installer
- 2. Run the installer and follow the instructions.

Installation with source code on Windows

- 1. Make sure you have Python 3 installed (3.7 tested), if not you can get it from python.org/downloads
- 2. Download LSAT
- 3. Navigate to the LSAT directory and open a PowerShell window (if you downloaded a zipped version you will need to unzip LSAT first).
- 4. Create a virtual environment

python -m venv venv

5. Activate the virtual environment (venv should appear in the command line, indicating you were successful)

.\venv\Scripts\activate

6. Install the required packages

python -m pip install -r requirements.txt

Additionally to the packages listed in the requirements.txt you will need GDAL (3.3.1 tested). Unfortunately, GDAL can usually not simply be installed with a pip command. You can either download a .whl file from Christoph Gohlkes fantastic website or build it yourself. Installing a .whl file:

python -m pip install *path to .whl file*

7. Start LSAT PM

python startMenu_main.py

Installation with source code on Linux (Ubuntu 20.04.3 tested)

- 1. Download LSAT
- 2. Navigate to the LSAT directory and open a Terminal (if you downloaded a zipped version you will need to extract LSAT first).
- 3. Install Python packages (venv, pip, python development tools), gdal and libraries for Qt

sudo apt install python3-venv python3-pip gdal-bin lib
gdal-dev python3-dev '^libxcb.*-dev $_{\rm \leftrightarrow}$ '

4. Create a virtual environment

python3 -m venv venv

5. Activate the virtual environment (venv should appear in the command line, indicating you were successful)

source venv/bin/activate

6. Install the required packages

python3 -m pip install -r requirements.txt

Additionally to the packages listed in the requirements.txt you will need GDAL (3.0.4 tested). Unfortunately, GDAL can usually not simply be installed with the standard pip command. You need to specify the version based on the gdal version installed. To get the installed version run

ogrinfo --version

It will output something like: "GDAL \$VERSION, released \$RELEASEDATE". Now install that version

python3 -m pip install gdal==\$VERSION

7. Start LSAT PM

python3 startMenu_main.py

1.2.2 License

It is important to us that LSAT PM is freely available and changes are accessible to everyone.

LSAT PM License

LSAT PM is licensed under the GNU General Public License v3.0. LSAT PM contains the license text as LICENSE.txt.

LSAT PM Documentation License

The LSAT PM documentation is licensed under the XXXXXX.

1.2.3 First start and start menu

Anterna Antern	Meneger Solts = 10.0	-	σ	×
the restored of the second of	LAT sends as support of a sense of a set of a s			
kener Poges	0 Adat			

Fig. 1.1: LSAT Start Menu

The start menu appears when LSAT starts. You can quickly create new projects and open existing ones. Settings can be adjusted and the documentation opened.

Overview

Settings (1) contains the Language Settings.

About (2) contains Information about LSAT.

Help (3) leads to the documentation.

New Project (4) opens the New Project Widget.

Open Project (5) opens a dialog to load an old project.

Recent Projects (6) shows up to three of the most recent projects. Clicking on them instantly loads them into LSAT.

Note: To replace the default thumbnail with a custom one save an image as thumb.png in the project root folder.

The information text (7) contains information where you can get the newest LSAT version, license information and ways to contact the developers.

1.2.4 System Requirements

Suggested minimum system requirements:

OS	Windows 10, Linux (Ubuntu tested)
CPU	> 2 GHz
RAM	> 2 GB

The exact requirements vary based on the Project you are working on.

🐌 💮 🛅 🚬 🛄 LSAT 🗾 pi@ra:	spi400: ~/Docu 🚬 pi@raspi400: ~	RED_USB	LSAT Project Manage	≥_pi@raspi400: ~/Docu	≜ \$	🛜 🜒 14:02
File PROJECT DATA ANALYSIS						
P(AAB) P(B) Woff I.R. ANN ALIP Analysis	P Datei Bearbeiten Reiter Hilfe	i@raspi400: ~	× ^ ×			
Catalog Type Date Modified 	Coopert/General: ecooper/General records::loc.ecoil/General records: rec	OS: Raspbian GMU/Li Host: Raspberry Pi Kernel: 5.10.17-v7L Uptime: 4 hours, 10 Packages: 2327 (dpk Shell: bash 5.0.3 Resolution: 1920x10: DE: LXDE WM: Openbox Theme: Adwaita [GTK Icons: Adwaita [GTK]	nux 10 (buster) armv?l 400 Rev 1.0 + g) 80 3] 3]	Weight of Evidence Settings	.Pl_Test	₽ ×
■ region.tif 3,62 MiB tif File 01.05.21 13:48		Terminal: Lxtermina Terminal Font: Mono CPU: BCM2711 (4) @ J Memory: 491MiB / 38	l space 10 1.800GHz 27M1B	Training feature dataset /home/pi/Documents/Pakistan Datasets to analyse	_Pi_Test/data/inventory/training/inventory_t	raining.shp 🖌
	pi@raspi400:~ \$	Documents/Pakistan_Pi_	Test · · · ×	Dataset a_slope	Progress 42%	_ _
	Date Deatbetten Heiter Hille 1 [15.8% 19.2% 2 [19.2% 19.2% 4 [32.5% Memil 5:xW3.7% 0.6% 0.6% 3.2% Supp[0.6%] Tasks: 73, 80 thr;] Load average: 1.06] Uptime: 04:10:41]]	4 running 0.53 0.53			
Main Log [INFO] Session start. Loaded Project. /home/pi/Documents/Pakstan.PL [INFO] data path localized - /home/pi/Documents/Pakstan.PL [INFO] pirameriolek localized - /home/pi/Documents/Pakstan [INFO] rinner [older localized - /home/pi/Documents/Pakstan [INFO] Starting analyis [INFO] Check progress on progress bars	Pitt Matt Pitt M Citt Fit 10740 pi 20 0 5474 3014 3 10740 pi 20 0 5474 3014 3 10740 pi 20 0 5474 3014 3 1032 pi 20 0 1248 1262 3 1033 pi 20 0 1248 1276 3 1033 pi 20 0 1248 1276 3 <td>Sett 2 (200) (200) 7 (200) <th7 (200)<="" th=""> <th7 (200)<="" th=""> <th7 (200<="" td=""><td>1 Gordhol Carthenu sai 24 pythols Carthenu sai 24 pythols Carthenu sai 51 Just /Lb/xorg/Xorg :0 80 scrop 64 Lterminal 80 Just /Lb/xorg/Xorg :0 62 perboxconfig-fie 62 perboxconfig-fie 63 Just /Lb/xorg/Xorg :0 70 spansprofile LKOC 70 Just /Lb/xorg/Xorgprofile 60 /ust /Lb/xorg/Xorgprofile 60 /ust /Lb/xorg/Xorgprofile 70 Ltpanstprofile LKOC 70 Just /Lb/xorg/Xorgprofile 60 peagingdesiteppr</td><td></td><td></td><td>₽×</td></th7></th7></th7></td>	Sett 2 (200) (200) 7 (200) <th7 (200)<="" th=""> <th7 (200)<="" th=""> <th7 (200<="" td=""><td>1 Gordhol Carthenu sai 24 pythols Carthenu sai 24 pythols Carthenu sai 51 Just /Lb/xorg/Xorg :0 80 scrop 64 Lterminal 80 Just /Lb/xorg/Xorg :0 62 perboxconfig-fie 62 perboxconfig-fie 63 Just /Lb/xorg/Xorg :0 70 spansprofile LKOC 70 Just /Lb/xorg/Xorgprofile 60 /ust /Lb/xorg/Xorgprofile 60 /ust /Lb/xorg/Xorgprofile 70 Ltpanstprofile LKOC 70 Just /Lb/xorg/Xorgprofile 60 peagingdesiteppr</td><td></td><td></td><td>₽×</td></th7></th7></th7>	1 Gordhol Carthenu sai 24 pythols Carthenu sai 24 pythols Carthenu sai 51 Just /Lb/xorg/Xorg :0 80 scrop 64 Lterminal 80 Just /Lb/xorg/Xorg :0 62 perboxconfig-fie 62 perboxconfig-fie 63 Just /Lb/xorg/Xorg :0 70 spansprofile LKOC 70 Just /Lb/xorg/Xorgprofile 60 /ust /Lb/xorg/Xorgprofile 60 /ust /Lb/xorg/Xorgprofile 70 Ltpanstprofile LKOC 70 Just /Lb/xorg/Xorgprofile 60 peagingdesiteppr			₽×

Fig. 1.2: Development Version of LSAT running on a Raspberry Pi 400.

1.2.5 Uninstall

To uninstall LSAT PM simply delete the folder. LSAT does not write into the windows registry or stores data outside its folder, besides the projects.

If you uninstalled LSAT, because it lacks features or something does not work correctly, please let us know, so we can fix/enhance it.

CHAPTER

TWO

PROJECT

Create or Open LSAT Projects, change Settings/Ui and view help files.

2.1 Project

Start a new project, open an existing project or get information about the current project.

2.1.1 New Project

Widget to create new LSAT projects.

Usage

- 1. Specify the project location by picking a folder (1)
- 2. Name the project (2)
- 3. (Optional) Provide a description (3)
- 4. Provide spatial reference (2 Options):
 - Use a mask raster (4).
 Specify a mask raster dataset (6). This will attempt to auto fill EPSG code (7), Extent (9) and cellsize (10)
 - 2. Use a custom extent (5)
 Fill EPSG code (6), Extent (9) and cellsize (10) by hand. Open the *Coordinate System Widget* (8) to help with the EPSG Code.
- 5. Create a new project (11) (If you provided a mask you may *import it into the new project*)

To achieve the best results in later *analyses* use a mask raster dataset.

You can later change the project description with the Project Info Widget

Some raster datasets use underscores instead of spaces in the name of the coordinate system. If that is the case you can still use it as a mask but will have to provide the EPSG Code (7) by hand (8) using the *Coordinate System Widget*.

Fig. 2.1: New Project Widget

Coordinate System Widget

arch Coordinate System			GDAL supported CS	5			
PROJECTED	~		Kalianpur 1962 /	UTM zone 43N		-	5
ame of Coordinate System			Kalianpur 1975 /	UTM zone 43N			č
2			WGS 72 / UTM Z	one 43N 1 zone 43N			
	F	ilter 3	WGS 725E / UTM z	one 43N			
lected Coordinate System	EPSG Code						
/GS 84 / UTM zone 43N	32643	- (4)					
ell Known Text Format (Wkt)							
PRIMEM["Greenwich",0,	326"]],						
PREVENTION TO SHOP TO	326"], " 326"], " 32519433, 122"], 12, " 1,	staile 6	×				
PRIBEN/Commenter 30, AITHORIT(PEPSG', 30, AITHORIT(PEPSG', 30, AITHORIT(PEPSG', 30, AITHORIT(PEPSG', 30, PROJECTION[T(PEPSG', 30, PRAMETER['Attude PRAMETER['Attude PRAMETER['Attude AITHORITY(PEPSG', 30, AITHORITY(PEPSG', 30, AITHORITY(PEPSG', 32, AITHORITY(PEPSG', 34,	226"], " 90"], " 90"], " 122"], " 11, " 11, " 9956], " 500000], " 11, " 11 12 12 12 12 12 12 12 12 12	etails 6	*				

Fig. 2.2: Coordinate System Widget

With the coordinate system widget you can alter the EPSG code the project uses.

Usage

1. Use the combo box (1) to choose either projected or geographic coordinate systems.

2. Select the coordinate system (2 Options):

- 1. Type the EPSG Code into (4) and press Enter.
- 2. Type the name of the coordinate system into (2) and press Enter or click (3) and then click on the coordinate system in (5).
- 3. Click (7) to use the selected coordinate system.

Clicking on Details (6) will open epsg.io with information about the coordinate system. If there is no EPSG Code (4) it will open epsg.io itself.

Mask raster dataset import

Fig. 2.3: Mask raster dataset import dialog

Usage

1. Choose to import the mask (1) or don't (2).

If you import the mask raster dataset the raster import dialog opens, guiding you through the process.

2.1.2 Open Project

🕀 Open Project				? ×
Look in:	<pre></pre>		1, 3 9	o 🖗 ። 🔳
馬 My (Name	Size	Туре	Date Modified
Schu	📕 data		File Folder	17.06.2021 16:22
	results		File Folder	17.06.2021 16:22
	📙 workspace		File Folder	17.06.2021 16:22
	/			
Directory:				<u>C</u> hoose
Files of type:	Directories			 Cancel

Fig. 2.4: Open Project Widget

Dialog to open an existing LSAT Project.

Usage

- 1. Navigate to the project on your PC (1).
- 2. Select the project and choose it (2)

You can either select the Project folder in its parent directory and choose it (2) or open it and select (2) without selecting a sub folder.

You can cancel (3) the dialog at any point.

Information

LSAT highlights project folders in this dialog.

If you open the Dialog from an existing project you will start the dialog in that projects folder. If you use it to open a project from the *Start Menu* you will start at the LSAT folder.

2.1.3 Project Info

Displays information and a user provided description of the project.

General Information Info Value 1 Projection V65 84 / UTM zone 43N Details Vetter * Extent 1 top 3846704.877243965 left 339253.754402126 right 386821.1677551903 Lettent 0 Vetter 0	Project Info		- 🗆 X
Info Value V	General information		0
bottom 3816321.1677551903 Extent area in m ⁶ 64751309.9617348 * Cellsie X 28.554923494199286 Y 28.554923494199286 You can write information here. 5	Info Project Name Spatial Refere EPSG Code Projection Detail Extent top left right	Value balakot 32643 WGS 84 / UTM zone 43N s 3846704.877243965 339253.7544402126 365940 14124647324	WebMap 2
Description You can write information here. 5	right bottom Extent area X Y	36,2540,17,27494,2124 381852,1677551903 in m ² 664751309,9617348 28,554923494199286 28,554923494199286	
	Description You can write inform	nation here. 5	6
		•	

Fig. 2.5: Project Info Widget

Usage

You can view spatial information about the project (1).

You can read and alter the provided description (5). Clicking on (3) opens a dialog to replace the Description with text from a .txt or .docx file. If you want to save changes to the description click (4).

You can open a WebMap (2) in your default browser:

The map shows the projects borders (2) with OpenStreetMap as background. If you *imported an inventory* these datasets will also be displayed. You can hide/show layers in the menu (1)

Information

The general information (1) shows a slightly modified and embedded version of the *Raster Info Widget* for the mask raster dataset (region.tif).

WebMap requires an internet connection to display the OpenStreetMap layer.

The WebMap is stored in /workspace/*project name*.html. It is independent of LSAT so it can be shared among peers and colleagues.

Fig. 2.6: WebMap

2.2 View

The Main Log, Catalog and its sub menus.

2.2.1 Catalog

View and work with your LSAT project and its files.

Overview

The Catalog Widget displays the folder and file structure of your selected LSAT Project.

data

Input data.

inventory

Input vector data.

test

Default path for *test part of the inventory*

training

Default path for *training part of the inventory*

params

Input raster data

results

AHP

Ca	talo	g				8	×
	Na	me		Size	Туре	Date Modified	^
×	1	da	ta		File Folder	11.06.2021 08:13	1
	>	L	inventory		File Folder	21.06.2021 09:09	
	>	1	params		File Folder	18.06.2021 11:03	
~		res	ults		File Folder	11.06.2021 08:13	
	~		AHP		File Folder	11.06.2021 08:13	
		>	rasters		File Folder	18.06.2021 11:14	
		>	reports		File Folder	11.06.2021 08:13	
		>	📕 tables		File Folder	18.06.2021 11:14	
	~	1	ANN		File Folder	11.06.2021 08:13	
		>	rasters		File Folder	11.06.2021 08:13	
		>	reports		File Folder	11.06.2021 08:13	
		>	📕 tables		File Folder	11.06.2021 08:13	
	~	1	LR		File Folder	11.06.2021 08:13	
		>	rasters		File Folder	11.06.2021 08:13	
		>	reports		File Folder	11.06.2021 08:13	
		>	📕 tables		File Folder	11.06.2021 08:13	
	~	1	statistics		File Folder	14.06.2021 08:52	
			geology_landcover_ctg.npz	2,87 KiB	npz File	14.06.2021 08:52	
	>		susceptibility_maps		File Folder	11.06.2021 08:13	
	~		WoE		File Folder	11.06.2021 08:13	
		>	rasters		File Folder	11.06.2021 08:13	
		>	reports		File Folder	11.06.2021 08:13	
		>	📕 tables		File Folder	11.06.2021 08:13	
~	1	wo	rkspace		File Folder	21.06.2021 08:02	
			landsl_bool.tif	797,16 KiB	tif File	21.06.2021 08:02	
			recl_tmp.tif	3,11 MiB	tif File	21.06.2021 08:02	
	•	reg	jion.shp	220 Bytes	shp File	11.06.2021 08:13	
	#	reg	jion.tif	1,56 MiB	tif File	11.06.2021 08:13	
	**	slo	pe.tif	3,11 MiB	tif File	18.06.2021 09:16	~

Fig. 2.7: Catalog Widget

rasters

Raster dataset output of the AHP

reports

Reports of the AHP

tables

Results of the AHP

ANN

rasters

Raster dataset output of the ANN analysis

reports

Reports of the ANN analysis (coming soon)

tables

Results of the ANN analysis

LR

rasters

Raster dataset output of the LR analysis

reports

Reports of the LR analysis (coming soon)

tables

Results of the LR analysis

statistics

Results of the contingency analysis widget.

susceptibility_maps

Results of the Model Builder and Zoning Widget.

WoE

rasters

Raster dataset output of the WoE analysis

reports

Reports of the WoE analysis

tables

Results of the WoE analysis

Right click on any folder to open it in your file manager.

The following table describes the options available by right clicking a file based on their type independent from their location:

File type	Available actions
Vector	Attribute Table
	Properties
Raster	Attribute Table
	View Data
	Properties
Docx	Open Document - Opens the .docx in your default program for this file type

In addition to the actions described above you can also delete all non essential files from the catalog. To do so right click and select delete or select the file/folder and press the 'delete' key.

LSAT Project structure

Files and folders in a newly created LSAT Project with a mask raster:

```
*project name*.log
metadata.xml
region.dbf
region.prj
region.shp
region.tif
region.tif.aux.xml
data
data
data
data
params
results
AHP
```

(continues on next page)

(continued from previous page)

2.2.2 Feature Attribute Table

OBJECTID	Source	Year_obs	Shape_Area	perimeter	Yes_No	•	
173	Cnes/	2014.0	1106.38081957	131.75	1	3	
174	Cnes/	2014.0	2722.95143628	211.96	1		
408	Cnes/	2014.0	3017.48728669	234.95	1		
411	Cnes/	2014.0	3805.3997202	253.93	1		
428	Quickbird_2005	2005.0	265.071161495	64.04	1		
429	Quickbird_2005	2005.0	3615.52011272	267.23	1		
431	Quickbird_2005	2005.0	26688.2513686	732.02	1		
432	Quickbird_2005	2005.0	17918.1254978	591.99	1		
434	Quickbird_2005	2005.0	230.874878677	64.02	1		
440	Quickbird_2005	2005.0	5839.30232659	321.46	1		
443	Quickbird_2005	2005.0	621.783269452	104.7	1		
444	Quickbird_2005	2005.0	9365.96053757	501.31	1		
445	Quickbird_2005	2005.0	3658.39743487	288.29	1		

Fig. 2.8: Feature Attribute Table Widget

Widget to display the Feature Attribute Table (FAT).

Overview

Open the *Feature Info Widget* by clicking on the gear (1).

Export the FAT (3) as an excel file (2).

Each Row in the FAT (3) represents a shape of the feature.

2.2.3 Feature Info

Fig. 2.9: Feature Info Widget

Displays information about the selected vector file.

Overview

The source path (1) is the absolute path to the feature you selected.

The type (2) is the type of geometry in the vector file (e.g. POINT, LINE, POLYGON etc.)

The feature count (3) is the amount of shapes in the file.

The fields (4) show the names of feature attributes their types. To view a detailed Feature Attribute Table (FAT) open the *FAT Widget*

The spatial reference (5) shows the features projection and corresponding EPSG Code. Clicking on Details (6) will open epsg.io with information about the coordinate system.

The extent (7) of the feature is displayed in units of the files spatial reference.

2.2.4 Main Log

n Log	1
IFO] 2022-01-26 13:54:55 Example information 2 XAPNING] 2022-01-26 13:54:55 Example warning 2 RROR] 2022-01-26 13:54:55 Example warning 2	

Fig. 2.10: Main Log Widget

Widget to inform you of events inside LSAT.

Information

There a three types of logging you will see in the Main Log:

1. [INFO] (1)

The black text indicates normal behavior. Most LSAT widgets use the Main Log to inform the user what they are doing, e.g. where they create a file or if they started an analysis.

2. [WARNING] (2)

The orange text indicates that something is not optimal. An example for a warning would be that a package used by LSAT will drop support for a feature LSAT uses. Please let us know if you think the warning breaks or will break LSAT in the future.

3. [ERROR] (3)

The red text indicates that something inside LSAT broke. If LSAT created an output file after an error you should not use it, as it may contain corrupted data. If you see errors in you Log please file a bug report.

In addition to the Main Log each LSAT PM project contains a .log file with its full history of logging outputs.

2.2.5 Model Info

Fig. 2.11: Model Info Widget

Displays information about the selected model.

Overview

The file path (1) is the absolute path to the model you selected.

AUC (Area under Curve) (2) indicates the quality of the model. Hover your mouse over the number to display all available digits.

(3) shows the amount of input rasters and their absolute file path.

The model generating expression (4) shows in which way the datasets where combined to form the model.

(5) shows the amount of unique values in the model.

The Sampling Type (6) shows how the input feature dataset (7) was used during the creation of the model. The models use either predefined subsamples, on the fly sampled samples or a single sample.

2.2.6 Parameter Selection

Fig. 2.12: Parameter Selection Dialog

Select imported raster datasets for use in an analysis.

Usage

- 1. Check the raster datasets you want to use in the *analysis*.
 - You can select individual ones (1) or all imported ones (2).
- 2. Click apply (3) to start the analysis widget with the selected parameters preselected.

When you close the Parameter Selection Widget the selected Analysis will not start.

Information

After starting the Analysis Widget from the Parameter Selection you can still remove and add raster datasets. Parameter Selection shows .tif files in data/params.

2.2.7 Raster Attribute Table

Fig. 2.13: Raster Attribute Table Widget

Widget to display and modify the Raster Attribute Table (RAT).

Overview

Clicking on the pen and paper (1) enables editing the RAT (7), adding new fields (2) and deleting existing ones (3).

To add a new field press the button (2) opening a *dialog*.

Delete a field by clicking the delete button (3). LSAT requires confirmation before deletion.

After modifying the RAT (7) save the changes made (4).

Export the RAT (7) as an excel file (5).

To open the raster in the *Raster Info Widget* click (6).

New field dialog

Add Field	?	\times
Field Name		
Impression		
Field Type	•	
Text	2	~
3 Apply	Cancel 4	

Fig. 2.14: New field dialog

Name the field (1), define its type (2) and confirm your choices (3) to add the new field to your RAT. You can cancel (4) the dialog at any time.

Information

After *importing a raster dataset* LSAT will create a basic RAT for Non-float raster datasets with under 500 unique values if they don't have one.

Certain fields can not be modified or deleted (e.g. VALUE, COUNT).

2.2.8 Raster Info

Fig. 2.15: Raster Info Widget

Displays information about the selected raster dataset.

Usage

The source path (1) is the absolute path to the raster you selected.

The type (2) is the type of values stored in the raster (e.g. INT16, FLOAT32 etc.)

The spatial reference (3) shows the features projection and corresponding EPSG Code. Clicking on Details (4) will open epsg.io with information about the coordinate system.

The extent (7) of the feature is displayed in units of the files spatial reference. Based on the cellsize (7) and dimensions (6) LSAT calculates the raster datasets area.

Values (8) shows the minimal and maximal values in addition to the NoData value of the raster dataset.

2.2.9 Results - AHP

Display the results of the Analytic Hierarchy Process (AHP) analysis.

eneral information	Coefficient priorites	Pairwise raster comparison	
nfo	•	Value	
File Path	3	E:\Schuessler.N\tmp\balakot\results\AHP\tables\AHP_tab.npz	
Model informa	tion		
A Method to d	derive the priority vecto	or Mean of the row	
Transformat	ion scale	Linear	
Amount of r	asters	1	

Fig. 2.16: AHP Results Widget - general information raster comparison

Overview

The result viewer shows a tab for the raster comparison (1) and for each raster dataset used in the analysis (2).

The general information tab shows the path to the .npz containing the information (3) and basic information about the model (2).

The coefficient priorities tab contains a table with each raster datasets path (1), its values (2) and the corresponding priorities (3).

The pairwise raster comparison tab contains the untransformed pairwise raster comparison table (1).

The general information tab shows information (1) unique to each raster. To see all available digits hover your mouse over the values.

The raster value priorities tab shows a table of the raster values (1) its priority vectors in the dataset itself (2) and the coefficient priorities (3) when compared with other raster datasets. To see all available digits hover your mouse over the values.

The raster value comparison tab shows the raster value comparison table with as defined during the analysis.

The raster value comparison tab shows the raster value comparison table modified by the user defined scale. Because LSAT PM supports only linear transformation at the moment the normal pairwise raster value comparison is the same as the pairwise transformed raster value comparison.

Open this widget by right clicking the output .npz of an Analytic Hierarchy Process (AHP) analysis in the catalog.

Fig. 2.17: AHP Results Widget - coefficient priorities raster comparison

Fig. 2.18: AHP Results Widget - pairwise raster comparison

sults - AHP_tab.npz				-	
HP_tab.npz slope	e_3c_sensreclass2				
eneral Information	Raster value priorities	Pairwise raster value comparison	Pairwise transformed raster value comparison		
nfo		Value			
 Raster information 	tion				
Path to Rast	er	E:\Schuessler.N\tmp\balakot\data\	params\slope_3c_sensreclass2.tif		
🕛 λ_max		3.097			
n		3			
Consistency	Index	0.048			
Random Cor	nsistency Index	0.58			
Consistency	Ratio (Saaty)	0.083			
Consistency	Ratio (Alonso & Lamata)) 0.073			

Fig. 2.19: AHP Results Widget - raster dataset general information

P_tab.npz slop	e_3c_sensreclass	2		
neral Information	Raster value p	priorities Pairwis	se raster value comparison Painvise transformed raster value comparison	
1	2	3		
1.0	0.2	0.14285714286		
5.0	1.0	0.33333333333333		
6 00000000086	3 0000000003	10		
0.555555555500	5.0000000005	1.0		

Fig. 2.21: AHP Results Widget - pairwise raster value comparison

2.2.10 Results - ANN

nfo Value File Path E\Schuessler.N\tmp\balakotytesult3\ANN\tables\Geo+landcover+slope_tab.npz Training dataset E\Schuessler.N\tmp\balakotytata\inventory\training\inventory\t	eo+landcover+slope_tab.npz	Geology Landcover slope	
File Path E\Schuessler.N\tmp\balakcit\tesults\ANN\tables\Geo+landcover+slope_tab.npz Training dataset E\Schuessler.N\tmp\balakcit\data\juventory\training.hp Training dataset E\Schuessler.N\tmp\balakcit\data\juventory\training.hp Discrete E\Schuessler.N\tmp\balakcit\data\juventory\training.hp Discrete E\Schuessler.N\tmp\balakcit\data\juventory\training.hp Tomicous E\Schuessler.N\tmp\balakcit\data\juventory\training.hp Vmodetting E\Schuessler.N\tmp\balakcit\data\juventory.training.hp hidden_layer.sizes (100.) activation relu solver adam alpha 0.0001 batch.size auto learning.rate constant learning.rate 0.001 power.t 0.5 max.iter 200 vastast False wordsote False warm.start False wordsote False wordsote 6.9 exter.vs.momentur True readom_state 0.9 momentur 0.9 exter.vs.momentur True readom_state 0.9 exter.vs.momentur Tute. exter.vs.momentur 1 beta.1 0.9 <	nfo	Value	
Training dataset E/Schuessler.Ntmp/balakott/data/params/Geology.tif Discrete E/Schuessler.Ntmp/balakott/data/params/Geology.tif Discrete E/Schuessler.Ntmp/balakott/data/params/Geology.tif Discrete E/Schuessler.Ntmp/balakott/data/params/Landcover.tif Continuous E/Schuessler.Ntmp/balakott/data/params/Landcover.tif Model settings (100) activation relu solver adam apha 0.0001 batch_size uoto learning.rate onstant power_1 0.5 max_tter 200 shuffe True random_state None tol 0.0001 vertsovs_momentum True early_stopping False warm_start False vertsovs_momentum True early_stopping False validationfaction 0.1 beta_1 0.9 nexterovs_momentum True early_stopping False validationfactindetin <	File Path	E:\Schuessler.N\tmp\balakot\results\ANN\tables\Geo+landcover+slope_tab.npz	
Explanatory variables 3 Discrete E\Schuessier/Ntmp\balakot\data\params\Geology.tif Discrete E\Schuessier/Ntmp\balakot\data\params\Landcover.tif Continuous E\Schuessier/Ntmp\balakot\data\params\slope.tif Model settins	Training dataset	E:\Schuessler.N\tmp\balakot\data\inventory\training\inventory_training.shp	
Discrete E\Schuessler.N\tmp\balakot\data\params\Geology.tf Discrete E\Schuessler.N\tmp\balakot\data\params\Landcover.tff Continuous E\Schuessler.N\tmp\balakot\data\params\Landcover.tff Modelsettings relu hidden_layer_sizes (100) activation relu alpha 0001 batch_size auto learning_rate constant learning_rate 0001 power_t 0.5 max_tter 200 shuff Tue random_state None tol 0.001 werbose False warm_start False warm_start False warm_start False warm_start False warm_start 10 opsone_tum_start 10 ustersow_momentum Tue readow_start False wardidatio_fraction 0.1 beta_1 0.9 epsilon 1.0 pack_match<	Explanatory variables	3	
Discrete E\Schuessier.Ntmp\balakot\data\params\Landcover.tif Discrete E\Schuessier.Ntmp\balakot\data\params\Landcover.tif Wedel settinss Italden.layer.sizes Italden.layer.sizes adivation readmaint adivation adivation readmaint adivation adivation readmaint adivation paket constant adivation power.1 0.001 adivation power.2 0.5 adivation power.3 0.001 adivation shuffe 0.001 adivation shuffe 0.001 adivation verbost Toue adivation readmainstate 0.90 adivation verbost False adivation validation,fortion 0.1 adivation pakerows.momentum Tue adivation pakerows.momentum Tue adivation pakerows.momentum Tue adivation pakerows.momentum 1.90 adivation adivation <	Discrete	E:\Schuessler.N\tmp\balakot\data\params\Geology.tif	
Continuous E\Schuester.N\tmp\balakot\data\params\slope.tif inidien_layer_sizes (100.) ativation relutation solver adam alpha 0.0001 batch_size audo learning_rate_inti 0.001 power_to 0.5 max_tter 200 shuffle Tue random_state None random_state None random_state None nesterostomentur Tue resterostomentur U verbose None power_to 0.5 nesterostomentur Tue random_state None poster_to 0.001 verbose Palse validation_fraction 0.1 poster_to_state 0.9 pesterostomentur Tue max_tom 1.0 pastat 1.0 pastat 1.0 pastat 0.00 pespislon 1	3 Discrete	E:\Schuessler.N\tmp\balakot\data\params\Landcover.tif	
Model settings inidian_layer_sizes (100, inidian_layer_sizes (100, activation relu alpha 0.001 jabch 0.001 wam_iter 200 shuffe None tol 0.0001 verbose False wam_start False wam_start False wam_start 0.9 nesterovs_momentum Tue wam_start False walidation_fraction 0.1 bata_1 0.9 apsilon 1.00 max_turt 1.000	Continuous	E:\Schuessler.N\tmp\balakot\data\params\slope.tif	
ididen_layer_sizes (100) activation relu solver adam apha 0.0001 batch_sizes auto learning_rate constant power_to 0.5 max_iter 20 shuffe 0.0001 shuffe 0.0001 verbose False warm_state None tol 0.0001 verbose False warm_state False maxentum 0.9 nesterors_momentum Tue resterors_momentum Tue resterors_momentum Tue maxentum 0.9 paster_totizet 0.9 estators_momentum 1.1 beta_1 0.9 epsilon 1.6-28 max_tum 1.5000	Model settings		
activation relu solver adam alpha 0.0001 batch_size auto learning_rate constat learning_rate 0.001 power_t 0.001 power_t 0.001 power_t 0.001 power_t 0.001 power_t 0.001 watch_size 200 shuffle Tue random_state None tol 0.0001 verbose False warm_start False worm_stufunt 0.9 esterovs.momentum Tue random_state 0.9 pesilon 1.0 beta_1 0.9 epsilon 1.500 Woldemetrics 0.89001	hidden_layer_sizes	(100,)	
slaver alpha 0.0001 batch size auto learning_rate constant learning_rate 2001 power, 2001 power, 2001 power, 2001 shuffe 0.0001 shuffe 0.0001 verbose False womentum 0.9 nesterovs_momentum Ture early_stopping False womentum 7ue estrovs_momentum Ture estrovs_momentum Ture estrovs_momentum 100 nesterovs_momentum 100 verbose false womentum 0.9 nesterovs_momentum Ture estrovs_momentum 100 nesterovs_momentum 100 verbose 100 source 0.000 source 0.000 source 0.000 source 0.000 source 0.000 source 0.000 source 0.0000 source 0.000 source 0.0000 source 0.0000	activation	relu	
alpha 0.001 batch_size auto learning_rate constant learning_rate_init 0.001 power_te_init 0.5 max_iter 200 shuffle Ture random_state 0.001 verbose False warm_start False momentum 0.9 nesterors_momentum Ture validation_fraction 0.1 bata_2 0.99 epsilon 1e-08 nute_rno_change 15000 Modelmetricz 0.89001	solver	adam	
AUC outo Identing_rate constat Ieaming_rate 0.001 power_t 0.001 power_t 0.001 max_Life True random_state None tol 0.0001 verbose False momentum 0.9 nesterovs.momentum True erdy.stopping False validation_fraction 0.1 beta_1 0.9 epsilon 1.0 max_time 1500 Web 15000	alpha	0.0001	
eaming_rate constant leaming_rate_init 0.001 power_t 0.5 max_ter 200 shuffe True random_state None tol 0.001 verbose False momentum 0.9 nesterovs_momentum Ture early_stopping False varidstafin (fraction 0.1 0.1 beta_1 0.9 nmax_futer.or_change 1000 max_futer.or_change 10000 Model metrics 10000	batch_size	auto	
eming_rate_init 0.001 power_t 0.5 max_tter 200 shuffle Tue random_state None tol 0.0001 verbose False momentum 0.9 nestrovs_momentum 0.9 reatry_tsproping False validation_fraction 0.1 beta_1 0.9 epsilon 1e-08 n_fler_no_change 15000 Mode metrics 0.89901	learning_rate	constant	
wer_t 0.5 max_iter 200 shuffe Tue random_state None tol 0001 verbose False momentum 0.9 early_stopping False validation_fraction 0.1 beta_1 0.9 epsilon 1.9 max_iter_no_change 1000 max_iter_no_thange 15000 McC 0.89901	learning_rate_init	0.001	
max, Iter 200 shuffle Tue random, State None tol 0.001 verbose False worm, stat False momentum 0.9 nesterovs, momentum Tue validation faction 0.1 bata_1 0.9 epidon 1e-08 nute_rno,change 1500 Model metrics Jaco AUC 0.89031	power_t	0.5	
AUC None random_state None tol 0.0001 verbose False momentum 0.9 early.topping False validation_fraction 0.1 beta_1 0.9 epsilon 1.8 max_fum 1.9 beta_2 0.99 epsilon 1500 MC 0.80903 Score 0.99011	max_iter	200	
nandom_state None tol 0.0001 verbose False wmm_start False momentum 0.9 nesterovs_momentum Ture varij_stopping False validatio_fraction 0.1 beta_1 0.9 apsilon 1-08 n_tter_no_change 1500 Moder 1500 Moder 0.89901	shuffle	True	
tol 0.0001 verbose False warm_start False momentum 09 nesterovs_momentum Ture early_stopping False validation_fraction 0.1 beta_1 0.9 paise 0.9 paise 0.9 max_(n_c_n_c_mage) 1500 Worder 1500 Mach 0.89901	random_state	None	
verbase False warm_start False momentum 0.9 nesterovs_momentum 0.9 early_stopping False validation_fraction 0.1 beta_1 0.9 pestant 0.9 epsilon 10 max_fun 1500 Mode metrics 0.999011	tol	0.0001	
warm_start False momentum 0.9 nesteros_momentum Tue edry_stopping False validation fraction 0.1 bata_1 0.9 epsinon 1e-08 max_func 15000 Model metrics 35000 Score 0.99011	verbose	False	
momentum 0.9 nesterovs_momentum True early_stopping False validation_fraction 0.1 beta_1 0.9 pasion 1e-08 n_ter_no_change 10 max_fun 1500 Model metrics 0.99011	warm_start	False	
early_stopping False validation_fraction 0.1 beta_1 0.9 epsilon 1e=-08 n_tler_no_change 10 max_fun 1500 McL 0.80903 Score 0.99011	momentum	0.9	
early_stopping False validation_fraction 0.1 beta_1 0.9 ebsta_2 0.99 epsilon 1e-08 n_tter_no_change 10 max_fund 15000 MOCdemetrics 0.80903 Score 0.99011	nesterovs_momentum	. True	
validation_fraction 0.1 beta_1 0.9 beta_2 0.99 epsilon 1e-08 n_iter_no_chnape 10 max_fun 15000 MOdemetrics 5core Score 0.99011	early_stopping	False	
beta_1 0.9 beta_2 0.99 epsilon 1e-08 n_lter_no_change 10 max_fun 15000 Model metrics 5 Score 0.99011	validation_fraction	0.1	
beta_2 0.99 epsilon 1e-08 n_iter_no_change 10 max_fun 15000 Model metrics	beta_1	0.9	
epsion 1e-08 iter_no_change 10 max_fun 15000 // Modemetrics AUC 0.80903 	beta_2	0.99	
n_iter_no_change 10 max_fun 15000 * Model metrics AUC 0.80903 Score 0.99011	epsilon	1e-08	
max_fun 15000 Y Model metrics 3 AUC 0.80903 Score 0.99011	n_iter_no_change	10	
Model metrics AUC 0.80903 Score 0.99011	max_fun	15000	
AUC 0.80903 Score 0.99011	Model metrics		
Score 0.99011	AUC	0.80903	
	Score	0.99011	

Fig. 2.23: ANN Results Widget - overview tab

Display the results of the Artificial Neural Network (ANN) analysis.

Overview

- (1) Shows the path to the results file.
- (2) Shows the path to the used feature dataset.
- (3) Shows the type and path to the used raster datasets.
- (4) Shows the settings used when creating the model.
- (5) Shows basic model metrics (hover your mouse over the results to show all available digits).

In addition to the overview tab (6) each raster dataset has its own tab:

LSAT PM assigns a Class ID (1) for each unique value in the raster if it is a discrete type. Note that these may differ from the original raster values.

Class (2) shows the amount of pixels in the raster dataset with that unique value / Class ID Landslides (3) shows the amount of pixels in the raster dataset with that unique value / Class ID that also contain landslides.

Continuous type raster datasets will only have one Class ID:

The information (1, 2, 3) is identical to the discrete raster datasets except there being only one Class ID.

You can open this widget after finishing an ANN analysis or by right clicking the output .npz in the catalog.

Caractery Caractery <t< th=""></t<>
Case IV Case Landsildes 1 1 9 0 2 2 157 0 3 3 649413 3121 4 4 141784 3744 5 5 9552 404 6 6 3910 0 7 7 9663 596 9 9 448 130 10 105 1356 11 11 298 3
1 19 0 2 157 0 3 40413 3121 4 40413 3124 5 50 9552 6 60 3100 7 70 9663 8 804 1822 9 9 3136 10 103 1
2 157 0 3 46413 3121 4 47 141784 5 50 9552 6 60 3100 7 7 9663 8 8.0 1822 9 9.0 3448 10 103 1.30
3 469413 3121 4 141784 3744 5 5 9552 404 6 6 3100 0 7 7 9663 566 9 9 448 130 10 103 136
4 141784 3744 5 93552 404 6 3100 0 7 7 9663 596 8 8.82 6.3 9 9.448 130 10 103 1.3 11 11 298 3
s 93552 404 6 3910 0 7 7 9663 596 8 8 1822 63 9 9 3448 130 10 103 136
6 3910 0 7 99663 596 8 1882 63 9 3448 130 10 103 136 11 112 298
7 99663 596 8 1882 63 9 3448 130 10 103 136 11 112 298 3
8 1882 63 9 3448 130 10 10 136 1 11 11 298 3
9 3448 130 10 103 1 11 11 298 3
10 10 1136 1 11 11 298 3
11 11 298 3

Fig. 2.24: ANN Results Widget - raster dataset tab (discrete)

Fig. 2.25: ANN Results Widget - raster dataset tab (continuous)

2.2.11 Results - LR

Info Value File Path E\Schuessler.N\tmp\balakot\tesults\LR\tables\Geo+landcover+slope_tab.npz Training dataset E\Schuessler.N\tmp\balakot\tata\unrentory\training\nventory\training\nventory\training.shp Discrete E\Schuessler.N\tmp\balakot\tata\unrentory\training\nventory\training\nventory\training.shp Discrete E\Schuessler.N\tmp\balakot\tata\unrentory\training\nventory\train	ieo+land	cover+slope_tab.npz	Geology	Landcover	slope					
File Path EAChuessier.Nitmy\balakot\vesults\LR\table\Geo+landcover+slope_tb.np2 Training dataset E\Schuessier.Nitmy\balakot\vtatal\vnevntory\training.shp Explanatory variables E\Schuessier.Nitmp\balakot\vtatal\varams\Geology.tif Discrete E\Schuessier.Nitmp\balakot\vtatal\varams\Landcover.tif Continuous E\Schuessier.Nitmp\balakot\vtatal\varams\Landcover.tif V Model settings image: state intercept.scing penalty 2 dual False tol 0.0001 c 1.0 fit_intercept.scing 1.0 fit_intercept.scing 1.0 random_state None solver Ibfgs max_iter 100 nutif.dass auto verbose 0 warm_statt False n.jobs None n.jobs None ALC 24.00967 SiC 33.78120 ALC 24.00972 ALC 24.00972	Info	-	Value							
Training dataset E\Schuessler.N\tmp\balakot\data\params\Geology.tif Discrete E\Schuessler.N\tmp\balakot\data\params\Landcover.tif Continuous E\Schuessler.N\tmp\balakot\data\params\Landcover.tif Continuous E\Schuessler.N\tmp\balakot\data\params\Landcover.tif Discrete E\Schuessler.N\tmp\balakot\data\params\Landcover.tif Continuous E\Schuessler.N\tmp\balakot\data\params\Landcover.tif dual False tol 0.0001 c 1.0 ft.intercept Tue intercept.scaling 1.0 class.wight None random.state None multi.class auto verbose 0 verbose 0 i.i.dow None i.i.dow None max.ter 100 multi.class auto verbose 0 werbose 0 werbose 4.00067 Sicc 331.78120 ALCc 2400972 ALC C C 705883	File	Path	F:\Schuessler	N\tmn\balako	t\results\I R\table	Seo+landcove	r+slope tab pp	7		
Splanaty and splanaty in the parameter (a sprame splanaty in the splanaty is a splanaty in the splanaty is a splanaty in the splanaty is a	Train	ing dataset	E:\Schuessler I	N\tmp\balako	t\data\inventor\	raining\invento	rv training shp	-		
Discrete E\Schuessier.N\tmp\balakot\data\params\Geology.tf Obscrete E\Schuessier.N\tmp\balakot\data\params\Landcover.tf Continuous E\Schuessier.N\tmp\balakot\data\params\Landcover.tf V Model settings i penalty I2 dual False dual Continuous c 1.0 c 1.0 c 1.0 c 1.0 class.weight None random.state None solver 100 mult_class auto werbose 0 warm.start False n_jobs None t	Expla	anatory variables	er (sendessien	i (inip (outaito	(data (intentor) (-y_crannig.snp			
3 Discrete E\Schuessler.N\tmp\balakot\data\params\Landcover.tif Continuous E\Schuessler.N\tmp\balakot\data\params\Landcover.tif penalty I2 dual False toil 00001 c 1.0 fit_intercept 1.0 elas.weight None random_state None solver Ibfgs max_iter 100 multi_class auto verbose 0 n_lots None n_lots None n_lots None multi_class auto verbose 0 n_lots None n_lots None n_lots Solver Auto 24.00967 BIC 331.78120 Auto 24.00972 Auto 24.00972	_ [Discrete	E:\Schuessler.	N\tmp\balako	t\data\params\Ge	oloav.tif				
Continuous E\Schuessler.N\tmp\balakot\data\params\slope.tif # Model settings penalty penalty I2 dual False tol 0.0001 c 1.0 fit.intercept True intercept scaling 1.0 random_state None solver Ibfgs max.ter 100 multiclass auto verbose 0 warm_statt False n_jobs None If.ratio None Model metrics 24.00967 SiC 33.178120 ALC 24.009572 ALC 24.00972	3	Discrete	E:\Schuessler.	N\tmp\balako	t\data\params\La	ndcover.tif				
Model settings I/I penalty I/2 dual False tol 0.0001 c 0.0001 fit_intercept True intercept scaling 1.0 class.weight None random.state None solver Ibfgs max.iter 100 mutt_class auto verbose 0 varm.statt False n_jobs None ti	Ċ	Continuous	E:\Schuessler.I	N\tmp\balako	t\data\params\slo	pe.tif				
penalty 12 vala False tol 0.0001 c 1.0 fit.intercept.scaling 1.0 random_state None solver Högs max_iter 100 multic_itass auto verbose 0 n_jobs None n_jobs Sone Alcc 24.00977 AUC 07883	✓ Mod	el settings								
dual False tol 0.0001 c 1.0 fitnercept True intercept sciling 1.0 class_wight None random_state None solver Ibfgs max_iter 100 mult_class auto verbose 0 num_statt False nitercept sciling 0.0 verbose 0 verbose 0 num_statt False nitercept sciling 0.0 verbose 0 verbose 0 nitercept sciling None I_1_ratio None I_1_ratio 31.78120 Alicc 24.00972 ALic 24.00972	р	enalty	12							
A A	d	lual	False							
c 1.0 c Tue intercept_scaling 1.0 class_weight None random_state None solver Ibfgs max_iter 100 multi_class auto verbose 0 n_obs None n_ids None n_ids None n_ids None n_ids None n_ids None n_ids None it_ratio None Alcc 24.00972 AUC 07883	te	ol	0.0001							
A ficinarcept Tue intercept Tue intercept 1.0 class, weight None random,state None solver Ibfgs max,iter 100 multi_class auto verbose 0 wern.start False n_jobs None // rado None // radoo 24.00967 AUCc 24.00972 AUC 0	с		1.0							
intercept scaling 1.0 class_weight None random_state None solver Ibfgs max_iter 100 multi_class auto verbose 0 mum_statt False n_jobs None I_ration None Model metrics 24.00967 BIC 33.178120 ALCc 24.00972 ALC 24.00972	fi	it_intercept	True							
class_weight None random_state None solver Ibfgs max_iter 100 multi_class auto verbose 0 warm_start False n_jobs None 11_ratio None AIC 24.00967 AICc 24.00972 AUC 0.79883	4 ir	ntercept_scaling	1.0							
random:state None solver Ibfgs max_iter 100 mult_class auto verbose 0 wam_stant False n_j.jobs None Modemetrice	- c	lass_weight	None							
solver blfgs max,ter 100 mult_class auto verbose 0 varm_start False n_jobs None l_ratio None verbose 24.0097 ALC 24.00972 ALC 24.00972	n	andom_state	None							
max, iter 100 multi_class auto verbose 0 warm_start False n_jobs None l1_ratio None Modemetrics 24.00967 AIC 24.00972 AUC 0.79883	s	olver	lbfgs							
multi_class auto verbose 0 warm_start False n_jobs None //	n	nax_iter	100							
verbose 0 warm_start False n_jobo None l1.ratio None vodel metrics AlC AlC 24.00972 ALC 24.00972	n	nulti_class	auto							
warm_start Felse n_jdos None II_ratio None Mcdenetrics	v	erbose	0							
njobs None 11, ratio None Model metrics AIC 24,00967 BIC 331,78120 AICc 24,00972 AUC 0,79883	v	varm_start	False							
I1. ratio None AlC 24.00967 BIC 331.78120 AlC 24.00972 ALC 0.79883	n	jobs	None							
Model metrics AIC 24.00967 BIC 331.78120 AIC 24.00972 AUC 0.79883	ľ	1_ratio	None							
AIC 24.00967 5 BIC 331.78120 AIC 24.00972 AUC 0.79883	✓ Mod	el metrics								
5 BIC 331.78120 AICc 24.00972 AUC 0.79883	A	AIC .	24.00967							
AICc 24.00972 AUC 0.79883	5 B	IC	331.78120							
AUC 0.79883	A	lCc	24.00972							
	A	NUC	0.79883							

Fig. 2.26: LR Results Widget - overview tab

Display the results of the Logistic Regression (LR) analysis.

Overview

- (1) Shows the path to the results file.
- (2) Shows the path to the used feature dataset.
- (3) Shows the type and path to the used raster datasets.
- (4) Shows the settings used when creating the model.
- (5) Shows basic model metrics (hover your mouse over the results to show all available digits).

In addition to the overview tab (6) each raster dataset has its own tab:

The value (1) is the unique value in the raster if it is a discrete type.

Class pix (2) shows the amount of pixels in the raster dataset with that value. Landslides pix (3) shows the amount of pixels in the raster dataset with that value that also contain landslides. Coef (4) is the calculated coefficient for that value. The p-value (5) column contains the calculated p-value for that value.

Continuous type raster datasets will only have one value:

The information (1, 2, 3, 4, 5) is identical to the discrete raster datasets except there being only one value displaying the range of values in the raster dataset.

You can open this widget after finishing an *LR analysis* or by right clicking the output .npz in the *catalog*.

Result	s - Geo+l	andcover+slop	be_tab.npz		
Geo-	+landco	ver+slope_t	ab.npz Geolog	gy Land	dcover
	Value	Class pix	Landslides pix	Coef	p-value
1	1	19	0	-0.24495	0.66311
2	3	157	0	-0.37790	0.21049
3	4	469413	3121	-1.24994	0.00000
4	5	141784	3744	0.40390	0.00000
5	6	93552	404	-1.34475	0.00000
6	7	3910	0	-0.87032	0.00000
7	8	99663	596	-1.25871	0.00000
8	9	1882	63	0.98159	0.00000
9	10	3448	130	1.99351	0.00000
10	11	1136	1	0.03864	0.00215
11	12	298	3	1.61166	0.97519

Fig. 2.27: LR Results Widget - raster dataset tab (discrete)

Fig. 2.28: LR Results Widget - raster dataset tab (continuous)

2.2.12 Results - WofE

ope_3c_sensreclass.tif Table
A Control Cont

Fig. 2.29: WofE Results Widget - overview tab

Display the results of the Weight of Evidence (WofE) analysis.

Overview

- (1) Shows the path to the results file.
- (2) Shows the path to the used feature dataset and how it was subsampled.
- (3) Shows the path to the used raster datasets.
- (4) Shows basic model metrics (hover your mouse over the results to show all available digits).

The table contains all results of the calculation:

Class	Landslides	W_POS	VAR_POS	W_NEG	VAR_NEG	Variance	Contrast	Weight
494932	2312	-0.75522	0.00043	0.60437	0.00018	0.00043	-1.35959	-1.21752
240427	3749	0.46120	0.00027	-0.27851	0.00023	0.00045	0.73971	0.88177
79903	2001	0.94461	0.00051	-0.18380	0.00017	0.00092	1.12840	1.27047

Fig. 2.30: WofE Results Widget - table tab

• (1) Exports the table (4) as an excel file.

- (2) Saves a raster with the column selected in the table (4) replacing the original raster values using a dialog.
- (3) Selects an attribute from the raster attribute table to display on the far left column.

The Graphics tab shows selected results:

Fig. 2.31: WofE Results Widget - graphics tab

- (1) Switches between Box-, and Violinplots for (4) and (5) (Only if multiple samples were used).
- (2) Switches between all ROC curves or a range for (6) (Only if multiple samples were used).
- (3) Shows the pixel count for each raster dataset value.
- (4) Shows the landslide pixel count for each raster dataset value.
- (5) Shows the total weight for each raster dataset value.
- (6) Shows the ROC curve.

You can open this widget after finishing a WofE analysis or by right clicking the output .npz in the catalog.

2.3 Settings

Change language and network settings.

2.3.1 Language

Select Language English	1.		0
	ancel	Appl	, 3

Fig. 2.32: Language Widget

The language widgets changes the language of the LSAT User Interface.

Usage

- 1. Select your preferred language in the combo box (1).
- 2. Click Apply (3).
- 3. Restart LSAT.

When you close the dialog with Cancel (2) the language won't change after a restart.

Information

The translations are stored in core/resources/qt_*language*.qm

They are created from .ts files in the same directory.

The initial language for LSAT is English. If LSAT can not translate a string it will fall back to the English version.

2.4 Help

The manual you are reading right now.

2.4.1 Manual

If you have you used the installer to install LSAT the most recent *documentation* for your version was a part of the installed files.

The newest version of the manual can be found online in its own repository.
CHAPTER

THREE

DATA

Import, view and modify raster and vector files

3.1 Import

Import raster and vector files

3.1.1 Import Inventory

Fig. 3.1: Inventory Import Widget

Import Inventory (vector) files into LSAT Projects.

Usage

- 1. Pick a vector dataset to import. You can either type the absolute path to the file or select it from your PC (1).
- 2. (Optional) Disable splitting the inventory into training and validation datasets.
- 3. (Optional) Disable ignoring feature parts outside the mask raster.
- 4. Adjust the size of the training dataset as percent of the import feature either by typing a number (4) or adjusting the slider.
- 5. (Optional) Define a seed to initialize the random function (5).
- 6. (Optional) Adjust the training dataset output location either by typing the output path or

with a dialog (6)

- 7. (Optional) Adjust the test dataset output location either by typing the output path or with a dialog (7)
- 8. Start the Import (8)

LSAT *clips* the feature with region.shp of the current project on the fly if you choose to ignore features outside the mask.

By defining a seed to initialize random (5) you can recreate the inventory split on a later date.

To achieve the best results in later *analyses* consider splitting the inventory.

Most LSAT widgets expect the inventory to be in their default locations. While you can always point to another folder or file it is easier to leave the default output locations.

Why subsample?

When we subset the inventory at the beginning of the modeling in training and test dataset, we do a sampling, which is always associated with a sampling error. The sampling error increases with the decreasing sample size. Thus, if we use 80% of the observations to train the model and 20% to test the model, we generally have two samples that exhibit different sample errors. Just imagine that a generated model has a performance with the training dataset indicated by AUC index of 0.84. Evaluating the model with the test dataset showed an AUC index of 0.79. Is this an indication of a poor generalization or is this value still in the possible range of the model's uncertainty? This question can be answered generating a set of samples, which have the size of the test dataset. For example, if our test dataset has 20 observations, we would randomly draw several samples of this size from our training dataset and compute the ROC curve. Based on this subsampling, we would get a range of AUC values that would suggest to us the possible variance of the model given the specific sample size and specific pattern distribution. If the ROC curve of the test dataset falls within this range, we could assume that the sampling error very likely governs the observed drop in the AUC index, and the model generalizes for new events sufficiently well (in the range of its uncertainty). However, if the AUC index of the test dataset is clearly outside the estimated sample error range, we have to assume that the model has a drop in the prediction quality due to other generalization issues such as overfitting or maybe a consideration of correlated but non-causal factors (pseudo-correlations).

Splitting process

LSAT only considers the total number of features when splitting the inventory into a training and test dataset.

Input	Vector dataset
Output	Training vector dataset
	Default path: /data/inventory/training/inventory_training.*ext*
	(Optional) Test vector dataset
	Default path: /data/inventory/test/inventory_test.*ext*

3.1.2 Import Raster

hipd Dischweiter Ahmpißalakot, dieser(Wa303.04 Dischweiter Ahmpißalakot, dieser(Wa303.04 Dischweiter Ahmpißalakot, dieser(Wa303.04 Dischweiter Ahmpißalakot, dieser(Wa303.04 Dischweiter Ahmpißalakot, dieser(Wa303.04 Dischweiter Ahmpißalakot/distajourents Dischweiter Ahmpißalakot/distajourents		- 0			Import Raster
No.Schuester Mitmig Balakot, dataser (MVD303) if Di.Schuester Mitmig Balakot, dataser (Mano Section 1997) Di.Schuester Mitmig Balakot, dataser (Mano Section 1997) Di.Schuester Mitmig Balakot, dataser (Mano Section 1997) Section 2007 (Section 1997) Section 2007 (Section 1997) Mitmig Balakot, dataser (Mitmig Balakot, dataser), and section 2007 (Section 1997) Section 2007 (Section 1997) Mitmig Balakot, dataser (Mitmig Balakot, dataser), and section 2007 (Section 1997) Section 2007 (Section 1997) Mitmig Balakot, dataser), and section 2007 (Section 1997) Section 2007 (Section 1997) Sectio					Input
fask raster dataset. Dr.\Schuessler J/tampbalaktrijegion.t# Dubek loadion Dr.Schuessler J/tampbalaktrijdatalgarems			4	nplBalakot_dataset/AW3D301if nplBalakot_datasetGeology.tf	ины Dischuessler:MtmpDald Dischuessler:MtmpDald Dischuessler:MtmpDald
D'Schuesder. Mimpi balikat jaarams	Mask raste	6 5 S Use the Projects default M		a Usalakoty region. tif	Mask raster dataset Dr.\Schuessler.Mtmp(balakc Output location
				o\balakot\data\params	D:\Schuessler.N\tmp\balakc
	Apply				

Fig. 3.2: Raster Import Widget

Import raster files into LSAT Projects.

Usage

- 1. Add at least one raster dataset. You can either drag and drop the rasters from your file manager into the input list (4) or select them from your PC (1).
- 2. (Optional) Change the mask raster dataset from the projects default by unchecking (5) and either picking an input raster by selecting it in the list (4) and clicking (3) or pick a mask from your PC (6).
- 3. (Optional) Change the output location of the output files by either typing in an existing folder or picking one from your PC (7)
- 4. Start the import process (8) (the import dialog opens).

To remove a raster from inputs, select it and press the minus button (2).

To achieve the best results in later *analyses* do not change the mask raster dataset.

Import Dialog

The raster import dialog opens from the *import raster widget* and by importing the projects mask when *creating a new* project

Usage

- 1. Pick a resampling technique (3) best suited for the type of raster you want to import (1).
- 2. Proceed with the import (4).

The input raster info (1) shows an embedded version of the Raster Info Widget for the import raster dataset.

You can compare basic information of the mask and import raster (2).

ut raster info		Reprojection information and settings	
nfo	Value		2
Course moth	D) Calculate Niterray Balakast, dataset) AM/2D20 45	Source EPSG	
June	Elect22		
Type Constial Raf	FIGAC52	32643	
• Spatial Kel	22642		
Brojection	WGS 84 / UTM zone 43N	Source cellsize	
Projection			
_	Details	20 554022404100200	
 Extent 		28.554923494199286	
top	3846704.877243965		
left	339253./544402126	Target EPSG	
right	362840.12124642124		
bottom	3818521.167/551903	32643	
area in m	664751309.9618621		
Dimensions	226	Toward and size	
Columns	826	Target censize	
Rows	987		
• Celisize	28 55 4022 404100286	28.554923494199286	
Ŷ	20.334923494199200		
Values	20.334923494199200	Resampling Technique	
Min	905 22784423828		
Max	4099 1533203125	O NEAREST 3	
NoData	-3.4028234663852886e+38		
		CUBIC	
		O BILINEAR	

Fig. 3.3: Raster Import Dialog

Resampling techniques:

NEAR-	Nearest-neighbor interpolation. Should be applied when transforming discrete data (e.g.,
EST	classified raster datasets) such as lithology
CUBIC	Cubic spline interpolation. Should be used when projecting continuous datasets such as
	DEM.
BILIN-	Alternative to Cubic spline interpolation when projecting continuous datasets.
EAR	

Import Process

Fig. 3.4: Schematic workflow for raster dataset import

LSAT PM compares five properties of the input raster dataset to the mask raster dataset:

- 1. EPSG Code
- 2. Raster dimension (Number of rows/columns)
- 3. Raster origin
- 4. NoData count

5. NoData value

If all are the same the input raster dataset gets copied, else it gets reprojected.

If LSAT detects that the input raster is a discrete dataset it either copies an existing raster attribute table or creates a new one.

Input and Output

Input	Raster datasets (.tif)
	Mask raster (.tif) providing the spatial reference and the cell size. (Default: project mask)
Output	Imported raster datasets (.tif) Path: /data/params/name.tif

3.2 Vector Tools

Modify and extract information from vector datasets.

3.2.1 Geoprocessing Tools

Geoprocessing Tools		×
Feature layer	•	
E:\Schuessler.N\tmp\Balakot_dataset\Confirmed_faults.shp		
Method layer		
E:\Schuessler.N\tmp\balakot\region.shp		
Use spatial reference of method layer		
Processing Type		
Clip		
Optional Settings		
SKIP FAILURES		
PROMOTE TO MULTI		
Output feature	•	
E:\Schuessler.N\tmp\balakot\faults_clipped.shp		
	Cancel Apply	
	8	9

Fig. 3.5: Geoprocessing Tools Widget

Process vector files.

Usage

- 1. Select a feature layer. You can either type in the absolute file path yourself or pick one with a dialog (1).
- 2. Select a method layer. You can either type in the absolute file path yourself or pick one with a dialog (2).
- 3. (Optional) Choose to create the output in the spatial reference of the method layer (3)
- 4. Pick the processing type (4)
- 5. (Optional) Choose to proceed with the process if failures are encountered (5)
- 6. (Optional) Choose to promote to multi (6) (e.g. polygon -> multipolygon)
- 7. Select the output file. You can either type in the absolute file path yourself or pick one

with a dialog (7).

8. Start the process (9)

(2) Closes and resets the widget.

Processing Types

Clip

Returns parts of the feature layer that are inside the method layer.

Erase

Returns parts of the feature layer that are outside the method layer.

Intersect

Returns parts of the feature layer that are inside the method layer and adds attributes from the method layer.

Symmetrical Difference

Returns parts of the feature layer and the method layer that do not overlap.

Union

Returns all parts of the feature layer and the method layer with differing values if they overlap. If the features overlap they get both attributes.

Information

Geoprocessing Tools only supports Shapefiles (.shp) as of now.

Input and Output

Input	Feature layer (.shp)
	Method layer (.shp)
Output	Processed Shapefile (.shp)

3.2.2 Random Sampling

Create predefined subsamples.

Usage

- 1. Pick a vector dataset to subsample. You can either type the absolute path to the file or select it from your PC (1).
- 2. Define the number of subsamples to create (2).
- 3. (Optional) Define a seed to initialize the random function (3).
- 4. (Optional) Decide to keep the corresponding test part (6).
- 5. (Optional) Adjust the size of the training part either by typing the number (4) or adjusting the slider (5)

-eature dataset			
D:\Schuessler.N\tmp\Balakot_datas	et\landslides.shp		
Number of subsamples	Seed to initialize random		
100	42 3		
Size of the training part in %			
80 4	Keep corresponding test part		
		-	5
Dutout			Ŭ
Dutput Directory			
	inventory\predef		
D:\Schuessler.N\tmp\balakot\data\i			
D:\Schuessler.N\tmp\balakot\data\i	stension)		
D:\Schuessler.N\tmp\balakot\data\j Vame of training dataset (without er	xtension)		
D:\Schuessler.N\tmp\balakot\data\j Name of training dataset (without ex predef	xtension)	8	
D:\Schuessler.N\tmp\balakot\data\i Name of training dataset (without es predef Name of test dataset (without exten	xtension) sion)	8	
D:\Schuessler.MItmp\balakot\data\ Name of training dataset (without ex predef[Name of test dataset (without exten	xtension) sion)	8	

Fig. 3.6: Random Sampling Widget

- 6. (Optional) Adjust the output location either by typing the output path or with a dialog (7).
- 7. (Optional) Name the training dataset(s) (8).
- 8. (Optional) Name the test dataset(s) (8) (Only if you save them).
- 9. Create the subsample(s) (10).

By defining a seed to initialize random (4) you can recreate the subsamples on a later date.

You can only name the test dataset if keep the corresponding part (6) and if the size of the training part (4) is < 100%.

Sampling process

LSAT only considers the total number of features when sampling the inventory into a training and test dataset.

Input and Output

Input	Vector dataset
Output	Vector training dataset(s)
	Naming scheme: /*Name (8)*_*Nr. of subsample*.*ext*
	(Optional) Test vector dataset(s)
	Naming scheme: /*Name (9)*_*Nr. of subsample*.*ext*

3.2.3 Subset By Attributes

The Subset by Attributes Widgets subsamples vector files based on values in the feature attribute table.

Fig. 3.7: Subset By Attributes Widget

- 1. Select an in input vector file with a dialog (1)
- 2. Formulate an equation in the field (6) that defines the subset you want.
- 3. Select the output vector location. You can either type in the absolute file path yourself or pick one with a dialog (7).
- 4. Start subsampling (9).

To get a Unique values list (5) of the selected Field (2) press get Field unique values (4).

You can double click Fields (2) and Unique values to copy them into (6). Operates can be copied over by clicking on them.

Clicking on Cancel (8) closes the widget.

Input and Output

Input	Vector dataset
Output	Vector dataset

3.3 DEM Tools

Derive rasters from DEM raster files

3.3.1 Aspect

Aspect		-		
Input				
DEM marter				
DEM raster				
D:\Schuessler.N\tmp\balakot\data\par	ams\AW3D30.tif		~	
Options				
Method				
	6			
Horn	2			
Horn Output	2			
Horn Output Output raster	2			
Horn Output Output raster D:\Schuessler.N\tmp\balakot\aspect.ti	f			
Hom Output Output raster D:\Schuessler.N\tmp\balako\aspect.ti	2	Cancel 5	ок	

Fig. 3.8: Aspect Widget

The aspect widget creates a new raster based on the calculated aspect from an input DEM raster.

Usage

- 1. Select the input DEM raster. You can either select from imported rasters using the Input combo box or select one from your PC (1).
- 2. Select the Method to calculate the aspect (2).
- 3. Select the output aspect raster location. You can either type in the absolute file path yourself or pick one with a dialog (3).
- 4. Start the calculation (4)

If you want to use the created aspect raster in your LSAT Project you need to import it using the *Import Raster Widget*. Clicking on Cancel (5) closes the widget.

Input and Output

Input	Digital Elevation Model raster dataset (.tif)
Output	Aspect raster dataset (.tif)

3.3.2 Hillshade

The hillshade widget creates a new raster based on the calculated hillshade from an input DEM raster.

Hillshade			-		×
Input					
DEM raster					4
D:\Schuessler.N\tmp\ba	lakot\data\para	ams\AW3D30.t	if	~	Ų
Options					
Azimuth					
345					2)
Altitude					
45				- (3
z Factor					
1					4
Output					
Output raster					0
D:\Schuessler.N\tmp\ba	lakot\hillshade.	tif			6
		Ca		ок	6

Fig. 3.9: Hillshade Widget

- 1. Select the input DEM raster. You can either select from imported rasters using the Input combo box or select one from your PC (1).
- 2. Select the Azimuth (2) (Default: 345).
- 3. Select the Altitude (3) (Default: 45).
- 4. Select the z Factor (4) (Default: 1).
- 5. Select the output hillshade raster location. You can either type in the absolute file path yourself or pick one with a dialog (5).
- 6. Start the calculation (6)

If you want to use the created hillshade raster in your LSAT Project you need to import it using the *Import Raster Widget*.

Azimuth defines the location the light is shining from in degrees (0-360).

Altitude defines the altitude the light is shining from in degrees (0-90).

z factor exaggerates the DEMs height.

Clicking on Cancel (7) closes the widget.

Input	Digital Elevation Model raster dataset (.tif)
Output	Hillshade raster dataset (.tif)

3.3.3 Roughness

Roughness	_		
Input			
DEM raster			
D:\Schuessler.N\tmp\balakot\data\params\AW3D30.tif		~	
Output			
Output raster			
D:\Schuessler.N\tmp\balakot\roughness.tif			
	Cancel	ОК	(

Fig. 3.10: Roughness Widget

The roughness widget creates a new raster based on the calculated roughness from an input DEM raster.

Usage

- 1. Select the input DEM raster. You can either select from imported rasters using the Input combo box or select one from your PC (1).
- 2. Select the output roughness raster location. You can either type in the absolute file path yourself or pick one with a dialog (2).
- 3. Start the calculation (4)

If you want to use the created roughness raster in your LSAT Project you need to import it using the *Import Raster Widget*.

Clicking on Cancel (5) closes the widget.

Input and Output

Input	Digital Elevation Model raster dataset (.tif)
Output	Roughness raster dataset (.tif)

3.3.4 Slope

The slope widget creates a new raster based on the calculated slope from an input DEM raster.

Usage

- 1. Select the input DEM raster. You can either select from imported rasters using the Input combo box or select one from your PC (1).
- 2. Select the Output Unit (2).
- 3. Select the Method to calculate the slope (3)
- 4. Select the output slope raster location. You can either type in the absolute file path yourself or pick one with a dialog (4)
- 5. Start the calculation (6)

₽ Stope	-		×
Input			
DEM raster			
D:\Schuessler.N\tmp\balakot\data\params\AW3D30.tif		~	
Options			
Unit			
DEGREE	2		
Method			
Horn	3		
Output			
Output raster			
D:\Schuessler.N\tmp\balakot\slope.tif			.4
	Cancel	5 ок	6
	Carrot		_

Fig. 3.11: Slope Widget

If you want to use the created slope raster in your LSAT Project you need to import it using the *Import Raster Widget*. Clicking on Cancel (5) closes the widget.

Input and Output

Input	Digital Elevation Model raster dataset (.tif)
Output	Slope raster dataset (.tif)

3.3.5 Topographic Position Index (TPI)

Fig. 3.12: Topographic Position Index (TPI) Widget

The TPI widget creates a new raster based on the calculated Topographic Position Index (TPI) from an input DEM raster.

- 1. Select the input DEM raster. You can either select from imported rasters using the Input combo box or select one from your PC (1).
- 2. Select the output TPI raster location. You can either type in the absolute file path yourself or pick one with a dialog (2).
- 3. Start the calculation (4)

If you want to use the created TPI raster in your LSAT Project you need to import it using the *Import Raster Widget*.

Clicking on Cancel (3) closes the widget.

Input and Output

Input	Digital Elevation Model raster dataset (.tif)
Output	Topographic Position Index (TPI) raster dataset (.tif)

3.3.6 Terrain Ruggedness Index (TRI)

Terrain Ruggedness Index (TRI)	-		Х
Input			
DEM raster			
D:\Schuessler.N\tmp\balakot\data\params\AW3D30.tif		~	
Output			
Output raster			
D:\Schuessler.N\tmp\balakot\tri.tif			K
	Cancel 3	ок	4

Fig. 3.13: Terrain Ruggedness Index (TRI) Widget

The TRI widget creates a new raster based on the calculated Terrain Ruggedness Index (TRI) from an input DEM raster.

Usage

- 1. Select the input DEM raster. You can either select from imported rasters using the Input combo box or select one from your PC (1).
- 2. Select the output TRI raster location. You can either type in the absolute file path yourself or pick one with a dialog (2).
- 3. Start the calculation (4)

If you want to use the created TRI raster in your LSAT Project you need to import it using the *Import Raster Widget*. Clicking on Cancel (3) closes the widget.

Input and Output

Input	Digital Elevation Model raster dataset (.tif)
Output	Terrain Ruggedness Index (TRI) raster dataset (.tif)

3.4 Raster Tools

Derive rasters from DEM raster files

– _combine:

3.4.1 Combine

nput raster datasets		_	
E:\Schuessler.N\tmp\balakot\data\params\Landcover.tif	1		
		E	A.L.
Mask raster			
Mask raster 2 Use the Projects default Mask raster			
Mask raster I Use the Projects default Mask raster E:\Schuessler.N\tmp\balakot\region.tif			
Mask raster Use the Projects default Mask raster E:\Schuessler.N\tmp\balakot\region.tif Dutput			
Mask raster Use the Projects default Mask raster E:\Schuessler.N\tmp\balakot\region.tif Dutput			
Mask raster Use the Projects default Mask raster E:\Schuessler.N\tmp\balakot\region.tif Dutput Combine raster dataset			
Mask raster Mask raster Use the Projects default Mask raster E:\Schuessler.N\tmp\balakot\region.tif Dutput Combine raster dataset			
Mask raster Use the Projects default Mask raster E:\Schuessler.N\tmp\balakot\region.tif Dutput E:\Schuessler.N\tmp\balakot\geo_lc_combined.tif			
Mask raster Use the Projects default Mask raster Use the Projects default Mask raster E:\Schuessler.N\tmp\balakot\region.tif Dutput E:\Schuessler.N\tmp\balakot\geo_lc_combined.tif			

Fig. 3.14: Combine Widget

Creates a raster dataset based on unique combinations of input raster datasets.

- 1. Add at least two raster datasets. You can either drag and drop the rasters from your file manager into the input list (1) or select them from your PC (2).
- 2. (Optional) Change the mask raster dataset from the projects default by unchecking (5) and either picking an input raster by selecting it in the list (1) and clicking (4) or pick a mask from your PC (6).
- 3. Select the combined raster output location. You can either type in the absolute file path yourself or pick one with a dialog (7).
- 4. Start the calculation (9)

If you want to use the output raster in your LSAT Project you need to import it using the Import Raster Widget.

If any raster has noData the output raster will also have noData at that location.

Information

The input raster dataset values that lead to the output values are stored in the outputs Raster Attribute Table (RAT).

Input and Output

Input	Input raster datasets (.tif) Mask raster dataset (.tif)
Output	Combined raster dataset (.tif)

3.4.2 Contingency analysis

Contingency Analysis	- 0	×
Input		
Raster datasets		6
D:\Schuessler.N\tmp\balakot\data\params\Geology.tif		Ŧ
$D:\Schuessler.N\tmp\balakot\data\params\Landcover.tif$		
		1000
Mask raster	4 5	
D:\Schuessler.N\tmp\balakot\region.tif	See project reference as default	
Qutput		
Analysis name		
	6	
geology_landcover		
	Apply	67
		Ľ

Fig. 3.15: Contingency Analysis Widget

The contingency analysis estimates association between categorized (discrete) raster datasets. The contingency analysis computes Pearson's contingency coefficient C and Cramer's V.

- 1. Add at least two discrete raster datasets. You can either drag and drop the rasters from your file manager or select them from your PC (1).
- 2. If necessary change the mask raster by unchecking (5) and selecting a new one (4).
- 3. Name the output file (6).
- 4. Start the Analysis (7).
- 5. View the *results* by double-clicking on the output file in the *catalog*.

If you want to remove a raster from inputs, select it and press the minus button (2).

You can view the Raster Attribute Table (RAT) of an Input raster by selecting it and pressing the RAT button (3).

Input and Output

Input	Raster datasets (.tif) with limited discrete classes.
	Mask raster (.tif) providing the spatial reference and the cell size. (Default: project mask)
Output	Analysis file (.npz) Path: /results/statistics/*output name*_ctg.npz

Results

This window shows the pairwise raster comparison.

Choose between displaying Pearson's C or Cramer's V in the Table (2) with the combo box (1).

Clicking the button (3) opens a dialog to export the current Matrix in the Table (2) as an excel file.

Double-clicking a cell in the Table (2) opens the details for that comparison.

vis Details – D X									
Frequency table	Frequency table X ² Phi (2x2)								
	Landcover1	Landcover3	Landcover4	Landcover5	Landcover6	Landcover7	Landcover8	Landcover9	Landcover10
Geology2	-0.00	-0.01	0.08	-0.07	-0.03	-0.03	-0.01	0.01	-0.02
Geology3	-0.00	0.02	-0.05	0.11	0.01	-0.03	-0.04	0.03	-0.03
Geology6	-0.00	-0.00	0.05	-0.04	0.01	-0.02	-0.03	-0.01	-0.02
Geology7	0.00	-0.00	-0.06	0.07	-0.01	-0.01	0.02	-0.01	0.02
Geology8	-0.00	-0.00	-0.01	-0.02	-0.01	-0.02	0.05	-0.00	-0.01
Geology10	0.01	-0.00	0.02	-0.01	-0.01	-0.01	-0.02	-0.00	0.03
Geology18	-0.00	-0.00	-0.02	-0.01	-0.00	-0.01	0.04	-0.00	0.00
Geology19	-0.00	-0.01	0.05	-0.05	-0.02	-0.05	0.02	-0.01	-0.01
Geology20	0.02	-0.00	-0.17	0.01	0.14	0.34	-0.01	-0.01	0.16
٢.									>

Fig. 3.17: Contingency Analysis Results Widget (details)

This window shows the pairwise raster value comparison.

Choose between displaying the frequency table, Chi-squared or Phi (2x2) in the Table (3) by selecting the corresponding tab (2).

Clicking the button (1) opens a dialog to export the current Matrix in the Table (3) as an excel file.

3.4.3 Euclidean distance

This widget estimates the closest Euclidean distance of a raster cell to the feature dataset.

🕯 Euclidean Distance		— [
Input data			
Input feature d	ataset		
E:\Schuessler.	N\tmp\Balakot_dataset\Confirmed_faults.shp		
Mask raster	2 Use the Projects default Mask raster	- 4 Ignore feature outside mask raster	6
E:\Schuessler.	N\tmp\balakot\region.tif		
Optional setting	15		
Maximum dista	nce		-
Fixed buffer va	lue		
			6
Output distance	a ractor		-
Output distance			_
E:\Schuessler.	N\tmp\balakot\distance_faults.tif		
		A	pply 8

Fig. 3.18: Euclidean Distance Widget

- 1. Select the input feature file. You can either type in the absolute file path or select it from your PC (1).
- 2. If necessary change the mask raster by unchecking (2) and selecting a new one (3).
- 3. (Optional) Choose to ignore (4) parts of the input feature that are not inside the mask.
- 4. (Optional) Set the maximum distance to calculate the distance (5).
- 5. (Optional) Set the value to write into cells within the distance (6).
- 6. Select the output distance raster location. You can either type in the absolute file path yourself or pick one with a dialog (7).
- 7. Start the calculation (8)

If the input feature dataset lies at least partially outside the mask and these parts are not ignored LSAT extents the output raster while keeping the mask raster cell size.

If you want to use the output raster in your LSAT Project you need to import it using the Import Raster Widget.

Input	Feature dataset to calculate the distance from
	Mask raster dataset (.tif)
Output	Euclidean distance raster dataset (.tif)

3.4.4 Lookup

🔯 Lookup			-		×
Raster			9		
E:\Schuessler.N\tmp\balakot\data\params\Landco	over.tif	~			
Lookup Fields	2				
COUNT	-				
Append attribute table 3					
Output lookup raster					
E:\Schuessler.N\tmp\balakot\Landcover_count.tif			9		
	Cancel	5	Арр	ly	6

Fig. 3.19: Lookup Widget

Create a raster dataset based on values in the raster attribute table (RAT) of the input raster dataset.

Usage

- 1. Select an input raster dataset with a dialog (1)
- 2. Select the RAT field (2) from which to create the new raster dataset
- 3. (Optional) Choose not to append the raster attribute table of the input raster (3)
- 4. Select the lookup raster output location. You can either type in the absolute file path yourself or pick one with a dialog (4).
- 5. Start the lookup (6)

If you want to use the output raster in your LSAT Project you need to import it using the Import Raster Widget.

Information

RAT values that are neither int nor float will not be displayed in the combobox (2) but will be appended if you choose to do so (3).

You can only lookup discrete rasters with a RAT.

Input	Input raster dataset (.tif)
Output	Lookup raster dataset (.tif)

3.4.5 Reclassify

Fig. 3.20: Reclassify Widget

The reclassify widget reclassifies raster datasets.

Usage

- 1. Select the input raster. You can either select from imported rasters using the Input combo box or select one from your PC (1).
- 2. Select the output location of the reclassified raster. You can either type in the absolute file path yourself or pick one with a dialog (3).
- 3. Select a *reclass method* (4).
- 4. Set the related classification properties (5, 6, 7, 8).
- 5. Start the reclassification (10).

If you want to use the created reclassified raster in your LSAT Project you need to import it using the *Import Raster Widget*.

The Plot (8) and the reclass table (9) preview the output raster. The gray area in the Plot show the distribution of the input rasters values. The red lines indicate the boundaries of the new values.

If the input raster is of type float it will be displayed as a gray area. If it is an integer raster there will be bars in the plot (8) instead.

The raster statistic (2) shows an embedded version of the Raster Info Widget

Reclassification methods

Equal interval:

The user defines the number of classes. The classes have the same interval.

Quantile:

The user defines the number of classes/quantiles. Each class has the same amount of raster pixels (minor deviations are possible).

Defined interval:

The user defines the interval size. Optionally the classification can start at 0.

Unique:

Each input value gets assigned a new value.

Manual:

The user defines the class boundaries. Right click into the plot to create a new border. Double click a border to remove it. Left click, drag and release to move an existing border. Automatically gets activated when the user clicks into the Plot.

Input and Output

Input	Continuous raster dataset (.tif)
Output	Discrete (Int32) raster dataset (.tif)

3.4.6 Sensitivity Reclassification

Fig. 3.21: Sensitivity Reclassification Widget

Use the cumulative variation of the contrast to reclassify a raster.

- 1. Select the input raster. You can either select from imported rasters using the Input raster combo box or select one from your PC (1).
- 2. Select the input inventory. You can either select from imported features using the Input feature combo box or select one from your PC (3).
- 3. Set the number of quantiles (4)
- 4. Update (5) the lower plot (7)
- 5. Set the boundaries of the new values by right clicking in (7). If needed remove boundaries by double clicking them. Move boundaries by clicking on them and move the mouse while holding the mouse button.
- 6. Select the output location of the reclassified raster. You can either type in the absolute file path yourself or pick one with a dialog (9).
- 7. Apply (10) your sensitivity reclassification to create the output raster.

You can run multiple analyses with varying number of quantiles with each analysis updating the lower plot (7).

The lower plot (7) and the reclass table (8) preview the output raster. The red lines in (7) indicate the boundaries of the new values. The upper plot (6) shows the distribution of the input rasters values.

If you want to use the created raster in your LSAT Project you need to import it using the Import Raster Widget.

Information

The raster statistics (2) shows an embedded version of the Raster Info Widget

If the input raster is of type float it will be displayed as a gray area. If it is an integer raster there will be bars in the upper plot (6) instead.

Sensitivity Reclassification uses Weights of Evidence to calculate the cumulative contrast for the lower plot.

3.5 Viewer

Derive rasters from DEM raster files

3.5.1 Geodata Viewer

View your projects raster datasets.

Fig. 3.22: Geodata Viewer Widget

Overview

- Click (1) to add raster datasets (6) to the view with a dialog
- Select a raster (6) in the scene and click (2) to show its legend (5)
- Add a bounding box (7) by selecting a raster (6) and clicking (3)
- Export the current view as a pic (.png) with a dialog (4)

Information

If you start the Widget from the *catalog* the selected raster will be available from the start. This widget displays coordinates in degrees (°), minutes (') and seconds ('') WGS84 (EPSG 4326).

CHAPTER

FOUR

ANALYSIS

Run analysis and manage their results.

4.1 ANALYSIS

Analyze your data

4.1.1 Analytic Hierarchy Process (AHP)

Fig. 4.1: AHP Widget - input tab

Run Analytic Hierarchy Process (AHP) analysis.

- 1. Add rasters to the calculation with a dialog (7)
- 2. Provide an name for the output files (9)
- 3. Select a method to derive the priority vector (10)
- 4. Move to the raster value comparison tab (4) or click next (2).

Remove raster datasets from the calculation by clicking (8)

Raster tabs (4):

		< Back	1		Next >	
slope_3c_se	ensreclass Pairwi	ise raster comparison	15			
3	1 Y	3				
	0.2	0.14285714286				
.0	1	0.333333333333				
.999999999986	3.0000000003	1				
			•			

Fig. 4.2: AHP Widget - raster tab

- 1. Assign a *rating* to each pairwise raster value comparison (6)
- 2. Continue to the pairwise raster comparison tab (5)

Pairwise raster comparison tab (5):

- 1. Assign a *rating* to each pairwise raster comparison (6)
- 2. Return to the input tab and click Apply (11)

After the calculation finished you can view the *results* (2) by right clicking the output .npz in the *catalog*.

Information

Scale of preference (Saaty, 1977)

Fig. 4.3: AHP - pairwise raster comparison tab

Intensity of im-	Definition	Explanation
portance		
1	Equal importance	Two activities contribute equally to the objective
3	Weak importance of over	Experience and judgment slightly favor one over another
	another	
5	Essential or strong impor-	Experience and judgment strongly favor one over another
	tance	
7	Demonstrated impor-	One is strongly favored and its dominance is demonstrated in prac-
	tance	tice
9	Absolute importance	The evidence favoring one over another is of the highest possible
		order of affirmation
2, 4, 6, 8	Intermediate values	Compromises
Reciprocals	Inverse comparison	Inverse comparison

You can write number < 1 as fractions in the pairwise comparison table, e.g. "1/7" get converted to 0.14285714286.

LSAT supports AHP for raster datasets with up to 10 values. If you have a continuous raster or a raster dataset with more unique values reclassify them first with the *Sensitivity Reclassification Widget* or *Reclassify Widget*.

Input	Raster dataset(s) (.tif)
Output	AHP model raster dataset (.tif)
	Output path: /results/AHP/rasters/*output name*.tif
	AHP model information (.npz)
	Output path: /results/AHP/tables/*output name*_tab.npz

4.1.2 Artificial Neural Network (ANN)

~
~
~
•

Fig. 4.4: ANN Widget

Run Artificial Neural Network (ANN) analysis.

Usage

- 1. Add a vector file with the landslide inventory. You can either type the absolute path to the file or select it from your PC with a dialog (4).
- 2. Add (7) raster datasets to the explanatory parameters (5)
- 3. Set the type (6) of each parameter using the combobox
- 4. (Optional) Adjust the calculation settings in the *advanced settings* (1)
- 5. Provide an output name (9)
- 6. Start the calculation (10)

Remove raster datasets from the calculation by clicking (8).

After the calculation finished you can view the *results* (2).

Support for automatically writing a report (3) is coming soon.

Advanced Settings

👗 ANN Advanced Settings											×
4											
hidden_layer_sizes	100	activation	relu ~	solver	adam ~	alpha	0.0001	batch_size	auto		
learning_rate	constant ~	learning_rate_init	0.001	power_t	0.5	max_iter	200	shuffle			
random_state	None	tol	0.0001	verbose		warm_start		momentum	0.9		
nesterovs_momentum	2	early_stopping		validation_fraction	0.1	beta_1	0.9	beta_2	0.99		
epsilon	0.00000001	n_iter_no_change	10	max_fun	15000		Reset	Cancel	4	pply	0
								2			9

Fig. 4.5: ANN Advanced Settings Widget

To learn more about the individual parameters (4) see scikit-learns MLPClassifier documentation

After changing the values you can reset (1) them to default values or apply (3) them.

Close and cancel (2) at any time without making changes to the Settings.

Edit the defaults by changing [DEFAULT] in *LSAT Folder*/core/widgets/ANN/ann_config.ini.

Information

LSAT PM uses scikit-learns MLPClassifier to apply ANN to spatial data.

Changes made to the settings are persistent.

Input and Output

Input	Raster dataset(s) (.tif)
	Feature dataset (Vector file)
Output	ANN model raster dataset (.tif)
	Output path: /results/ANN/rasters/*output name*_ann.tif
	ANN model information (.npz)
	Output path: /results/ANN/tables/*output name*_tab.npz
	ANN model (.pkl)
	Output path: /results/ANN/tables/*output name*_model.pkl

4.1.3 Logistic Regression (LR)

Run Logistic Regression (LR) analysis.

Usage

- 1. Add a vector file with the landslide inventory. You can pick one from the project with the combobox or select it from your PC with a dialog (4).
- 2. Add (7) raster datasets to the explanatory parameters (5)
- 3. Set the type (6) of each parameter using the combobox
- 4. (Optional) Adjust the calculation settings in the advanced settings (1)
- 5. Provide an output name (9)
- 6. Start the calculation (11)

Fig. 4.6: LR Widget

Remove raster datasets from the calculation by clicking (8).

After the calculation finished you can view the *results* (2).

Support for automatically writing a report (3) is coming soon.

Advanced Settings

Solver:	lbfgs	~	
Penalty:	12	~	
l1 ratio:	None	~	
Dual or primal formulation:	primal	~	
Tolerance value:	0.0001		
Inverse regularization strenght:	1.0		
Intercept:	True	~	
Intercept Scale:	1		
Class weight:	None	~	
Random state:	None	×	
Maximum iterations:	100		
Multi class:	auto	~	
Verbose:	0		
Warm start:	False	~	
Number of jobs:	None	~	

Fig. 4.7: LR Advanced Settings Widget

To learn more about the individual parameters (4) see scikit-learns LogisticRegression documentation. For a brief overview hover your mouse cursor over the parameters name.

After changing the values you can reset (1) them to defaults or apply (3) them.

Close and cancel (2) at any time without making changes to the settings.

Edit the defaults by changing [DEFAULT] in *LSAT Folder*/core/widgets/LogisticRegression/configLogReg.ini.

Information

LSAT PM uses scikit-learns LogisticRegression to apply LR to spatial data.

Changes made to the settings are persistent.

Input	Raster dataset(s) (.tif)
	Feature dataset (Vector file)
Output	LR model raster dataset (.tif)
	Output path: /results/LR/rasters/*output name*_lr.tif
	LR model information (.npz)
	Output path: /results/LR/tables/*output name*_tab.npz
	LR model (.pkl)
	Output path: /results/LR/tables/*output name*_model.pkl

4.1.4 Weight of Evidence (WofE)

Veight of Evidence		ð ×
28	4	
at 12 an 12	1	
Training feature data		-
		5
D:\Schuessier.iv\tmp	ploalakotloata (inventory (training (inventory_training.s	np *
Datasets to analyse		- 7
Dataset	Progress	+
Geology		0%
Landcover		0% 8
slope_3c_se		0%
Append to Outpu	t name 9	10
		Apply

Fig. 4.8: WofE Widget

Run Weights of Evidence (WofE) analysis.

Usage

- 1. Add a vector file with the landslide inventory. You can pick one from the project with the combobox or select it from your PC with a dialog (5).
- 2. Add (7) raster datasets to the datasets to analyze (6)
- 3. (Optional) Adjust the calculation settings in the *advanced settings* (1)
- 4. (Optional) Add an appendix to the output name by checking (9) and typing it in
- 5. Start the calculation (10)

After the calculation finished select a dataset (6) to view the *results* (3).

Advanced Settings

Weight of Evidence uses the same Advanced Settings as Model Builder.

- 1. Choose between On-the-fly subsampling (2), predefined subsamples (3) or select neither to use single sample mode
 - On-the-fly subsampling (2)
 - 1. Set the size of the subsamples as percent of the import feature either by typing a number (1) or adjusting the slider.
 - 2. Set the number of samples to generate on-the-fly
 - Predefined subsamples (3)

👗 Advanced Settings		-		×
Sampling		1		
Training sample size in %:	100			
2 On-the-fly subsampling	Number of Samples	: 1		
3 Use predefined subsamples			U	
Look in following folder:			-6	5
Training sample name (optional)			6	
Test sample name (optional)		7		
GDAL settings		-		
	-			
Rasterize layer method DEFAU	LI	ð	`	
	ок 9			

Fig. 4.9: WofE Advanced Settings Widget

- 1. Provide a path to the folder with the predefined subsamples. You can either type in the absolute path yourself or pick one with a dialog (5).
- Single sample mode (neither (2) nor (3) selected)
 - 1. By selecting neither (2) or (3) LSAT will use 100% of the feature.
- 2. (Optional) Change the rasterization method (8)
- 3. Select OK (9)

Information

The output raster dataset (.tif) contains the calculated Weights.

Only discrete raster datasets are suitable to analyze with WofE. If you have a continuous raster reclassify them first with the *Sensitivity Reclassification Widget* or *Reclassify Widget*.

Input	Raster dataset(s) (.tif)
	Feature dataset (Vector file)
Output	WofE model raster dataset (.tif)
	Output path: /results/WoE/rasters/*output name**appendix (if any)*_woe.tif
	WofE model information (.npz)
	Output path: /results/WoE/tables/*output name**appendix (if any)*_tab.npz

4.2 Model Managment

Manage your models

4.2.1 Model Builder

Fig. 4.10: Model Builder Widget

Create models with the results of the analyses.

Usage

- 1. Pick a feature dataset to use for model creation. You can either choose from the projects features or select one from your PC (1).
- 2. (Optional) Adjust the *advanced settings* (18)
- 3. (Optional) Add datasets from outside your project (2) to the available ones (4)
- 4. Select the datasets (4) you want to for the model and add them to the model layers (8). You can either right click on them or select them and click (5).
- 5. Name the model (3)
- 6. (Optional) Adjust the *Expression* (10)
- 7. Create the model (11)

To move a dataset from the model datasets (8) to the list of available datasets you can either right click it or select it and click (6).

To remove a dataset from the list of available datasets (4) select it and press (7).

After LSAT finished creating the model it appear in the list of models (16). Select it to:

- Export the model as an raster (12)
- View detailed *model information* (13)
- Delete the model (14)
- Open the model in the *Zoning Widget* (15)

The receiver operating characteristics (ROC) Curve is displayed in (17). If you generated a model using multiple samples a range will indicate the minimum and maximum ROC curves.

Advanced Settings

💥 Advanced Settings		-		×
Sampling Training sample size in %:	80	0		
2 On-the-fly subsampling 2 Use predefined subsamples	Number of Sample	5: 5	4	
Look in following folder: Training sample name (optional)			6	5
Test sample name (optional)		-7		
GDAL settings				
Rasterize layer method DEFAUL	Т	8	~	
	ок 9			

Fig. 4.11: Model Builder Advanced Settings

Model Builder uses the same Advanced Settings as Weights of Evidence.

- 1. Choose between On-the-fly subsampling (2), predefined subsamples (3) or select neither to use single sample mode
 - On-the-fly subsampling (2)
 - 1. Set the size of the subsamples as percent of the import feature either by typing a number (1) or adjusting the slider.
 - 2. Set the number of samples to generate on-the-fly
 - Predefined subsamples (3)
 - 1. Provide a path to the folder with the predefined subsamples. You can either type in the absolute path yourself or pick one with a dialog (5).
 - Single sample mode (neither (2) nor (3) selected)
 - 1. By selecting neither (2) or (3) LSAT will use 100% of the feature.
- 2. (Optional) Change the rasterization method (8)
- 3. Select OK (9)

Expression Builder

With the expression builder you can modify and weigh input parameters. And so convert the normally entirely datadriven models into hybrid models.

The default expression (4) does not modify the output in any way.

You can write any expression (4). Double click on input datasets (1) and example operators (3) to add them at the cursor location in (4). You switch between example numpy operators using (2).

Fig. 4.12: Model Builder Expression Builder

Warning: The expressions will be executed using eval(). While this is a powerful tool it can also break LSAT.

Input and Output

Input	Vector dataset (features)
	Analysis results
Output	Model (.npz)
	Default path: /results/susceptibility_maps/*name*.npz
	(Optional) Model Raster (.tif)
	Default path: /results/susceptibility_maps/*name*.tif

4.2.2 Zoning

Convert your models into landslide susceptibility maps.

Usage

- 1. Pick the input model with a dialog (1)
- 2. Pick the output map location. You can either type in the absolute file path yourself or pick one with a dialog (2).
- 3. Define the landslide susceptibility zones (2 Alternatives):
 - 1. Set default table (3)
 - 2. Define the zone boundaries yourself:
 - 1. Add (5) and delete (6) zones as needed
 - 2. Name the zones in the reclass table (11)
 - 3. Set the "Targeted landslide area in zone %" for each zone except the last

Fig. 4.13: Zoning widget

- 4. Update the graphs (4)
- 5. Apply (10)

The model info (7) shows an embedded version of the Model Info Widget

Zoning preview (8) and the ROC curve (9) offer a sneak peek at the resulting map.

If you started Zoning from the *Model Builder Widget* the selected Model will be available to you right away.

Information

The True Positive Rate (TPR) (y axis in (9)) corresponds roughly to the cumulative landslide area. The False Positive Rate (FPR) (x axis in (9)) corresponds approximately to the total area without landslides.

Input and Output

Input	Model (.npz)
Output	Landslide susceptibility map (.tif)
	Default path: /results/susceptibility_maps/*name*.tif

CHAPTER

FIVE

INDICES AND TABLES

- genindex
- modindex
- search