Articles | Volume 15, issue 1
https://doi.org/10.5194/gmd-15-173-2022
https://doi.org/10.5194/gmd-15-173-2022
Model experiment description paper
 | 
11 Jan 2022
Model experiment description paper |  | 11 Jan 2022

Modeling reservoir surface temperatures for regional and global climate models: a multi-model study on the inflow and level variation effects

Manuel C. Almeida, Yurii Shevchuk, Georgiy Kirillin, Pedro M. M. Soares, Rita M. Cardoso, José P. Matos, Ricardo M. Rebelo, António C. Rodrigues, and Pedro S. Coelho

Related authors

Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023,https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary

Related subject area

Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024,https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary

Cited articles

Almeida, M.: Models source code: CE-QUAL-W2 v3.6, FLake (windows version 1.0), Hostetler and ANN (momentum alg.) – Modeling reservoir surface temperatures for regional and global climate models (Version 1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4803480, 2021a. 
Almeida, M.: Model input files (hydrometric, water quality and meteorological data sets): CE-QUAL-W2 v3.6, FLake (windows version), Hostetler and ANN (momentum alg.) – Modeling reservoir surface temperatures for regional and global climate models (Version 1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4756312, 2021b. 
Almeida, M. C., Coelho, P. S., Rodrigues, A. C., Diogo, P. A., Maurício, R., Cardoso, R. M., and Soares, P. M. M.: Thermal stratification of Portuguese reservoirs: Potential impact of extreme climate scenarios, J. Water Clim. Change, 6, 544–560, https://doi.org/10.2166/wcc.2015.071, 2015. 
Bates, G. T., Giorgi, F., and Hostetler, S. W.: Towards the simulation of the effects of the Great Lakes on climate, Mon. Weather Rev., 121, 1373–1387, https://doi.org/10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2, 1993. 
Short summary
In this study, we have evaluated the importance of the input of energy conveyed by river inflows into lakes and reservoirs when modeling surface water energy fluxes. Our results suggest that there is a strong correlation between water residence time and the surface water temperature prediction error and that the combined use of process-based physical models and machine-learning models will considerably improve the modeling of air–lake heat and moisture fluxes.