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Abstract. This paper introduces the Landslide Susceptibil-
ity Assessment Tools – Project Manager Suite (LSAT PM),
an open-source, easy-to-use software written in Python. Pri-
marily developed to conduct landslide susceptibility analy-
sis (LSA), it is not limited to this issue and applies to any
other research dealing with supervised spatial binary classi-
fication. LSAT PM provides efficient interactive data man-
agement supported by handy tools in a standardized project
framework. The application utilizes open standard data for-
mats, ensuring data transferability to all geographic informa-
tion systems. LSAT PM has a modular structure that allows
extending the existing toolkit by additional tools. The LSAT
PM v1.0.0b implements heuristic and data-driven methods:
analytical hierarchy process, weights of evidence, logistic re-
gression, and artificial neural networks. The software was de-
veloped and tested over the years in different projects dealing
with landslide susceptibility assessment. The emphasis on
model uncertainties and statistical model evaluation makes
the software a practical modeling tool to explore and eval-
uate different native and foreign LSA models. The software
distribution package includes comprehensive documentation.
A dataset for testing purposes of the software is available.
LSAT PM is subject to continuous further development.

1 Introduction

Landslides occur in all mountainous parts of the world, sig-
nificantly contributing to disastrous socioeconomic conse-
quences and claiming thousands of casualties every year
(Petley, 2012; Froude and Petley, 2018). These phenomena

are frequently associated with other natural hazards such as
severe rainfall, floods, and earthquakes (e.g., Polemio and
Petrucci, 2000; Crozier, 2010; Keefer, 2002; Kamp et al.,
2008).

Per definition, a comprehensive assessment of landslide
hazards addresses the spatial and temporal landslide occur-
rence based on three questions: Where? When? How large?
(e.g., Varnes, 1984; Guzzetti et al., 1999; Tanyaş et al., 2018;
Reichenbach et al., 2018). Landslide susceptibility analysis
(LSA) depicts the probability of spatial landslide occurrence
(e.g., Brabb, 1985; Guzzetti et al., 2005) covering the spa-
tial domain of the hazard analysis. Addressing the temporal
domain of landslide hazard assessment is much more chal-
lenging due to the local character of the phenomenon and
a common lack of multi-temporal landslide inventories cov-
ering sufficient periods (e.g., Aleotti and Chowdhury, 1999;
Van Westen et al., 2006). Therefore, most case studies at re-
gional scales focus on LSA as the most feasible part of the
landslide hazard analysis.

Regional LSA is usually done based on qualitative (heuris-
tic or knowledge-driven) and quantitative methods (Reichen-
bach et al., 2018). The quantitative techniques comprise
physically based and data-driven statistical, as well as ma-
chine learning (ML) approaches (e.g., Aleotti and Chowd-
hury, 1999). The desired analysis scale and data availability
usually govern the decision of which method to use (e.g., Van
Westen et al., 2008; Balzer et al., 2020).

In the past decades, advances in remote sensing have made
significant progress, allowing efficient data acquisition at re-
gional scales. Additionally, digitalization forced a general
boost of data mining techniques. Together with the devel-
opment of Geographic information system (GIS) software
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packages and open-source statistical and machine learning
libraries, the data-driven methods for LSA have gained pop-
ularity. These methods belong mainly to supervised binary
classification (e.g., Torizin, 2016). In the supervised classifi-
cation, we use a set of recorded observations (labels) and in-
dependent explanatory factors (features) such as different ge-
omorphologic, hydrologic, and geological conditions to train
a statistic function (classifier). The classifier estimates the
likelihood of a specific countable element in a study area
(e.g., raster pixel) to be in the specified target class (e.g.,
landslide or no landslide).

Because classification is one of the fundamental tasks in
statistics and ML, many different classifiers exist. Conse-
quently, in numerous case studies, the academic community
continuously applies and compares classification algorithms
and their variations, which were initially developed for other
purposes but are sufficiently general to be used for LSA.
While some classifiers might outperform others, the drawn
conclusions are often valid only for particular settings and
study designs (e.g., Balzer et al., 2020). Under other circum-
stances, such as different data quality or distribution, it is
very likely that some of the other classifiers perform on par
or better. Reviewing the LSA research of the past 30 years,
Reichenbach et al. (2018) counted about 163 different data-
driven methods, emphasizing the problem of excessive ex-
perimentation with statistical classifiers rather than focus-
ing on LSA reliability. Many of these methods have never
been adopted or seriously considered by practitioners skep-
tically following the academic research at their own pace
and utilizing a comparably small part of it. Thus, despite
the many academic publications dealing with regional data-
driven LSA, only a few practical solutions have been adopted
in national landslide risk assessment strategies (e.g., Balzer
et al., 2020). Also, user-friendly stand-alone software devel-
oped in this field is rare compared to the available geotechni-
cal software applications. Many available tools exist as aca-
demic code generated to support specific case studies (e.g.,
Merghadi, 2018, 2019; Egan, 2021; Raffa, 2021) and im-
ply that the user has the necessary programming or script-
ing skills to set up and run the tools. Despite considerable
efforts to adapt the Earth science curricula to digital trans-
formation (e.g., Hall-Wallace, 1999; Makkawi et al., 2003;
Senger et al., 2021), the required computational literacy to
deal with those applications is not a broad standard in geo-
sciences. However, there is a positive trend. Rising education
possibilities on e-learning platforms with exhaustive offers in
programming narrow the gap between geosciences and data
sciences. Bouziat et al. (2020) noted that the geoscience com-
munity increasingly uses Python (Van Rossum and Drake,
2009) for data processing, the R statistical package (R Core
Team, 2013) for statistical analysis, and custom web services
for sharing results.

Since 2010, many LSA tools have been available as plu-
gins or extensions in different GIS such as LSAT (Polat,
2021), LSM Tool Pack (Sahin et al., 2020), or ArcMAP Tool

(Jebur et al., 2015) in ESRI ArcGIS, SZ-plugin (Titti et al.,
2021) in QGIS (QGIS Development Team, 2022), r.landslide
(Bragagnolo et al., 2020a) in GRASS GIS (GRASS Develop-
ment Team, 2021), and RSAGA (Brenning, 2008) in SAGA,
as well as scripts in R statistical packages, e.g., LAND-SE
(Rossi and Reichenbach, 2016), and a few stand-alone appli-
cations, e.g., GeoFIS (Osna et al., 2014).

With the Landslide Susceptibility Assessment Tools –
Project Manager Suite (LSAT PM), we introduce an open-
source (GNU General Public License v3), stand-alone, and
easy-to-use tool that supports scientific principles of open-
ness, knowledge integrity, and replicability. Doing so, we
want to share our experience in implementing heuristic and
data-driven LSA methods. Our primary goal is not to intro-
duce as many algorithms as possible for LSA but to provide
easy access to a selection of state-of-the-art methods repre-
senting groups of different approaches. Providing a conve-
nient framework for model building, evaluation, and uncer-
tainty assessment, we want to highlight the capabilities and
limitations of those methods.

2 LSAT PM software

LSAT PM is a desktop application designed to support
decision-makers and the scientific community in generat-
ing and evaluating landslide susceptibility models based on
heuristic and data-driven approaches.

2.1 Development history

The development of Landslide Susceptibility Assessment
Tools (LSAT) started in 2011 with Python scripting within
ESRI ArcGIS 10.0 Toolbox to support technical coopera-
tion (TC) projects (Torizin, 2012). TC projects are usually
not cutting-edge research but summarize, adapt, and imple-
ment scientific outcomes by following the best-practice ap-
proach. Since then, LSAT was continuously improved and
tested at different development stages in case studies in In-
donesia (Torizin et al., 2013), Thailand (Teerarungsigul et
al., 2015), Pakistan (Torizin et al., 2017), China (Torizin et
al., 2018), and Germany (Balzer et al., 2020). Working with
different data of varying quality helped us develop efficient
methodical workflows. It also enabled us to better under-
stand the limitations of some methods and design practical
approaches to assess model uncertainties (e.g., Torizin et al.,
2021).

In 2017, we started to prototype LSAT as a stand-alone
application bearing the extension “Project Manager Suite”
in Python 2 and later in Python 3. This development began
within the Sino–German scientific cooperation project (Tian
et al., 2017) and continued in a cooperation project with Ger-
man geological surveys (Balzer et al., 2020).
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2.2 Software architecture and capabilities

LSAT PM v1.0.0b is written in Python 3. The graphical
framework PyQt5 provides the basis for the graphical user in-
terface (GUI). Functionalities of the software rely on differ-
ent third-party libraries and Python packages. The Geospatial
Data Abstraction software Library (GDAL) (GDAL/OGR
Contributors, 2021) and its Python bindings provide the core
functionality for dealing with spatial data. The highly effi-
cient NumPy (Harris et al., 2020) provides array computa-
tions through the analyses. Implemented ML algorithms rely
on the powerful sklearn library (Pedregosa et al., 2011; Buit-
inck et al., 2013). Matplotlib (Hunter, 2007) provides the
basis for generating analysis plots. Openpyxl (Gazoni and
Clark, 2018) and python-docx (Canny, 2018) packages allow
the export of analysis results as convenient MS Office files
and automatized generation of analysis reports.

The software consists of the main GUI with integrated in-
dependent modules (widgets), building the software’s func-
tionality.

Due to the LSAT PM development history, we built the
most functionalities around the weights of evidence (WoE)
method, which was the initial analysis module of LSAT PM.
WoE (e.g., Bonham-Carter et al., 1989) belongs to the bivari-
ate statistical methods frequently applied in LSA in the past
decades (e.g., Mathew et al., 2007; Moghaddam et al., 2007;
Thiery et al., 2007; Neuhäuser et al., 2012; Teerarungsigul
et al., 2015). It is simple to understand and provides a trans-
parent computation algorithm. With enhanced uncertainty as-
sessment (e.g., Torizin et al., 2018, 2021), WoE becomes
a robust tool for rapid analysis, providing a good reference
model to test against when exploring new methods. For ex-
ample, it can be beneficial to investigate the data depen-
dencies or run several sensitivity analyses based on trans-
parent WoE before applying more sophisticated multivariate
statistical analysis techniques, e.g., logistic regression (LR)
or black-box ML algorithms such as artificial neural net-
works (ANNs). LSAT PM includes both LR (e.g., Lee, 2005;
Budimir et al., 2015; Lombardo and Mai, 2018) and ANN
(e.g., Lee and Evangelista, 2006; Pradhan and Lee, 2010;
Bragagnolo et al., 2020b), as well as a module for heuris-
tic analyses based on the analytical hierarchy process (AHP).
This decision support method finds application primarily for
areas with insufficient observational data (e.g., Balzer et al.,
2020; Panchal and Shrivastava, 2020).

Currently, LSAT PM can utilize Tagged Image File For-
mat (GeoTiff) raster data for model parameters and vector
data formats such as ESRI shapefiles, Keyhole Markup Lan-
guage (KML), and JavaScript Object Notation (GeoJSON)
for inventories. Further GDAL-supported formats are incor-
porable on demand.

Complementary to the spatial data output in the same for-
mats as input, LSAT PM supports exporting tables to Mi-
crosoft Excel sheets, graphs to portable network graphic files

(PNG), and automated analysis reports to MS Word docu-
ments.

For spatial analysis, LSAT PM implements basic geopro-
cessing functionalities for data preparation. Morphological
analyses, such as slope, aspect, topographic position index
(TPI), and many others, can be performed based on raster
datasets in GeoTiff. Functions such as Euclidean distance
and raster classification are also available. A simple data
viewer visualizes raster data.

However, although LSAT PM provides some GIS capabil-
ities for geoprocessing, it cannot be characterized as a solid
GIS application and was never supposed to become one. It
has a slim structure tailored to manage and prepare the data
for binary spatial classification.

3 Working with LSAT PM

LSAT PM provides handy tools to set up the model through
data exploration, preprocessing, analysis, model evaluation,
and post-processing.

The logical workflow in Fig. 1 schematically sketches
the working process with LSAT PM. The following sec-
tions briefly introduce the single steps of this workflow and
their corresponding modules. More technical details are ob-
tainable from the software documentation distributed stand-
alone or as part of the installer package (see also Sect. 7).

3.1 Project

After launching the software, the user can create a new or
open an existing project. A project is a structured folder sys-
tem that stores data with a specified spatial extent and spatial
reference (region). The spatial extent and spatial reference
need to be assigned on project creation manually or by se-
lecting an already existing raster dataset as a project refer-
ence file (recommended).

The LSAT PM project has a standardized predefined struc-
ture, as shown in the bottom left of Fig. 1. The local project
file overview (Catalog in Fig. 2) in the main GUI helps man-
age the project data by providing a data-type-dependent con-
text menu.

3.2 Data import

Data import distinguishes between Import Raster and Im-
port Inventory (Fig. 2). The first tool imports raster datasets
considered to represent independent exploratory factors (fea-
tures), and the second imports vector-based datasets for ob-
servational data representing inventory or labels.

The raster import tool ensures consistency by validating
imported datasets against the project reference dataset (re-
gion). If not consistent with the project reference, the data
get warped. This procedure is comparable to the concept of
regions found in GRASS GIS and helps avoid processing er-
rors due to specific resolution and spatial reference incon-
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Figure 1. Standardized project structure and the logical workflow of LSAT PM.

sistencies. The import procedure generates data copies; thus,
original files remain unchanged.

Inventory import generally does the same for vector
datasets as input. Additionally, it includes the random split-
ting of the dataset into training and test datasets. Using this
option, the user can specify the percentage ratio of training
and test datasets. The splitting option is not mandatory and
skippable because inventory subsetting is possible later using
one of the tools described in Sect. 3.3 (see also Fig. 1).

3.3 Data exploration and preprocessing

In the preprocessing step, we derive parameters and prepare
the data according to the requirements of the upcoming anal-
ysis. Vector, DEM, and Raster Tools of LSAT PM (Fig. 2) aid
this purpose.

Data subsetting is an essential technique to evaluate data-
driven models using a test dataset not involved in the
model’s training, also known as cross-validation (e.g., Xu
and Goodacre, 2018; Petschko et al., 2014; Chung and Fab-
bri, 2008). LSAT PM provides a palette of Vector Tools

(Fig. 2) that supports the generation of inventory subsets
based on random subsampling or feature attributes, e.g., the
date (temporal split). Using Geoprocessing Tools in the same
tool domain, the user can also subset the inventory based on
spatial features (spatial split).

Digital elevation models (DEMs) serve as a basis for mor-
phometric parameters such as slope, aspect, or TPI. DEM
Tools (Fig. 2) derive basic morphometric features and gen-
erate raster data outputs from DEM raster datasets.

Raster Tools help perform basic raster operations and spa-
tial analyses. Using the Combine tool, the user can com-
bine several discrete raster datasets to generate a new raster
dataset exhibiting unique conditions of higher complexity.
Linear and point vector data (e.g., tectonic features, roads,
streams, or point locations) are usually unsuitable as direct
input for spatial analysis. However, their possible spatial ef-
fects are considerable via distance maps. The Euclidean dis-
tance tool generates a distance raster dataset based on input
vector data.

Raster reclassification is a standard procedure in GIS anal-
yses applied as value replacement in discrete datasets or bin-
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Figure 2. Main GUI with activated Data tab. The Data tab contains tools for data import, vector data processing, DEM tools, tools for raster
processing, and a simple data viewer.

ning of continuous datasets. Because WoE utilizes discrete
data only, continuous raster data such as slope or distance
rasters need a binning in the data preparation process. The
Reclassify tool offers different classifiers such as equal in-
tervals, quantiles, defined intervals, and user-defined values.
Additionally, the Sensitivity Reclassification (Sens Reclass)
tool provides a sensitivity analysis to find optimal cutoff
thresholds (e.g., Torizin et al., 2017).

The Contingency Analysis tool performs the chi-square-
based contingency analysis on raster-based categorical data,
estimating the associations between the datasets based on
Pearson’s C, Cramer’s V, and φ. It is the only tool that pro-
duces output in the subfolder statistics of the project results
folder. The user can view the output contingency table via
the Show results option from the Catalog’s context menu.

All the above-presented tools apply to datasets in any loca-
tion. Thus, the user can perform preprocessing steps before
the data import.

3.4 Analyses

As already introduced in Sect. 2, LSAT PM implements
heuristic and data-driven methods for LSA representing dif-
ferent categories (e.g., bivariate and multivariate). All of the
methods have different levels of complexity, which need to
be accounted for when choosing a specific analysis method.
Table 1 briefly summarizes the corner points of the ap-
proaches such as category, supported data types, and com-
plexity. The introduced complexity is a subjective measure
that we assigned based on our experience evaluating criteria
such as needed mathematical background, the complexity of
data preparation, model structure and computation algorithm
(transparency), and interpretability of the results. Due to the
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high degree of automation, the more complex methods allow
running the analysis with its default settings without any ad-
justment and might therefore appear more straightforward.
However, this first impression will vanish once the user en-
counters the advanced settings of the methods.

3.4.1 Weights of evidence

WoE is a bivariate statistical approach estimating the asso-
ciation between the observational data (dependent variable
represented by the training landslide inventory) and a poten-
tial controlling factor (independent variable represented by,
e.g., geological conditions). The analysis output is a raster
of the specific controlling factor containing logarithmic log-
likelihood weights, which characterize the relationship of
discrete factor classes with a landslide occurrence. Individ-
ually weighted factors are then overlaid into a linear model
to obtain the overall landslide susceptibility pattern (Torizin
et al., 2017).

WoE in LSAT PM offers three different analysis modes:
simple cross-validation, on-the-fly subsampling, and sam-
pling with predefined samples. The default option is sim-
ple cross-validation (presupposes inventory split into training
and test datasets). With this option, the model weight estima-
tion runs once with the entire training dataset (no further sub-
sampling). For on-the-fly subsampling, the weight estima-
tion runs for several user-defined iterations, taking random
samples (without replacement) of user-defined size from the
training inventory. The estimated weights are mean values
from all iterations. The analysis with predefined samples uti-
lizes predefined sample datasets in a specified folder loca-
tion. These predefined samples must be created beforehand
by any subsetting algorithm introduced above (Sect. 3.3).
The computed weights are mean values from all iterations,
identical to the on-the-fly subsampling.

After the training, the result table and the weighted raster
are automatically exported into the corresponding result fold-
ers. The results can be visualized immediately after the anal-
ysis through the WoE widget or later by calling the result
viewer from the Catalog’s context menu.

The model generation process is performed in the next step
using the LSAT PM model builder module (see Sect. 3.5).

3.4.2 Logistic regression

Logistic regression (LR) is a multivariate statistical classifi-
cation method to estimate relationships between the depen-
dent variable and independent controlling factors. In contrast
to WoE, LR analyzes the associations for all controlling fac-
tors at once and can utilize both continuous and discrete data
as independent variables.

In LSAT PM, LR runs more automated than WoE. The
user has to determine if the parameter is a discrete or con-
tinuous variable in the beginning. After that, the data prepa-
ration process runs automatically. The continuous datasets

are scaled using a min–max scaler to the value range be-
tween 0 and 1; discrete datasets are transformed into binary
dummy variables. All setting options for the logistic regres-
sion, e.g., regularization or solver algorithm, implemented in
the sklearn library are adjustable to the user’s needs in the ad-
vanced settings GUI. After the training, the result table and
the prediction raster are automatically exported into the cor-
responding result folders.

Unlike WoE, the analysis output from multivariate LR
already provides a multiparameter landslide susceptibility
model.

3.4.3 Artificial neural network

ANNs are computer models inspired by biological neural
networks. They consist of artificial neurons ordered in a net-
work structure to simulate information processing, storage,
and learning. The structure of an ANN usually consists of
an input layer, one or more hidden layers, and an output
layer. The number of hidden layers determines the depth of
an ANN (e.g., Schmidhuber, 2015; Hernández-Blanco et al.,
2019). This structure is also known as the multi-layer percep-
tron (MLP). The layers are composed of neurons in which the
information processing takes place. Theoretically, the num-
ber of hidden layers and their neurons is unlimited. Thus, the
network design is strongly dependent on the complexity and
nonlinearity of the task and the available processing capac-
ity. Most ANNs utilized in LSA are feed-forward networks,
which have an MLP structure with usually one hidden layer
(e.g., Ermini et al., 2005; Lee and Evangelista, 2006; Alimo-
hammadlou et al., 2014).

The implemented module for an artificial neural network
(ANN) has an experimental status and runs comparable to
the LR. ANN can utilize discrete and continuous data. Ad-
ditionally, the user can specify the ANN properties. Among
others, these settings comprise the number of neurons in the
layers, the number of hidden layers, the activation function,
and the solver to use. The design of the network and the acti-
vation function selection constitute one of the most sensitive
steps of the analysis with ANN. Despite reviewing numerous
studies, we do not have a straightforward, practical recipe for
designing the network yet. Therefore, the default settings do
not represent the best practical approach but rather the de-
faults delivered with the sklearn library.

Nevertheless, the GUI and included data preprocessing
provide easy and fast access to the capabilities given by the
sklearn library and allow exploring the ANN performance
for LSA. More technical information is obtainable from doc-
umentation of LSAT PM and sklearn library.

The data scaling process runs identically to the LR mod-
ule. After the training process, the output raster defining the
spatial probability of landslide occurrence is exported to the
corresponding result folder.
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Table 1. Analyses included in LSAT PM and their specifications.

Analysis name Category Supported data types Complexity

Weights of evidence data-driven, bivariate discrete moderate
Logistic regression data-driven, multivariate continuous, discrete high
Artificial neural network data-driven, multivariate continuous, discrete very high
Analytic hierarchy process heuristic discrete low

3.4.4 Analytical hierarchy process

As a heuristic approach, the AHP is different from the data-
driven applications explained above. The users must specify
the weights, usually based on their general expertise (knowl-
edge of geological processes) and specific knowledge about
the investigation area. The weighting process is a pairwise
comparison of the inputs at different hierarchical levels. For
LSA, the AHP typically takes two hierarchical levels. The
first level controls the class priorities inside multiclass pa-
rameters (e.g., raster values), and the second sets the priori-
ties between the multiclass parameters (e.g., raster datasets).

The pairwise comparison is complex when working with
parameters exhibiting many classes. The human ability to
compare is limited to approximately seven objects, plus
or minus two (Miller, 1956). Saaty (1977) considered this,
proposing values between 1 and 9 in specifying the factor’s
importance. Therefore, in the preparation process, it is ad-
visable to reduce the number of classes by generalization or
subdivision in different hierarchical groups (e.g., Balzer et
al., 2020). The latter will make the hierarchy more complex.

The advantage of pairwise ranking compared to simple
ranking is the ability to verify the logical consistency of
the decision mathematically. AHP uses the consistency ratio
(CR) to indicate whether the introduced ranking is a logical
inference or a random guess. Saaty (1980) recommends a CR
under 0.1 for consistent assessment.

It is notable that some studies applying AHP for LSA use
a hybrid approach combining bivariate methods with AHP
(e.g., Kamp et al., 2008, 2010). In the hybrid approach, a
data-driven bivariate approach applies to the first hierarchi-
cal level using, e.g., WoE. Afterward, additional expert-based
weights derived from the AHP priority vector are applied to
overlay the parameters to the model. Such an approach can
preserve the crude generalization of the patterns in the first
hierarchical level, making the analysis applicable to more de-
tailed datasets. For the AHP part, the method becomes more
applicable by involving the expert weights at a higher hier-
archical level, which benefits more from general process un-
derstanding than detailed local knowledge.

Conversely, it also has implications for the bivariate analy-
sis part. Using conditionally dependent parameters becomes
less critical since experts adjust the parameter’s contribution
in the upper hierarchical level. However, the hybrid approach

is only possible if a sufficient number of observations for the
first data-driven step is available.

The implemented AHP is a pure expert-based tool support-
ing two hierarchy levels. The user has to perform the pairwise
ranking for single parameter classes in the first step and the
parameters in the second step. After the user has specified the
class and parameter ranking, the analysis estimates the prior-
ity vector and generates a weighted overlay map. The result
table and the weighted raster are automatically exported into
the corresponding result folders. The resulting raster repre-
sents the final susceptibility map, similar to LR and ANN.

3.5 Model builder

The model builder (MB) is, in simple terms, a raster calcula-
tor with an integrated evaluation module. The algorithm be-
hind the model evaluation is the receiver operating charac-
teristics (ROC) curve – a technique to visualize and evaluate
the classifier’s performance (e.g., Fawcett, 2006) by depict-
ing the ratio of the true positive rate (sensitivity) and the false
positive rate (1-specificity). The area under the ROC curve
(AUC or AUROC) provides a quantitative measure to com-
pare the goodness of different models.

At the start, MB automatically searches and imports analy-
sis results and existing models to the corresponding weighted
layer and model collections, as shown in Fig. 3b and e. The
user can specify which layers to include in the weighted over-
lay model by shifting the layers into the model layer collec-
tion (Fig. 3c). The model-generating expression is adjustable
on demand. The default model-generating expression is a
simple additive overlay of selected weighted layers.

MB performs the overlay according to the data-generating
expression and uses the ROC curve to evaluate the model
based on the specified landslide inventory dataset (Fig. 3a).
Moreover, the evaluation procedure can be performed based
on iterative random subsampling or predefined sample
groups. The user can select these options in the advanced
settings of MB.

Using the training inventory, the user evaluates the model
fit. For the test dataset, the user evaluates the predictivity of
the model on new data. Using iterative subsampling, users
get an idea about the variance of the model based on differ-
ent samples, which allows them to evaluate sampling errors
(e.g., Torizin et al., 2018, 2021). The latter might be a helpful
feature for interpreting evaluation results if the test datasets
are comparably small. Exploring the variance of the train-
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ing dataset in conjunction with the test ROC curve helps to
understand whether the uncertainty of the model is the prop-
erty of insufficient data (sampling error) or model accuracy
(bias).

Moreover, the user can mix the model input layers
(Fig. 3c) and adjust the generating expression (Fig. 3d). This
flexibility allows the generation of hybrid models and model
ensembles. Hybrid models combine different classifiers in
one model, e.g., WoE for discrete data and LR for continu-
ous data; model ensembles consist of different homogeneous
models, e.g., LR and ANN. Here it is essential to note that
weighted layers or models generated by different classifiers
may exhibit different value ranges and need transformations
when used together in a hybrid model or model ensemble.
Through the model building expression, the user can imple-
ment those transformations instantly.

MB’s model collection (Fig. 3e) lists all generated models
and provides essential management to export models to Geo-
Tiff and visualize the corresponding ROC curves (Fig. 3f).
All generated models include metadata with information on
model input layers and applied model-generating expression,
making the results more reproducible. The Model Info func-
tion provides access to the model’s metadata.

3.6 Zoning

The zoning procedure applies to all models generated or eval-
uated with LSAT PM. It uses the model’s ROC curve to ag-
gregate the model output with many different landslide sus-
ceptibility index (LSI) values to a legible map with few sus-
ceptibility zones. The zoning procedure follows the general
concept proposed by Chung and Fabbri (2003). The basic
idea is to specify class boundaries using cumulative land-
slide area over ranked unique condition classes represent-
ing the cumulative study area. Chung and Fabbri (2003) pro-
posed using the success rate depicting cumulative landslide
area over the ranked cumulative area considered susceptible.
However, it also partly applies to ROC curves since the y axis
representing the true positive rate corresponds to the cumu-
lative landslide area. The x axis in the ROC curve is the false
positive rate depicting cumulative study area without land-
slide areas: in other words, areas that have been regarded as
susceptible but do not contain landslide areas. Thus, the cu-
mulative sum over the x axis is only an approximation of the
total study area, which is sufficiently accurate if the landslide
areas are neglectable compared to the total area (e.g., when
working with point data inventories in large regions). How-
ever, it also means that the accurate zone proportions cannot
be directly estimated from the ROC curve graph if landslide
areas are considerably large. Therefore, the total area values
in the reclass table represent only approximations for zone
area proportions.

Nevertheless, this discrepancy does not affect the imple-
mented classification because we restrict the input to the
proportion of cumulative landslide areas within a zone. The

Table 2. Overview of the datasets in the test data.

Data layer Data type Source

Geology raster, shapefile (.tif, .shp) Calkins et al. (1975)
Land cover raster, shapefile (.tif, .shp) Fuchs and Khalid (2015)
AW3D30 raster (.tif) JAXA (2017)
Confirmed faults shapefile (.shp) Calkins et al. (1975)
Landslides shapefile (.shp) Torizin et al. (2017)

specified cumulative landslide area value relates to the rank
position of the specific unique condition that exhibits a spe-
cific landslide susceptibility index (LSI). The LSI is finally
used to set the classification threshold for the class bound-
ary. The zone areas in the attribute table of the output zoning
raster are computed directly from the raster values and rep-
resent accurate values.

There are no well-established standards for the number of
zones or the definition of zone boundaries. In our case studies
(e.g., Torizin et al., 2017, 2018), we used the proportions of
50 % of all landslide pixels in the very high, further 30 %
for the high, 15 % for the moderate, 4 % for the low, and
about 1 % for the very low susceptibility zone (Fig. 4). These
thresholds apply when the user selects the default table.

Alternatively, the user can use the Reclassify tool to aggre-
gate the model to zones with customized thresholds directly
on the model’s LSI or probability values.

4 Application example

4.1 Test data

A dataset to test the functionalities of the software is avail-
able from https://doi.org/10.5281/zenodo.5109620 (Georisk
Assessment Northern Pakistan, 2021). The example or test
dataset is an excerpt of the data collected in the German–
Pakistani technical cooperation project Georisk Assessment
Northern Pakistan (GANP) carried out by the Federal Insti-
tute for Geosciences and Natural Resources and Geological
Survey of Pakistan (e.g., Torizin et al., 2017). The dataset
covers about 664 km2, including parts of the Kaghan and
Siran valleys in Khyber Pakhtunkhwa (KP), northern Pak-
istan (Fig. 5a). Table 2 and Fig. 5 provide an overview of the
test data.

A severe Kashmir earthquake struck the region on 8 Octo-
ber 2005, with a moment magnitude of 7.8, triggering thou-
sands of landslides. The collected landslide inventory re-
sults from the visual interpretation of optical satellite images
available through Google Earth, which, during the data ac-
quisition, consisted mainly of imagery from Quickbird (up
to 0.60 m ground resolution), IKONOS (∼ 4 m ground res-
olution), SPOT (SPOT5 about 5 m ground resolution), and
Landsat (15 m ground resolution) (Torizin et al., 2017). In to-
tal, the landslide inventory includes 3819 events for the test
area depicted as polygons. Landslide sizes range from about
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Figure 3. Model builder GUI with its integral parts: a – landslide inventory collection; b – weighted layer collection; c – model layer
collection; d – model-generating expression; e – model collection; f – ROC curves.

12 to about 88 444 m2, representing the depletion area of the
landslides (as far as it was possible to determine by visual
interpretation of imagery).

The digital elevation model is the ALOS global digital sur-
face model (AW3D30) (JAXA, 2017) with a ground resolu-
tion of approximately 30 m (Fig. 5a). The geological infor-
mation and the tectonic features (faults) were derived from
the geological map of Calkins et al. (1975) (Fig. 5d and Ta-
ble 3). The land cover results from the supervised classifi-
cation on Landsat imagery performed by Fuchs and Khalid
(2015) (Fig. 5c). The test dataset contains geology and land
cover in raster and vector data formats. Note that the vector
formats for parameters cannot be directly used for analysis
in LSAT PM yet. However, the vector datasets may help test
the Vector Tools (e.g., subsetting landslides based on specific
geology or land cover class).

4.2 Analysis workflow

In the following example, we use the test dataset to showcase
how to perform a simple LSA with WoE, LR, and ANN in

LSAT PM and compare the model outputs. We skip the anal-
ysis with AHP in this example due to its high subjectivity and
our lacking detailed knowledge about the investigation area.

Figure 6 shows the principal workflow of the performed
steps. The first seven steps cover the project creation, data
import, and first preprocessing of the imported data, such as
computation of the slope and Euclidean distance as well as
binning of continuous data in categories suitable for WoE.
In step 8, the contingency analysis measures associations
among discrete datasets based on chi-square metrics. The
utilization of strongly correlated datasets may lead to incor-
rect estimation of the factor’s contribution and inflation of
the estimated probability values (e.g., Agterberg and Cheng,
2002).

In step 9, we prepare the data to evaluate model uncertain-
ties. Therefore, we compared the size of the landslide train-
ing and test datasets. In step 2, the selected split option sub-
divided the imported landslide inventory into training, con-
taining 2674 events, and the test dataset with 1146 events.
The latter corresponds to approximately 43 % of the training
dataset. To estimate the sample-size-dependent model vari-
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Figure 4. Zoning tool with applied default classification.

Table 3. Lithostratigraphic units of the geology layer with lithological description (after Calkins et al., 1975).

Lithostratigraphic unit Lithological description

Abbottabad Fm Dolomite, quartzite, phyllite, marble, and phosphate
Alluvium Gravel, sand, silt, clay
Makarwal Group Ferruginous oolitic sandstone, siltstone, and clay; massive nodular limestone with intercalations

of marl and shales; shales and nodular limestone with coal seams
Mansehra Orthogneiss Massive biotite granite, tourmaline–garnet granite gneiss, and porphyroblastic granite gneiss
Murree Fm Limestone and intercalated shales/marlstone
Panjal Fm Carbonaceous slate, glassy quartzose, and agglomeratic sandstone
Salkhala Fm Marble, graphite schist, quartz schist, and quartz–feldspathic gneiss
Samana suk Fm Limestone and intercalated shales/marlstone
Tanawal Fm Quartzose schist, quartzite, and schistose conglomerate

ance, we generated 100 random subsamples from the training
dataset of the test dataset’s size with the Random sampling
tool. To make the results reproducible, we set the random
seed to 42. The training and test inventory are random sub-
samples from the same dataset. Therefore, they represent the
same spatial distribution but with a different mean sampling

error (MSE) related to the sample size. Torizin et al. (2021)
showed that evaluation of the model performance based on a
test inventory of a smaller size than a training inventory must
consider this for correct interpretation of the results. Evalu-
ation with the 100 subsamples of the same size as the test
inventory but derived from the training inventory dataset has
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Figure 5. Example dataset. (a) AW3D30 with landslide inventory; (b) land cover; (c) geology with prominent (confirmed) faults.

two implications. First, all training events are known to the
model and follow the same spatial distribution as the com-
plete training inventory. Variations in model performance on
these datasets define the MSE, which is expected to be in
a similar range by evaluating the model with a test dataset
of the corresponding size. Thus, the shape of the ROC curve
and AUC value should fall within the MSE range if the model
generalizes well without significant overfit.

Steps 10 to 14 cover the analysis part. We calculated the
WoE, LR, and ANN models in different ways to contrast the
approaches. The WoE can utilize only discrete data; there-
fore, we used the classified and initially discrete data to gen-

erate the weighted layers. The LR and ANN support usage
of both continuous and discrete data. Therefore, we used the
capability of both approaches to utilize discrete and continu-
ous data and generated two models for LR and ANN, respec-
tively. The first, marked with the _c suffix, utilizes both data
types, and the second, marked by the _d suffix, utilizes only
discrete datasets as used in WoE.

Step 15 is the generation of the WoE model in MB by
adding single weighted layers. To better compare the results
from WoE with results from ANN and LR, we adjusted the
model-generating expression to transform the log likelihoods
of the WoE model into probabilities by applying the logistic
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Figure 6. Workflow applied to the test dataset.

function (see also Appendix A for details). In step 16, models
uncertainties related to sampling error were evaluated in MB
using 100 predefined subsamples generated in step 9. With
this, the ROC curve is iteratively computed for every sub-
sample. In the consecutive step, the models were evaluated
with the test dataset not involved in the training process be-
fore, thus representing new data. Finally, we used the ROC
curve from the test dataset to generate legible susceptibility
maps consisting of five susceptibility zones (default table, see
Sect. 3.6) using the Zoning tool.

4.3 Results and discussion

While the first steps of data import and preparation, such as
reclassing usual GIS functionalities, are trivial and partially

described in Sect. 3, the contingency analysis in step 8 is
worth examining. The results of the contingency analysis are
saved in NumPy archive format (.npz) in the folder statistics.

The analysis output consists of different tables (Fig. 7).
The first result table shows the overview for all involved pa-
rameters based on Cramer’s V and Pearson’s C. Both met-
rics are estimates for the general association of the multi-
class datasets. However, they do not allow determining in
detail whether, e.g., a moderate association comes from sev-
eral moderately associated classes or as an average estimate
from one strongly associated class pair among other non-
correlated discrete classes. Therefore, an additional φ metric
based on the 2× 2 contingency table is callable on double-
click on the specific matrix cell, providing more detail for
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Figure 7. Example for the contingency result output: the first window represents an allover contingency matrix between multiclass parameters
based on Cramer’s V. On double-click, the detailed contingency between Geology and slope5deg is callable.

Figure 8. Graphical result output of WoE analysis for the simple cross-validation mode. Note that bar plots change to box or violin plots for
other analysis modes such as on-the-fly subsampling.
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Figure 9. Evaluation and comparison of the models in MB.

the specific parameter pair. It highlights the pairwise associ-
ation among single variable class pairs. The tables are col-
ored to emphasize the strength of association: green for no
to marginal association, yellow for the moderate association,
and red for the strong association. In Fig. 7, it is clear that
while most classes of geology and classified slope layer are
not correlated, a moderate association is present for alluvial
deposits forming the valley fillings and slope between 0 and
10◦.

In the WoE tool, the user can explore the associations
among the single factor and the occurrence of the events.
The results viewer contains all relevant information on the
modeling process. The result table represents discrete class
area distribution, corresponding landslide pixel frequencies
in those classes, computed weights, variance, standard devia-
tion, posterior probability values, and expected observations.
The default output raster with suffix _woe derives from the
table column weights. The included graphical representation
of the results provides a quick overview of class and landslide

pixel distributions, weights, and corresponding ROC curves
(Fig. 8). WoE results can be exported as an analysis report in
MS Word format that concisely represents the relevant fea-
tures.

Outputs from LR and ANN analyses are compact. Among
the involved parameters and model settings, LR results high-
light the estimated coefficients and some informational met-
rics helping to find a trade-off between model complexity
(number of explanatory variables) and explained variance
such as the Akaike information criterion (AIC) and Bayesian
information criterion (BIC), as well as the AUC of the corre-
sponding ROC curve. The experimental ANN provides meta-
data on model inputs and settings, model score, and AUC
value. For both graphical result output and corresponding
analysis, reports are not implemented yet (see also Sect. 5).

The evaluation of model uncertainties in step 16 and model
evaluation with test data in step 17 suggest that all three
approaches deliver comparably good models. Although MB
allows appropriate management for comparing the models
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Figure 10. ROC curves for the different models. The greyish band marks the model uncertainty based on the MSE. The insert in (a)–(e) shows
the corresponding distribution of AUC values for the utilized samples.

(Fig. 9), we used customized scripts for Figs. 10, 11, and 13
(see Sect. 8) to showcase additional post-processing possibil-
ities based on LSAT PM outputs.

To aggregate the results to a compact and legible figure
(Fig. 10) providing some additional features not included in
MB yet, we utilize the outputs of the MB. Figure 10 shows
the performance of the models based on the predefined sub-
samples.

The greyish error band around the mean ROC curve indi-
cates the MSE. As we can see from the violin plot inserts
in Fig. 10a–e, the variance of the corresponding AUC val-
ues shows the normal distribution. At first glance, ANN_d
and ANN_c models have the best training performance with
AUCs of 0.84 and 0.83, followed by LR_c with an AUC of
0.81. WoE and LR_d models show the worst training perfor-
mance (AUC of 0.80). For the model evaluation on test data,
we see that for the WoE, LR_d, and LR_c, the test ROC curve
is within the expected MSE. For ANN_c and ANN_d, how-
ever, the test performance is significantly lower. In this case,
we can interpret this as an overfit of the models. Using dis-

crete variables in ANN_d, we introduced additional degrees
of freedom compared to the ANN_c model; therefore, over-
fitting is more prominent in the ANN_d model. The reason
is the flexibility of the ANNs with multiple neurons to also
fit nonlinear data relations, which might be an advantage but
at the same time a significant uncertainty source. Thus, if we
had aimed to optimize the susceptibility map with ANN, we
would need to review the network design or the number of
iterations in the network training process to prevent overfit-
ting. At this point, it is worth noting that imbalanced sam-
ples can also cause comparable effects. When using polygon
landslide data, the imbalance may develop from rare large
landslides appearing only in the training or the test inven-
tory. Although this affects all model types, flexible ANNs
might suffer more than, e.g., WoE. The solution would be
to check the distributions of the training and test landslide
datasets and, if imbalances are present, to generate balanced
samples by, e.g., randomly drawing pixels from landslide ar-
eas instead of using them as a whole.
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Figure 11. Pairwise comparison of the predicted landslide susceptibility patterns.

Because the interpretation of ANN results is not intuitive,
we would generally recommend a parallel application of a
multivariate linear model and ANN to see how much nonlin-
earity is introduced by the ANN and how it affects the model
generalization capabilities.

Further, looking at the test ROC curves of all models
(Fig. 10f), we see that the predictivity of the models is com-
parable with minor advantages for models utilizing continu-
ous datasets. Thus, given the simple study design and avail-
able data, the models are equivalent alternatives from the
statistical point of view. However, although the ROC curve
provides a quantitative measure for classifier performance,
as any statistical measure, it is not suitable for evaluating
the model’s reliability (e.g., Rossi et al., 2010). As we can
demonstrate here, models with equivalent AUCs can exhibit
substantially different susceptibility patterns. How meaning-
ful those patterns are is beyond the statistical analysis ca-
pabilities and has to be verified based on other sources of
information.

We compare the susceptibility models in a pair plot to
evaluate the differences in obtained susceptibility patterns.
The pair plot in Fig. 11 visualizes the pairwise pixel-by-pixel
comparison of the model values. The matrix diagonal shows
the distribution of the model values (marginal probabilities).
In contrast, the scatter plots in the lower matrix corner of
Fig. 11 show the covariance of the value pairs overlain by lin-

ear regression to emphasize the trend. The pairwise compar-
ison reveals general linear relation for all models with better
comparability for the multivariate models ANN and LR but
substantial differences in detail.

We wanted to see how these differences affect the fi-
nal zonation and compared the models using simple class
frequency statistics after the zonation procedure. Figure 12
shows the landslide susceptibility maps after zonation with
default values introduced in Sect. 3. In Fig. 13, the classified
models are compared regarding their pixel counts within the
susceptibility classes. While the highest susceptibility class
containing 50 % of all landslide pixels shows minor differ-
ences, they become more significant in the lower susceptibil-
ity zones.

5 Conclusions and outlook

In this paper, we introduced LSAT PM that provides a
framework for applying and evaluating knowledge- and data-
driven spatial binary classification methods, and we demon-
strated in part its capabilities based on a real-world test
dataset. The given presentation is not exhaustive but provides
a general idea of using the software.

Summarizing the capabilities of LSAT PM, we can em-
phasize that the project-based modular framework allows ef-
ficient data management at all steps of the LSA. The im-
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Figure 12. Landslide susceptibility zones based on different models. (a) WoE. (b) LR_d. (c) LR_c. (d) ANN_d. (e) ANN_c. Very high
contains about 50 %, high about 30 %, moderate about 15 %, low about 4 %, and very low about 1 % of all landslide pixels.

plemented logs on performed processing steps and metadata
collection increase transparency and reproducibility and al-
low easy sharing of the modeling results, e.g., in working
groups. At the same time, we tried to keep as many degrees
of freedom as possible in the modeling procedures, provid-
ing users with not a fixed pipe but a toolkit that allows for
flexible study designs. Thus, the preprocessing, analysis, and
post-processing steps are performable according to the user’s
choice.

The MB module of LSAT PM implements functionali-
ties allowing for practical evaluation of model uncertain-
ties related to common sampling errors. Further, it provides
a convenient way to compare models generated by the im-

plemented algorithms and foreign models. The implemented
raster calculator supports the generation of hybrid models
and model ensembles.

LSAT PM targets a broad user profile. It provides access to
LSA state-of-the-art methods for users beyond the academic
community. Users with limited programming and scripting
skills can perform analyses and explore the results via con-
venient GUI or export the results to other applications al-
lowing further post-processing. Skilled users can also benefit
from implemented standards and quickly enhance the analy-
sis outcomes stored in NumPy archive format by own scripts,
as we have shown in Sect. 4. This versatility makes LSAT
PM well suited for educational purposes at all levels.
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Figure 13. Susceptibility zone distributions for the susceptibility
models. The values in columns show the number of pixels within
the zones.

Of course, there is always room for improvement. There-
fore, the LSAT PM is subject to continuous further devel-
opment. We intend to implement additional and improve ex-
isting methods, e.g., improve the AHP and machine learn-
ing workflows. Especially for the latter, we intend to imple-
ment additional features to visualize the results and increase
the interpretability of the model outputs. We intend to im-
plement GPU support to perform better on massive datasets
in machine learning methods. Also, some management fea-
tures, such as a plugin builder tool that would support the
easy implementation of customized plugins into the LSAT
PM framework, are under preparation. Software documen-
tation continuously updates with the ongoing development
and will be extended by short video tutorials introducing the
work with LSAT PM.

With the open-source approach, we would like to encour-
age interested scientists to join the development by intro-
ducing and discussing new ideas and sharing experience in
spatial modeling of landslides and scientific programming in
general.

Appendix A: Supporting information for weights of
evidence

WoE uses Bayes’ rule to estimate the conditional probability
of an event based on prior knowledge and a set of pieces of
evidence. Prior knowledge in terms of prior probability usu-
ally represents the average expectation of an event given a
study area. For the raster-based analysis, the prior probabil-
ity is calculated as the number of event pixels divided by the
total pixels in the study area. Thus, the prior probability fol-
lows a uniform distribution over the entire study area (e.g.,
Torizin, 2016). We update the prior probability by weighted

evidence factors, which we assume to be conditionally inde-
pendent. For the spatial analysis, the factors characterize how
much the probability value in a specific location is higher
or lower than the prior probability. The updated probabil-
ity is called the posterior probability (e.g., Teerarungsigul et
al., 2015). The performed knowledge update cannot find new
events but rather redistributes the probability density patterns
conserving the total events (e.g., Agterberg and Cheng, 2002;
Torizin, 2016). Thus, given the conditional independence
of evidential patterns, we should obtain (approximately) the
number of initial event pixels when summing up all pixels of
the posterior probability raster. In practice, complete condi-
tional independence of evidential patterns is rare. Therefore,
using many factors may cause inflation of posterior probabil-
ity by occasional double counting of the effects (Agterberg
and Cheng, 2002). The latter sets a general requirement to
perform a contingency analysis (e.g., based on χ2 metrics)
to estimate possible associations between evidence patterns.

In WoE, the weights for specific evidence patterns de-
rive from the Bayes’ rule formulation in logarithmic odds
notation (e.g., Bonham-Carter et al., 1989; Bonham-Carter,
1994), considering the evidence as a binary pattern for the
presence or absence of a specific feature. For multiclass
datasets, the computation is done as if the dataset consists
of several binary dummy variables. However, the straight-
forward analysis allows the weight calculation for multiclass
datasets in one table without generating binary dummy vari-
ables explicitly. The weight calculation for a particular raster
cell in a binary pattern distinguishes two cases. First, if the
particular feature class C is present, then the logit is given by

w+ = loge

(
P {C|E}

P
{
C|E

}) . (A1)

Otherwise, the logit is given by

w− = loge

(
P
{
C|E

}
P
{
C|E

}) , (A2)

where P {C|E} is the conditional probability of C (feature)
given E (event), P {C|E} is the conditional probability of C
given E (no event), P {C|E} is the conditional probability
of C (no feature) given E, and P {C|E} is the conditional
probability of C given E.

The weight notations w+ and w− do not represent the
mathematical sense of the values but the feature class pres-
ence (positive) and absence (negative) in the given raster cell.

With this formulation, positive logit values suggest a pos-
itive effect of the given variable, negative logits indicate a
negative effect, and logits with a zero value indicate no ef-
fect. Thus, the latter does not modify the prior probability.

The posterior logit z is obtainable from weighted layerswi
(e.g., Barbieri and Cambuli, 2009; Torizin, 2016) as

z= PriorLogit+
n∑
i=1

wi, (A3)
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where n is the number of weighted layers (evidence), and wi
is the ith weighted layer. The PriorLogit is

PriorLogit= loge

 total landslide pixel
total area pixel

1− total landslide pixel
total area pixel

 . (A4)

To convert the logit formulation to posterior probability, we
use the logistic function:

ppost =
1

1+ e−z
. (A5)

The sum of the weighted layers from Eq. (A3) is the default
output in the LSAT PM model builder for WoE models. It is
already sufficient to obtain the relative susceptibility pattern
needed for evaluation. To obtain a model with probability
values, the user should first compute the prior logit and mod-
ify the model-generating expression in the model builder ac-
cording to Eq. (A5). Necessary information on the total num-
ber of landslide pixels and the total number of pixels in the
study area is obtainable from the result table of any weighted
layer. We recommend exporting the result table to Excel and
conducting the simple side calculation as shown in Eq. (A4).

Code availability. The current version of LSAT PM is available
from the project website at https://github.com/BGR-EGHA/LSAT
(last access: 31 March 2022) under the GNU GPL v3.0
license. The exact version of LSAT PM used to pro-
duce the results used in this paper is archived on Zenodo:
https://doi.org/10.5281/zenodo.5909726 (Torizin and Schüßler,
2022a). The LSAT PM documentation is available separately
from https://github.com/BGR-EGHA/LSAT-Documentation
(last access: 31 March 2022) under the CC BY-SA 4.0 li-
cense. The documentation for the exact version is archived
on Zenodo: https://doi.org/10.5281/zenodo.5909744 (Tor-
izin and Schüßler, 2022b). The scripts used for post-
processing of the results in Sect. 4.3 are available from
https://doi.org/10.5281/zenodo.5913626 (Torizin and Schüßler,
2022c).

Data availability. The corresponding test dataset is archived on
Zenodo at https://doi.org/10.5281/zenodo.5109620 (Georisk As-
sessment Northern Pakistan, 2021) under the CC BY-SA 4.0 li-
cense.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-2791-2022-supplement.

Author contributions. JT developed the theoretical concept and de-
signed and coded LSAT PM. NiS designed and coded parts of LSAT
PM and migrated the code from Python 2.7 to Python 3. MF con-
tributed with theoretical concepts and testing of the application
through all stages of the development.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We developed parts of the LSAT PM in the
framework of a scientific–technical cooperation project between the
Federal Institute for Geosciences and Natural Resources (BGR) and
the China Geological Survey (CGS). This project was co-funded
by the Federal Ministry for Economic Affairs and Climate Action
(BMWK) and the Ministry of Natural Resources of the People’s Re-
public of China. We also sincerely thank all colleagues who tested
the prototypes of LSAT PM in its different development stages,
helping us improve the software.

Financial support. This research has been supported by the Federal
Ministry for Economic Affairs and Climate Action (BMWK).

Review statement. This paper was edited by Xiaomeng Huang and
reviewed by two anonymous referees.

References

Agterberg, F. P. and Cheng, Q.: Conditional independence Test for
Weight-of-Evidence Modeling, Nat. Resour. Res., 11, 249–255,
https://doi.org/10.1023/A:1021193827501, 2002.

Aleotti, P. and Chowdhury, R.: Landslide hazard assessment: sum-
mary review and new perspectives, Bull. Eng. Geol. Envir., 58,
21–44, https://doi.org/10.1007/s100640050066, 1999.

Alimohammadlou, Y., Najafi, A., and Gokceoglu, C.: Es-
timation of rainfall-induced landslides using ANN
and fuzzy clustering methods: A case study in Saeen
Slope, Azerbaijan province, Iran. Catena, 120, 149–162,
https://doi.org/10.1016/j.catena.2014.04.009, 2014.

Balzer, D., Dommaschk, P., Ehret, D., Fuchs, M., Glaser, S.,
Henscheid, S., Kuhn, D., Strauß, R., Torizin, J., and Wieden-
mann, J.: Massenbewegungen in Deutschland (MBiD) –
Beiträge zur Modellierung der Hangrutschungsempfindlichkeit.
Ein Kooperationsprojekt zwischen den Staatlichen Geol-
ogischen Diensten der Bundesländer Baden-Württemberg,
Bayern, Nordrhein-Westfalen, Sachsen und der Bunde-
sanstalt für Geowissenschaften und Rohstoffe im Auftrag
des Direktorenkreises der Staatlichen Geologischen Dien-
ste in Deutschland, Abschlussbericht, Augsburg, Freiberg,
Freiburg, Hannover und Krefeld, https://www.bgr.bund.de/
DE/Themen/Erdbeben-Gefaehrdungsanalysen/Downloads/
igga_mbid_abschlussbericht.html?nn=1542304 (last access:
31 March 2022), 2020.

Barbieri, G. and Cambuli, P.: The weight of evidence statistical
method in landslide susceptibility mapping 424 of the Rio Pardu

https://doi.org/10.5194/gmd-15-2791-2022 Geosci. Model Dev., 15, 2791–2812, 2022

https://github.com/BGR-EGHA/LSAT
https://doi.org/10.5281/zenodo.5909726
https://github.com/BGR-EGHA/LSAT-Documentation
https://doi.org/10.5281/zenodo.5909744
https://doi.org/10.5281/zenodo.5913626
https://doi.org/10.5281/zenodo.5109620
https://doi.org/10.5194/gmd-15-2791-2022-supplement
https://doi.org/10.1023/A:1021193827501
https://doi.org/10.1007/s100640050066
https://doi.org/10.1016/j.catena.2014.04.009
https://www.bgr.bund.de/DE/Themen/Erdbeben-Gefaehrdungsanalysen/Downloads/igga_mbid_abschlussbericht.html?nn=1542304
https://www.bgr.bund.de/DE/Themen/Erdbeben-Gefaehrdungsanalysen/Downloads/igga_mbid_abschlussbericht.html?nn=1542304
https://www.bgr.bund.de/DE/Themen/Erdbeben-Gefaehrdungsanalysen/Downloads/igga_mbid_abschlussbericht.html?nn=1542304


2810 J. Torizin et al.: Landslide Susceptibility Assessment Tools v1.0.0b – Project Manager Suite

Valley (Sardinia, Italy), 18th World IMACS/MODSIM Congress,
Cairns, Australia, 2009.

Bonham-Carter, G. F.: Geographic information systems for geo-
scientists: Modelling with GIS, Pergamon Press, Ottawa,
https://doi.org/10.1016/C2013-0-03864-9, 1994.

Bonham-Carter, G. F., Agterberg, F. P., and Wright, D. F.: Weights
of evidence modelling: a new approach to mapping mineral po-
tential, Stat. Appl. Earth. Sci. Geol. Survey Can. Paper, 89–9,
171–183, 1989.

Bouziat, A., Schmitz, J., Deschamps, R., and Labat, K.: Dig-
ital transformation and geoscience education: New tools to
learn, new skills to grow, European Geologist, 50, 15–19,
https://doi.org/10.5281/zenodo.4311379, 2020

Brabb, E. E.: Innovative approaches to landslide hazard and risk
mapping, Proceedings of the 4th International Symposium on
Landslides, Toronto, 1, 307–324, 1985.

Bragagnolo, L., da Silva, R. V., and Grzybowski, J. M.
V.: Artificial neural network ensembles applied to the
mapping of landslide susceptibility, Catena, 184, 104240,
https://doi.org/10.1016/j.catena.2019.104240, 2020a.

Bragagnolo, L., da Silva, R. V., and Grzybowski, J. M.
V.: Landslide susceptibility mapping with r.landslide: A
free open-source GIS-integrated tool based on Artificial
Neural Networks, Environ. Model. Softw., 123, 104565,
https://doi.org/10.1016/j.envsoft.2019.104565, 2020b.

Brenning, A.: Statistical geocomputing combining R and SAGA:
The example of landslide susceptibility analysis with general-
ized additive models, in: SAGA – Seconds Out (= Hamburger
Beitraege zur Physischen Geographie und Landschaftsoekologie,
edited by: Boehner, J., Blaschke, T., and Montanarella, L., vol.
19), 23–32, 2008.

Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G.: A systematic
review of landslide probability mapping using logistic regres-
sion, Landslides, 12, 419–436, https://doi.org/10.1007/s10346-
014-0550-5, 2015.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A.,
Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler,
J., Layton, R., VanderPlas, J., Joly, A., Holt, B., and Varoquaux,
G.: API design for machine learning software: experiences from
the scikit-learn project, ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, 23 to 27 September, Prague,
108–122, https://doi.org/10.48550/arXiv.1309.0238, 2013.

Calkins, J. A., Offield, T. W., Abdullah, S. K. M., and Ali, T.:
Geology of the Southern Himalaya in Hazara, Pakistan, and
Adjacent Areas. Geological Survey Professional Paper 716-C,
United States Government Printing Office, Washington, U.S.
Govt. Print. Off., https://doi.org/10.3133/pp716C, 1975.

Canny, S.: python-docx – A Python library for creating and up-
dating Microsoft Word (.docx) files, https://pypi.org/project/
python-docx, last access: 4 May 2018.

Chung, C.-J. and Fabbri, A. G.: Validation of spatial prediction
models for landslide hazard mapping, Nat. Hazards, 30, 451–
472, 2003.

Chung, C.-J. and Fabbri, A. G.: Predicting landslides
for risk analysis – Spatial models tested by a cross-
validation technique, Geomorphology, 94, 438–452,
https://doi.org/10.1016/j.geomorph.2006.12.036, 2008.

Crozier, M. J.: Deciphering the effect of climate change on
landslide activity: A review, Geomorphology, 124, 260–268,
https://doi.org/10.1016/j.geomorph.2010.04.009, 2010.

Egan, K.: Myanmar_Landslide_Models, GitHub [code], https://
github.com/katharineegan/Myanmar_Landslide_Models, last ac-
cess: 17 December 2021.

Ermini, L., Catani, F., and Casagli, N.: Artificial Neural Networks
applied to landslide susceptibility assessment, Geomorphology,
66, 327–343, https://doi.org/10.1016/j.geomorph.2004.09.025,
2005.

Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett.,
27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.

Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence
from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181,
https://doi.org/10.5194/nhess-18-2161-2018, 2018.

Fuchs, M. and Khalid, N.: Land Cover Map for the Districts of
Mansehra & Torghar, Province Khyber Pakhtunkhwa, Islamic
Republic of Pakistan, Final Report, 44 p., Islamabad/Han-
nover, https://zsn.bgr.de/mapapps4/resources/apps/zsn/index.
html?lang=de&center=8738580.027271974%2C2528672.
44753847%2C3857&lod=4&itemid=LAFtPD4i3WpmghNb&
search=105338 (last access: 31 March 2022), 2015.

Gazoni, E. and Clark, C.: openpyxl – A Python library to read/write
Excel 2010 xlsx/xlsm files, https://openpyxl.readthedocs.io, last
access: 11 June 2018.

GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstrac-
tion software Library, Open Source Geospatial Foundation, https:
//gdal.org (last access: 30 March 2022), 2021.

Georisk Assessment Northern Pakistan: BGR-EGHA/LSAT-
TestData: LSAT- PMS – TestData (1.0.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.5109620, 2021.

GRASS Development Team: Geographic Resources Analysis
Support System (GRASS) Software, Version 7.2.1 Open
Source Geospatial Foundation, http://grass.osgeo.org (last ac-
cess: 31 March 2022), 2021.

Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Land-
slide hazard evaluation: a review of current techniques and their
application in a multi-scale study, Central Italy, Geomorphology,
31, 181–216, https://doi.org/10.1016/s0169-555x(99)00078-1,
1999.

Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M.,
and Ardizzone, F.: Probabilistic landslide hazard assess-
ment at the basin scale, Geomorphology, 72, 272–299,
https://doi.org/10.1016/j.geomorph.2005.06.002, 2005.

Hall-Wallace, M. K.: Integrating Computing Across a Geosciences
Curriculum Through an Applications Course, J. Geosci. Educ.,
47, 119–123, https://doi.org/10.5408/1089-9995-47.2.119, 1999.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Hal-
dane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E.: Array programming with
NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-
020-2649-2, 2020.

Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., and Navarro-
Colorado, B.: A Systematic Review of Deep Learning Ap-
proaches to Educational Data Mining, Complexity, 2019,
1306039, https://doi.org/10.1155/2019/1306039, 2019.

Geosci. Model Dev., 15, 2791–2812, 2022 https://doi.org/10.5194/gmd-15-2791-2022

https://doi.org/10.1016/C2013-0-03864-9
https://doi.org/10.5281/zenodo.4311379
https://doi.org/10.1016/j.catena.2019.104240
https://doi.org/10.1016/j.envsoft.2019.104565
https://doi.org/10.1007/s10346-014-0550-5
https://doi.org/10.1007/s10346-014-0550-5
https://doi.org/10.48550/arXiv.1309.0238
https://doi.org/10.3133/pp716C
https://pypi.org/project/python-docx
https://pypi.org/project/python-docx
https://doi.org/10.1016/j.geomorph.2006.12.036
https://doi.org/10.1016/j.geomorph.2010.04.009
https://github.com/katharineegan/Myanmar_Landslide_Models
https://github.com/katharineegan/Myanmar_Landslide_Models
https://doi.org/10.1016/j.geomorph.2004.09.025
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.5194/nhess-18-2161-2018
https://zsn.bgr.de/mapapps4/resources/apps/zsn/index.html?lang=de&center=8738580.027271974%2C2528672.44753847%2C3857&lod=4&itemid=LAFtPD4i3WpmghNb&search=105338
https://zsn.bgr.de/mapapps4/resources/apps/zsn/index.html?lang=de&center=8738580.027271974%2C2528672.44753847%2C3857&lod=4&itemid=LAFtPD4i3WpmghNb&search=105338
https://zsn.bgr.de/mapapps4/resources/apps/zsn/index.html?lang=de&center=8738580.027271974%2C2528672.44753847%2C3857&lod=4&itemid=LAFtPD4i3WpmghNb&search=105338
https://zsn.bgr.de/mapapps4/resources/apps/zsn/index.html?lang=de&center=8738580.027271974%2C2528672.44753847%2C3857&lod=4&itemid=LAFtPD4i3WpmghNb&search=105338
https://openpyxl.readthedocs.io
https://gdal.org
https://gdal.org
https://doi.org/10.5281/zenodo.5109620
http://grass.osgeo.org
https://doi.org/10.1016/s0169-555x(99)00078-1
https://doi.org/10.1016/j.geomorph.2005.06.002
https://doi.org/10.5408/1089-9995-47.2.119
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1155/2019/1306039


J. Torizin et al.: Landslide Susceptibility Assessment Tools v1.0.0b – Project Manager Suite 2811

Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.

JAXA: ALOS Global DSM AW3D30 Dataset Product Format De-
scription for V 1.1, http://www.eorc.jaxa.jp/ALOS/en/aw3d30/
aw3d30v11_format_e.pdf (last access: 31 March 2022), 2017.

Jebur, M. N., Pradhan, B., Shafri, H. Z. M., Yusoff, Z. M., and
Tehrany, M. S.: An integrated user-friendly ArcMAP tool for bi-
variate statistical modelling in geoscience applications, Geosci.
Model Dev., 8, 881–891, https://doi.org/10.5194/gmd-8-881-
2015, 2015.

Kamp, U., Growley, B. J., Khattak, G. A., and Owen, L.
A.: GIS-based landslide susceptibility mapping for the 2005
Kashmir earthquake region, Geomorphology, 101, 631–642,
https://doi.org/10.1016/j.geomorph.2008.03.003, 2008.

Kamp, U., Owen, L. A., Growley, B. J., and Khattak, G. A.:
Back analysis of landslide susceptibility zonation mapping for
the 2005 Kashmir earthquake: an assessment of the reliabil-
ity of susceptibility zoning maps, Nat. Hazards, 54, 1–25,
https://doi.org/10.1007/s11069-009-9451-7, 2010.

Keefer, D. K.: Investigating Landslides Caused by Earth-
quakes – A Historical Review, Surv. Geophys., 23, 473–510,
https://doi.org/10.1023/A:1021274710840, 2002.

Lee, S.: Application of logistic regression model and its val-
idation for landslide susceptibility mapping using GIS and
remote sensing data, Int. J. Remote Sens., 26, 1477–1491,
https://doi.org/10.1080/01431160412331331012, 2005.

Lee, S. and Evangelista, D. G.: Earthquake-induced
landslide-susceptibility mapping using an artificial neu-
ral network, Nat. Hazards Earth Syst. Sci., 6, 687–695,
https://doi.org/10.5194/nhess-6-687-2006, 2006.

Lombardo, L. and Mai, M. P.: Presenting logistic regression-
based landslide susceptibility results, Eng. Geol., 244, 14–24,
https://doi.org/10.1016/j.enggeo.2018.07.019, 2018.

Makkawi, M. H., Hariri, M. M., and Ghaleb, A. R.: Computer Uti-
lization in Teaching Earth Sciences: Experience of King Fahd
University of Petroleum and Minerals, Int. Educ. J., 4, 89–97,
2003.

Mathew, J., Jha, V. K., and Rawat, G. S.: Weights of evidence mod-
elling for landslide hazard zonation mapping of Bhagirathi Val-
ley, Uttarakhand, Current Sci., 92, 628–638, 2007.

Merghadi, A.: An R Project for landslide susceptibil-
ity mapping in Mila basin (v1.1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.1000431, 2018.

Merghadi, A.: An R Project for landslide susceptibility map-
ping in Sihjhong basin, Taiwan (1.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3238689, 2019.

Miller, G. A.: The Magical Number Seven, Plus or Mi-
nus Two: Some Limits on Our Capacity for Process-
ing Information, The Psychological Review, 63, 81–97,
https://doi.org/10.1037/h0043158, 1956.

Moghaddam, M. H. R., Khayyam, M., Ahmadi, M., and Farajzadeh,
M.: Mapping susceptibility Landslide by using Weight-of Evi-
dence Model: A case study in Merek Valley, Iran, J. Appl. Sci., 7,
3342–3355, https://doi.org/10.3923/jas.2007.3342.3355, 2007.

Neuhäuser, B., Damm, B., and Terhorst, B.: GIS-based as-
sessment of landslide susceptibility on the base of the
Weights-of-Evidence model, Landslides, 9, 511–528,
https://doi.org/10.1007/s10346-011-0305-5, 2012.

Osna, T., Sezer, E. A., and Akgun, A.: GeoFIS: an integrated tool
for the assessment of landslide susceptibility, Comput. Geosci.,
66, 20–30, https://doi.org/10.1016/j.cageo.2013.12.016, 2014.

Panchal, S. and Shrivastava, A. K.: Application of analytic hier-
archy process in landslide susceptibility mapping at regional
scale in GIS environment, J. Statist. Manag. Syst., 23, 199–206,
https://doi.org/10.1080/09720510.2020.1724620, 2020.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E.: Scikit-Learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Petley, D.: Global patterns of loss of life from landslides, Geology,
40, 927–930, https://doi.org/10.1130/G33217.1, 2012.

Petschko, H., Brenning, A., Bell, R., Goetz, J., and Glade, T.:
Assessing the quality of landslide susceptibility maps – case
study Lower Austria, Nat. Hazards Earth Syst. Sci., 14, 95–118,
https://doi.org/10.5194/nhess-14-95-2014, 2014.

Polat, A.: An innovative, fast method for landslide suscep-
tibility mapping using GIS-based LSAT toolbox, Environ.
Earth Sci., 80, 217, https://doi.org/10.1007/s12665-021-09511-
y, 2021.

Polemio, M. and Petrucci, O.: Rainfall as a Landslide Triggering
Factor: an overview of recent international research, in: Land-
slides in Research, Theory and Practice: Proceedings of the 8th
International Symposium on Landslides, edited by: Bromhead,
E., Dixon, N., Ibsen, M.-L., Thomas Telford, London, UK, 1219–
1226, http://hdl.handle.net/2122/7936 (last access: 5 April 2022),
2000.

Pradhan, B. and Lee, S.: Landslide susceptibility assessment, and
factor effect analysis: back propagation artificial neural networks
and their comparison with frequency ratio and bivariate logis-
tic regression modelling, Environ. Model. Softw., 25, 747–759,
https://doi.org/10.1016/j.envsoft.2009.10.016, 2010.

QGIS Development Team: QGIS Geographic Information Sys-
tem, QGIS Association, http://www.qgis.org (last access:
31 March 2022), 2022.

Raffa, M.: Shallow landslide susceptibility analysis using Random
Forest method in Val D”Aosta D’Aosta Valley, GitHub [code],
https://github.com/MattiaRaffa/RF-VDA-landslide-map, last ac-
cess: 17. December 2021.

R Core Team: R: A language and environment for statistical com-
puting, R Foundation for Statistical Computing, Vienna, Aus-
tria, ISBN 3-900051-07-0, http://www.R-project.org/ (last ac-
cess: 31 March 2022), 2013.

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M.,
and Guzzetti, F.: A review of statistically-based land-
slide susceptibility models, Earth Sci. Rev., 180, 60–91,
https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.

Rossi, M. and Reichenbach, P.: LAND-SE: a software for statisti-
cally based landslide susceptibility zonation, version 1.0, Geosci.
Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-
2016, 2016.

Rossi, P. H., Guzzetti, F., Reichenbach, P., Mondini, A. C.,
and Perruccacci, S.: Optimal landslide susceptibility zonation
based on multiple forecasts, Geomorphology, 114, 129–142,
https://doi.org/10.1016/j.geomorph.2009.06.020, 2010.

Saaty, T. L.: A scaling method for priorities in hierarchical struc-
tures, J. Math. Psychol., 15, 234–281, 1977.

https://doi.org/10.5194/gmd-15-2791-2022 Geosci. Model Dev., 15, 2791–2812, 2022

https://doi.org/10.1109/MCSE.2007.55
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/aw3d30v11_format_e.pdf
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/aw3d30v11_format_e.pdf
https://doi.org/10.5194/gmd-8-881-2015
https://doi.org/10.5194/gmd-8-881-2015
https://doi.org/10.1016/j.geomorph.2008.03.003
https://doi.org/10.1007/s11069-009-9451-7
https://doi.org/10.1023/A:1021274710840
https://doi.org/10.1080/01431160412331331012
https://doi.org/10.5194/nhess-6-687-2006
https://doi.org/10.1016/j.enggeo.2018.07.019
https://doi.org/10.5281/zenodo.1000431
https://doi.org/10.5281/zenodo.3238689
https://doi.org/10.1037/h0043158
https://doi.org/10.3923/jas.2007.3342.3355
https://doi.org/10.1007/s10346-011-0305-5
https://doi.org/10.1016/j.cageo.2013.12.016
https://doi.org/10.1080/09720510.2020.1724620
https://doi.org/10.1130/G33217.1
https://doi.org/10.5194/nhess-14-95-2014
https://doi.org/10.1007/s12665-021-09511-y
https://doi.org/10.1007/s12665-021-09511-y
http://hdl.handle.net/2122/7936
https://doi.org/10.1016/j.envsoft.2009.10.016
http://www.qgis.org
https://github.com/MattiaRaffa/RF-VDA-landslide-map
http://www.R-project.org/
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.5194/gmd-9-3533-2016
https://doi.org/10.5194/gmd-9-3533-2016
https://doi.org/10.1016/j.geomorph.2009.06.020


2812 J. Torizin et al.: Landslide Susceptibility Assessment Tools v1.0.0b – Project Manager Suite

Saaty, T. L.: The analytic hierarchy process, McGraw-Hill, New
York, ISBN-13 978-0070543713, 1980.

Sahin, E. K., Colkesen, I., Acmali, S. S., Akgun, A., and Aydinoglu,
A. C.: Developing comprehensive geocomputation tools for land-
slide susceptibility mapping: LSM tool pack, Comput. Geosci.,
104592, https://doi.org/10.1016/j.cageo.2020.104592, 2020.

Schmidhuber, J.: Deep Learning in neural networks: An overview,
Neural Networks, 61, 85–117, 2015.

Senger, K., Betlem, P., Grundvåg, S.-A., Horota, R. K., Buckley, S.
J., Smyrak-Sikora, A., Jochmann, M. M., Birchall, T., Janocha,
J., Ogata, K., Kuckero, L., Johannessen, R. M., Lecomte, I., Co-
hen, S. M., and Olaussen, S.: Teaching with digital geology in
the high Arctic: opportunities and challenges, Geosci. Commun.,
4, 399–420, https://doi.org/10.5194/gc-4-399-2021, 2021.
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