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Abstract. The complexity of the state-of-the-art climate
models requires high computational resources and imposes
rather simplified parameterization of inland waters. The ef-
fect of lakes and reservoirs on the local and regional cli-
mate is commonly parameterized in regional or global cli-
mate modeling as a function of surface water temperature es-
timated by atmosphere-coupled one-dimensional lake mod-
els. The latter typically neglect one of the major transport
mechanisms specific to artificial reservoirs: heat and mass
advection due to inflows and outflows. Incorporation of these
essentially two-dimensional processes into lake parameteri-
zations requires a trade-off between computational efficiency
and physical soundness, which is addressed in this study. We
evaluated the performance of the two most used lake parame-
terization schemes and a machine-learning approach on high-
resolution historical water temperature records from 24 reser-
voirs. Simulations were also performed at both variable and
constant water level to explore the thermal structure differ-
ences between lakes and reservoirs. Our results highlight
the need to include anthropogenic inflow and outflow con-
trols in regional and global climate models. Our findings also
highlight the efficiency of the machine-learning approach,
which may overperform process-based physical models in
both accuracy and computational requirements if applied to
reservoirs with long-term observations available. Overall, re-
sults suggest that the combined use of process-based phys-
ical models and machine-learning models will considerably

improve the modeling of air–lake heat and moisture fluxes.
A relationship between mean water retention times and the
importance of inflows and outflows is established: reservoirs
with a retention time shorter than ∼ 100 d, if simulated with-
out inflow and outflow effects, tend to exhibit a statistically
significant deviation in the computed surface temperatures
regardless of their morphological characteristics.

1 Introduction

Numerical weather prediction (NWP) and climate modeling
are essential tools in research and applied science applica-
tions (e.g., Bauer et al., 2015; Forster, 2017; Jacob et al.,
2020). Motivated by the need to increase the reliability of
climate and weather projections, the core numerical models
undergo continuous improvements aiming at the best com-
promise between model representativity and computational
efficiency (Flato et al., 2013). Air–lake heat and moisture
fluxes affect the near-surface atmospheric layers and are es-
sential to accurate estimation of the future climate or weather
forecast. Therefore, parameterization of inland waterbodies
in atmospheric modeling has quickly evolved to increase the
accuracy of the land–atmosphere boundary layers (Benning-
ton, 2014; Xue et al., 2017; F. Wang et al., 2019).
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According to previous studies, the presence of waterbod-
ies significantly affects the turbulent heat exchange with the
atmosphere (Philips, 1972; Bates et al., 1993; Niziol et al.,
1995; Lofgren, 2006; Notaro et al., 2013; Wright et al.,
2013). In northern latitudes, surface waters tend to absorb
heat in summer and release it in autumn, damping the tem-
perature fluctuations in their vicinity and creating a lag in
both diurnal and annual cycles of the air temperature, as well
as increased precipitation (Dutra et al., 2010; Nordbo et al.,
2011; Samuelsson et al., 2010; Subin et al., 2012). Overall,
missing the lake and reservoir effects has been shown to dete-
riorate the results of regional and global climate simulations
(Ljungemyr et al., 1996; Long et al., 2007; Deng et al., 2013;
Dutra et al., 2010; Samuelsson et al., 2010; Subin et al., 2012;
Le Moigne et al., 2016; Irambona et al., 2018).

Waterbodies display larger thermal inertia than the sur-
rounding land areas due to the high specific heat capacity
of water and the vertical turbulent heat transport from the
water surface to its deeper layers. Furthermore, they ab-
sorb a higher fraction of solar radiation than land due to
a lower albedo and a higher transparency. The heat stor-
age and thermal characteristics of inland waterbodies, act-
ing primarily but not only through water column stability,
are influenced by bathymetry, surface area, turbidity, and ice
conditions (Schertzer, 1997; Rouse et al., 2003; Oswald and
Rouse, 2004; Magee and Wu, 2017). Surface heat fluxes, in
particular the evaporation rate, are also affected by advec-
tion due to inflows and outflows (e.g., deepwater withdrawal)
and by water level (WL) fluctuations (Rimmer et al., 2011;
Friedrich et al., 2018). These fluctuations are usually much
more pronounced in reservoirs than in natural lakes. Here-
with, neglecting the aforementioned water budget variations
may lead to errors in surface heat flux predictions, especially
in reservoirs.

The progressive increase in the spatial resolution of gen-
eral circulation models (GCMs) and regional climate mod-
els (RCMs) resulted in wide implementation of coupled one-
dimensional (1-D) models simulating surface energy fluxes
in waterbodies, neglecting, however, the variation of inflows,
outflows, and WL. The coupled lake and reservoir models
differ among each other mainly by the vertical mixing pa-
rameterization, classified into three major categories: eddy
diffusion models, turbulence models, and bulk mixed layer
models. In eddy diffusion models, vertical turbulent mixing
is defined by eddy diffusion parameterized as a function of
velocity and stratification strength in the form of the gradi-
ent Richardson number (e.g., HOSTETLER model, Hostetler
and Bartlein, 1990; SEEMOD, Zamboni et al., 1992; LIMN-
MOD, Karagounis et al., 1993; MINLAKE, Fang and Ste-
fan, 1996; CLM, Oleson et al., 2004; CLM4-LISSS, Subin
et al., 2012; WRF-Lake, Gu et al., 2015). More complex ap-
proaches, based on the k− ε turbulence model, parameter-
ize eddy diffusion based on the Kolmogorov–Prandtl rela-
tionship (Svensson, 1978; Burchard et al., 1999; Goudsmit
et al., 2002; Stepanenko and Lykossov, 2005). Bulk mixed

layer models rely on the self-similarity concept for the
temperature–depth profile in the stratified layer and inte-
gral budgets for the mixed and bottom layers (Kraus and
Turner, 1967; Mironov et al., 2010). The performance of
some of these models has already been evaluated in mod-
eling intercomparison studies (e.g., Perroud, 2009; Stepa-
nenko et al., 2010, 2013; Thiery et al., 2016; Huang et al.,
2019; Y. Wang et al., 2019; Guseva et al., 2020). Generally,
these intercomparison studies evaluated the model perfor-
mance with application to one to three lakes, usually with
very particular morphological characteristics (e.g., very deep
or very shallow), over a limited time period. Overall, the re-
sults of these studies had an important impact on the further
development of the models. In particular, they highlighted
the need for intercomparison research projects that include a
larger number of waterbodies and a longer modeling simula-
tion.

Data-driven models such as artificial neural net-
works (ANNs) have not yet been considered for the
parameterization of lakes in climate models. Nevertheless,
they have been successfully used to estimate mean daily
and hourly water temperatures in rivers (e.g., Chenard and
Caissie, 2008; Hebert et al., 2014) and in lakes (Sharma et
al., 2008; Samadianfard et al., 2016; Read et al., 2019). The
approach is particularly advantageous when the modeled
processes are complex and nonlinear (Sharma et al., 2008),
as in the case of surface water temperature (SWT). In view
of the trade-off between results quality and computational
efficiency, data-driven models have potential advantages in
estimating the effect of lake inflows and outflows on SWT,
which motivates their inclusion in model intercomparison
studies.

Currently, the major challenge in the parameterization of
lakes and reservoirs in climate models is the need to ensure
that the models’ response is consistent and accurate consider-
ing the wide range of morphological characteristics and the
high variability of the meteorological forcing. While incor-
poration of inflows and outflows may crucially improve the
quality of model predictions, the increased complexity can
restrain extension of process-based models and require alter-
native data-based approaches.

In this study, we evaluate the importance of the energy
transfers due to water inflows and outflows when modeling
surface water energy fluxes in artificial reservoirs and elabo-
rate a methodology to improve this essential aspect of RCMs
and GCMs. For this purpose, we (i) model 24 Portuguese
reservoirs by using four models. These are a 2-D model to
define a calibrated and validated baseline scenario, two 1-D
models without the parameterization of inflows or outflows,
and an ANN to (ii) assess the modeling error in SWT of lakes
(similar to a seepage lake) and reservoirs potentially associ-
ated with atmosphere–lake interactions and (iii) compare the
performance and computational requirements of different ap-
proaches to predict the evolution of SWT in lakes (similar to
a seepage lake) and reservoirs.
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2 Study area

Portugal is located in southern Europe and has a typical
Mediterranean climate. Maximum daily mean air tempera-
ture ranges from 13 ◦C in the central highlands to 25 ◦C in the
southeast region. The minimum daily mean air temperature
ranges from 5 ◦C in the northern and central regions to 18 ◦C
in the south (Soares et al., 2012a). Complex topography and
coastal processes define the spatial and temporal heterogene-
ity of precipitation, which differs from a relatively wet annual
maximum above 2800 mm yr−1 in the mountainous north-
west to a much drier 400 mm yr−1 in the tendentially flat
southeast (Soares et al., 2012b; Cardoso et al., 2013).

The 24 reservoirs selected for this study are almost entirely
located in mainland Portugal apart from Alto Lindoso (R19)
and Alqueva (R24) reservoirs, which are shared with neigh-
boring Spain (Fig. 1).

The reservoirs were selected for the study based on their
water residence time (WRT) and morphological characteris-
tics (volume, depth, surface area) (Table 1). Most of reser-
voirs are classified as warm monomictic, with a stratified pe-
riod during the warmer months (May–September) and one
mixing period each year during the colder part of the year
from October to April. As exceptions, Cercosa (R1) and Tor-
rão (R15) are weakly stratified, while Penide (R3), Penha
Garcia (R4), Enxoé (R7), and Crestuma-Lever (R16) (a run-
of-the-river hydropower scheme located in the north coastal
region) are well mixed during the entire year.

3 Models and data

3.1 Models and scenarios

To evaluate the importance of inflow and outflow in SWT
simulations, a 2-D numeric model and two 1-D models were
applied. Table 2 shows a full description of the scenarios con-
sidered in the development of this study.

Since the model validation was limited by the scarcity of
temperature profile measurements and observed time series
of SWT, a major challenge of this study consisted of devel-
oping realistic baseline scenarios (forcing data and targets;
W2 hydrology scenarios) having the necessary continuity
and heterogeneity to evaluate the performance of different
models. To overcome this limitation, a well-established 2-D
model, CE-QUAL-W2 version 3.6 (Cole and Wells, 2008),
was validated with observed data and used to create the base-
line scenario forced with daily and hourly meteorological
datasets covering a period of 20 years from 1989 to 2008
(with the exceptions described in Table 1). The 2-D model,
forced with daily meteorology and monthly inflows and out-
flows, was calibrated by minimizing the mean absolute er-
ror (MAE) between simulated water temperature profiles and
measurements spanning the period from 1989 to 2008 made
in each reservoir, in all cases near the dam (W2 hydrology-

D). After each model run, results were compared with the ob-
served datasets and if needed the calibration parameters were
retuned manually. The wind-sheltering coefficient (WSC)
and the extinction coefficient for water were the only param-
eters modified at each model run. These parameters varied
in the range from 0.1 to 1.0 and from 0.25 to 1.0, respec-
tively. Data on the mean water extinction coefficient were
available for four reservoirs: Bouçã (µ= 0.27; σ = 0.05),
Crestuma-Lever (µ= 0.67; σ = 0.15) −0.67, Cabril (µ=
0.27; σ = 0.05), and Castelo do Bode (µ= 0.26; σ = 0.05);
therefore, they were not calibrated. All 1-D simulations were
performed with a constant water extinction coefficient value
of 0.45, corresponding to the reference value suggested by
Cole and Wells (2008). According to the eutrophication cri-
teria defined by the OECD (1982), this value of water trans-
parency is associated with eutrophic unstable systems and is
also close to the mean value of 0.37 obtained from the four
reservoirs listed above.

An alternative baseline scenario was produced by forcing
the model with hourly meteorology (daily values were used
for the first one), enabling evaluation of the sub-daily con-
vection effects on the overall results. Daily and hourly base-
line scenarios were designated “W2 hydrology-D” and “W2
hydrology-H”, respectively.

To assess the importance of heat transfer and mixing
within the waterbodies, the two W2 hydrology scenarios
were modified and simulated in a steady-state “constant mass
budget” excluding precipitation, inflows, or outflows. These
steady-state scenarios were designated “W2”. Apparently,
W2 simulations maintain a constant water level correspond-
ing to the full supply level (FSL). SWT time series, obtained
with both scenarios W2 hydrology and W2, were compared
using statistic error measures (see Sect. 3.3 for more details),
assessing the relationship between the reservoir WRT and the
error resulting from the neglect of advection due to inflows
and outflows (as mentioned in the Introduction, a common
feature of contemporary GCMs and RCMs).

The baseline scenarios (W2 hydrology) were defined to
address the following questions.

i. How large is the uncertainty associated with the neglect
of inflows and outflows?

ii. How adequate is the performance of simplified 1-D
models compared with the state-of-the-art calibrated 2-
D model, including parameterization of inflows and out-
flows as well as WL variation? What is the relative con-
tribution to the final model error of the inflow and out-
flow neglect vs. neglect of the wind sheltering in mete-
orological forcing?

iii. Can we identify conceptual differences in representa-
tion of the fundamental physical processes (such as dif-
ferences in the conceptualization of diurnal variations of
SWT) by 1-D and 2-D models through the comparison
of outputs from daily versus hourly forcing?
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Figure 1. Location of the simulated waterbodies (ordered according to the simulated mean volume from smallest to largest).

iv. How well can ANN simulate the evolution of a reservoir
SWT?

The reliability of the baseline scenarios (W2 hydrology)
for representation of the reservoir thermal regime has been
demonstrated by the model calibration results and is sup-
ported by the outcomes of a large number of successful
model applications worldwide (vide Cole and Wells, 2008).
Using 2-D modeling results as a baseline “benchmark” sce-
nario for validating 1-D models allows the isolation of the
errors associated with the quality of meteorological forcing
and observed data (e.g., water temperature datasets) while
providing the continuity usually unavailable from observa-
tional datasets. Hence, the error obtained when comparing 1-
D versus 2-D model results is to be regarded as an analytical
variable encapsulating differences among the different sce-
narios and not the conventional model error (model output
versus observed data).

While generally accurate, the use of calibrated 2-D mod-
els in the scope of complex GCMs and RCMs is restricted
by high computational costs. Therefore, the next step of the
analysis aimed at evaluation of more computationally effec-
tive 1-D models typically used to parameterize waterbod-

ies within GCMs and RCMs. The reservoirs were simulated
with a 1-D eddy diffusion model based on the approach con-
sidered by Hostetler and Bartlein (1990) and a 1-D bulk
mixed layer model (FLake), both forced with hourly and
daily meteorological data. Meteorological datasets consid-
ered in the modeling process included air temperature (◦C),
relative humidity (%), wind velocity (m s−1), wind direction
(rad), cloud fraction (0 to10), and shortwave solar radiation
(W m−2). These datasets were considered in all models with
the following exceptions: wind direction is not considered
for 1-D model forcing, and the ANN modeling relies on the
air temperature, relative humidity, and wind velocity datasets
only.

The eddy diffusion model considers the vertical variation
of both eddy diffusion and cross-sectional area. Simulations
were undertaken using the maximum depth. In turn, FLake
operates with volume-integrated equations. Accordingly, its
simulations were performed based on the mean reservoir
depth. Results obtained with the 1-D models, without any
reservoir-specific calibration, were compared with the base-
line scenarios obtained with the 2-D model (W2 hydrology).
In addition to the 1-D models, SWT in all the reservoirs
was modeled with an artificial neural network (ANN) trained
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Table 1. Morphometric details of the reservoirs and main water uses.

Reservoir Simulation Mean Full supply Maximum Mean Water Watershed Mean Mean water Main
period volume volume depth (m) depth surface area inflow residence use (s)

(hm3) (FSV) (m)1 area at the (km2) (m3 s−1) time
(hm3) FSV (ha) (days)2

R1 Cercosa 1994–2008 0.05 0.06 16.00 3.00 2.00 59.89 0.72 0.79 P
R2 Vale Covo 1994–2008 0.10 0.20 14.00 1.67 12.00 53.41 0.00 2093.86 W
R3 Penide 1989–2008 0.11 0.50 9.00 0.72 69.00 3.73 33.63 0.04 P
R4 Penha Garcia 1989–2008 0.38 1.10 10.00 5.39 20.40 14.73 0.05 91.50 W, I
R5 Alto Cávado 1989–2008 1.17 3.30 21.00 6.60 50.00 101.23 4.73 2.85 P
R6 São Domingos 1994–2008 4.61 7.90 34.00 8.23 96.00 42.04 0.07 728.27 W, I
R7 Enxoé 1998–2008 6.48 10.40 12.00 5.07 205.00 60.54 0.27 275.67 W
R8 Monte Novo 1989–2008 10.75 15.27 19.85 5.50 277.40 260.75 0.15 830.80 W, I
R9 Funcho 1994–2008 24.37 47.72 36.00 13.26 360.00 211.58 3.33 84.57 I
R10 Bouçã 1989–2008 27.69 48.40 62.00 9.68 500.00 2601.71 44.34 7.23 P
R11 Fronhas 1989–2008 28.08 62.10 48.00 11.61 535.00 630.46 15.05 21.59 P
R12 Odeleite 1997–2008 42.58 130.00 47.00 18.06 720.00 347.27 2.84 173.51 W, I
R13 Azibo 1989–2008 45.62 54.50 43.00 13.29 410.00 92.56 0.79 670.93 W, I
R14 Pedrógão 2005–2008 86.16 106.00 25.00 9.60 1104.00 59 160.00 39.94 24.97 P, I
R15 Torrão 1989–2008 91.57 124.00 56.00 19.08 650.00 3268.28 76.44 13.86 P
R16 Crestuma-Lever 1989–2008 101.08 110.00 13.00 8.47 1298.00 96 932.81 423.97 2.76 P, W
R17 Caia 1989–2008 112.35 203.00 44.00 10.30 1970.00 563.26 2.45 530.77 W, I
R18 Santa Clara 1989–2008 205.74 485.00 72.00 24.42 1986.00 519.69 2.18 1091.19 P, F, W, I
R19 Alto Lindoso 1992–2008 274.57 390.00 92.00 36.38 1072.00 1510.93 39.44 80.58 P
R20 Alto Rabagão 1989–2008 317.82 569.00 84.00 25.72 2212.00 106.97 9.41 390.92 P
R21 Aguieira 1989–2008 335.59 423.00 76.00 21.15 2000.00 3063.29 87.45 44.42 P, F, W, I
R22 Cabril 1989–2008 344.79 719.00 120.00 35.54 2023.00 2416.32 38.69 103.14 P
R23 Castelo do Bode 1989–2008 859.46 1095.00 96.00 33.27 3291.00 3964.09 64.94 153.18 P, W, F
R24 Alqueva 2005–2008 2974.66 4150.00 76.00 16.60 25 000.00 55 289.00 38.25 900.02 I, W, P

a P – power generation; W – water supply; I – irrigation; F – flood prevention. 1 The mean depth results from the division of the mean volume and the mean water surface area. 2 The mean water residence
time is the ratio between the mean volume of the reservoir and the mean inflow.

Figure 2. Schematic and simplified representation of the ANN
preparation concept.

using the momentum gradient-based optimization algorithm
(Qian, 1999). SWTs from both daily and hourly 2-D baseline
scenarios (W2 hydrology), covering the period from 1989 to
2004 and the predictor variables described in Table 3, were
used to improve the input data dimension (Fig. 2).

Two different temporal resolutions of the input meteoro-
logical data, daily and hourly, were used to train and validate
the ANNs; 80 % of the data was used for finding optimal
network weights (of which 70 % was directly applied in the
training and 30 % was employed in validation). This 80 %
covered 16 years from 1989 to 2004. The daily discretiza-
tion resulted in a dataset with N = 5843 entries, while the
hourly discretization produced N = 140 232. The remaining
20 % of data had no intervention in the search for optimal
network weights and covered the period from 2005 to 2008.

This period, considered for the ANN forecast, included three
dry years of 2005, 2007, and 2008 and one wet year, 2006.
All the years were warm except for the cold year of 2008. The
daily discretization resulted in a dataset with N = 1461 en-
tries, while the hourly discretization produced N = 35 064.
When the reservoir total simulation period (see Table 1) was
shorter than 20 years, the dimension of the test dataset was
preserved, and the training and validation datasets were re-
duced. The raw input data used to train the networks included
the SWT obtained from the baseline scenarios prepared with
the 2-D model, air temperature (Tair), inflow water temper-
ature (Tbr), dew point temperature (Tdew), relative humid-
ity (HR), and wind velocity (u2). In order to improve model
performance additional time series were included as input.
They were defined to provide implicit information about sea-
sonal changes (Table 3).

The input time series were subsequently standardized
through removal of the mean and scaling to unit variance.
After the initial tests, which included different network archi-
tectures, backpropagation algorithms, regularization strate-
gies, learning rate rules, activation functions, parameter ini-
tialization, and the extraction and transformation of features
from the input meteorological data, the algorithm was se-
lected whose results were in the best agreement with SWT
from the baseline scenario simulated with the 2-D model (see
Sect. 3.3 for more details).
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Table 2. Simulation scenarios.

Scenario Model Hydrology
(inflows/
outflows
computation)

Calibration Calibration
parameters

Model
time
resolu-
tion

Additional comments

W2 hydrology-D
(baseline scenario)

2-D
CE-QUAL-W2

Yes Yes Wind
sheltering
coefficient;
extinction
coefficient

Daily –

W2 hydrology-H
(baseline scenario)

2-D
CE-QUAL-W2

Yes No – Hourly Equal to W2-hydrology-D,
except for the
meteorological forcing file

W2-D 2-D
CE-QUAL-W2

No No – Daily Equal to W2-hydrology-D,
but without inflows/outflows
(similar to a seepage lake)

W2-H 2-D
CE-QUAL-W2

No No – Hourly Equal to W2-hydrology-H,
but without inflows/outflows
(similar to a seepage lake)

HLM-D 1-D
Hostetler

No No – Daily –

HLM-H 1-D
Hostetler

No No – Hourly Equal to HLM-D, except for the
meteorological forcing file

FLake-D 1-D
FLake

No No – Daily –

FLake-H 1-D
FLake

No No – Hourly Equal to FLake-D, except for
the meteorological forcing file

ANN-D ANN No No – Daily –

ANN-H ANN No No Hourly Equal to ANN-D, except for the
meteorological forcing file

Beside accuracy, the computation time can also be a criti-
cal factor in the suitability of models to be used within GCMs
or RCMs. The simplified 1-D models considered in this study
have a clear advantage regarding the computation time when
compared with more complex 1-D and 2-D approaches – a
condition that was at the core of their development and that
is directly linked with the neglect of inflows and outflows.
Recognizing the importance of computational efficiency, the
analysis included the quantification of the overall computa-
tion times for the process-based physical models and for the
ANN. This evaluation was produced with a 2.21 GHz Quad-
Core Intel Core i7 (memory: 16 GB 1600 MHz DDR3) by
repeating each simulation 20 times.

3.1.1 2-D water quality and hydrodynamic modeling –
CE-QUAL-W2

Due to the lateral and layer averaging of the governing equa-
tions, the 2-D hydrodynamic and water quality model CE-
QUAL-W2 version 3.6 (Cole and Wells, 2008) is particularly
suitable for modeling relatively long and narrow waterbod-

ies, where transverse variations in velocities, temperatures,
and constituents are negligible. Outlet geometry, outflows,
and in-pool densities are the input to the selective with-
drawal algorithm that calculates vertical withdrawal zone
limits. Among the two model options of the withdrawal –
line sinks, which are wide in relation to dam width (>1/10),
and point sinks, which are narrow in relation to dam width
(<1/10) – only point sinks were considered. The point-
sink approximation assumes the flow is radial both longi-
tudinally and vertically (Cole and Wells, 2008). Therefore,
for the outflow structure definition, the centerline elevation
of the structure was included in the model (Table 4). Addi-
tionally, as suggested by Cole and Wells (2008), the algo-
rithm was allowed to retrieve water from the top elevation
of the computational grid. The model has been widely ap-
plied to stratified water surface systems such as lakes and
reservoirs around the world, including Portugal (e.g., Diogo
et al., 2008; Almeida et al., 2015). In order to illustrate the
performance of CE-QUAL W2 in reservoir thermal simula-
tions, Cole and Wells (2008) describe the calibration results
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Table 3. Predictor variables considered for the training and validation of the ANN.

Temporal Predictor variables Total number
sampling of predictor

variables

Daily

Meteorological variables: Tair; Tbr; Tdew; HR; u2;

26

Day of year (1 to 365 or 366); week index number (1 to 52 or 53); month index number (1 to 12);
cosine (2×π × (day index number/365)); sine (2×π × (day index number/365))∗;
cosine (2×π × (week index number/52)); sine (2×π × (month index number/52));
cosine (2×π × (week index number/26)); sine (2×π × (month index number/26));
cosine (2×π × (month index number/12)); sine (2×π × (month index number/12));
moving average of the meteorological variables with a window of 31 d;
moving variance of the initial meteorological variables with a window of 31 d;

Hourly

Meteorological variables: Tair; Tbr; Tdew; HR; u2

39

Hour index number, day index number; week index number; month index number
cosine (2×π × (hour index number/24)); sine (2×π × (hour index number/24))
cosine (2×π × (day index number/365)); sine (2×π × (day index number/365))
cosine (2×π × (week index number/52)); sine (2×π × (month index number/52))
cosine (2×π × (week index number/26)); sine (2×π × (month index number/26))
cosine (2×π × (month index number/12)); sine (2×π × (month index number/12))
moving average of the initial meteorological variables with a window of 31 d
moving variance of the initial meteorological variables with a window of 31 d
Moving average of the initial meteorological variables with a window of 744 d
Moving variance of the initial meteorological variables with a window of 744 d

∗Cosine and sine series reproduce cyclical yearly variations that can be recognized by the ANN in the inputs without any breaks (as is the case if linear series such as
the day of year are used: large jump from 365 to 1 at the beginning of a new year).

Table 4. Grid dimensions for 2-D CE-QUAL-W2.

Reservoir Number of Number of Mean segment Number Layer Main outflow
branches segments length, m of layers height, m centerline elevation, m

R1 Cercosa 1 12 100.0 11 2.0 15.0
R2 Vale Covo 1 7 104.5 9 2.0 346.4
R3 Penide 1 22 574.0 11 1.0 15.0
R4 Penha Garcia 1 10 189.7 10 2.0 510.0
R5 Alto Cávado 1 12 519.0 28 1.0 884.2
R6 São Domingos 1 22 204.1 19 2.0 32.2
R7 Enxoé 1 9 500.0 8 2.0 170.0
R8 Monte Novo 2 18 970.6 12 2.0 188.0
R9 Funcho 2 22 907.2 21 2.0 86.0
R10 Bouçã 1 17 1000.0 33 2.0 136.0
R11 Fronhas 1 22 1118.8 29 2.0 100.0
R12 Odeleite 4 59 500.0 50 1.0 10.0
R13 Azibo 3 21 756.4 33 1.0 578.0
R14 Pedrógão 2 21 1828.6 13 2.0 80.0
R15 Torrão 1 34 1000.0 36 2.0 25.0
R16 Crestuma-Lever 2 98 500.0 24 1.0 2.5
R17 Caia 2 28 1000.0 25 2.0 212.0
R18 Santa Clara 4 57 1006.0 39 2.0 120.0
R19 Alto Lindoso 2 54 500.0 49 2.0 250.0
R20 Alto Rabagão 2 38 463.0 41 2.0 800.0
R21 Aguieira 3 83 850.6 46 2.0 83.5
R22 Cabril 2 76 1000.0 61 2.0 220
R23 Castelo do Bode 10 148 735.0 48 2.0 42.0
R24 Alqueva 3 87 2210.8 75 1.0 105.8
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obtained for 70 reservoirs. In their study, the MAE obtained
for all reservoirs was smaller than 1.0 ◦C, and for many of
them much smaller. The result can be considered outstand-
ing, especially considering that errors were partially related
to the quality of the boundary conditions and forcing meteo-
rological data. The Ultimate algorithm was considered to be
the solution for the numerical transport for temperature and
constituents (Cole and Wells, 2008). Surface heat exchange
was computed with the term-by-term algorithm described by
Cole and Wells (2008). The reservoirs’ bathymetry was de-
fined from 1 : 25000 topographic charts of the watersheds.
Hence, each reservoir’s computational grid is described by a
specific number of branches, segments, and layers (Table 4).

3.1.2 Eddy diffusion model – Hostetler model (HLM)

The governing equation for the 1-D eddy diffusion model is
based on Hostetler and Bartlein (1990):

∂T

∂t
=

1
A(z)

∂

∂z

{
A(z) [km+K(z, t)

∂T

∂z

}
+

1
A(z)

1
Cw

∂ [8A(z)]
∂z

, (1)

where T , t , z, A, km, K , Cw, and 8 are water tempera-
ture (◦C), time (s), depth (m), area (m2), molecular diffusion
(1.39×10−7 m2 s−1), eddy diffusion (m2 s−1), the volumetric
heat capacity of water (J m−3 ◦C−1), and a heat source term
(W m−2), respectively. Within the model, eddy diffusion is
computed at each depth with the analytical representation de-
veloped by Henderson-Sellers (1985) as a function of the 2 m
wind velocity (u2) and a latitude-dependent parameter of the
Ekman profile.

The surface boundary condition is described by the fol-
lowing equation.

ρCw [km+K (z, t)]
∂T

∂z

∣∣∣∣
z=o

= qn (2)

The net surface heat flux (qn) (W m−2), which is the alge-
braic sum of solar radiation, atmospheric radiation, latent and
sensible heat fluxes, and back radiation, was computed with
the equilibrium temperature approach defined by Edinger et
al. (1968), while latent and sensible heat fluxes were com-
puted explicitly from surface water temperature with the
same expressions defined in Cole and Wells (2008). In this
study the heat transferred from the sediments to the water
column has been neglected. Accordingly, the bottom bound-
ary condition takes the following form.

ρCw [km+K (z, t)]
∂T

∂z

∣∣∣∣
z=maxdepth

= 0 (3)

The solution of the heat diffusion equation was obtained by
resorting to the implicit numeric Crank–Nicolson scheme
with centered differences in space and time. Convective mix-
ing is conceptualized by a full-depth mixing scheme that

detects buoyancy-induced instabilities and mixes all lay-
ers from the surface down to the unstable layer while pre-
serving the available energy. HLM has accurately predicted
water temperature profiles of several lakes located in the
United States (e.g., Hostetler and Bartlein, 1990; Hostetler
and Giorgi, 1995), and a modified version of the model is
currently used in the Community Land Model that is coupled
with the International Centre for Theoretical Physics (ICTP)
Regional Climate Model version 4 (RegCM4) (Bennington
et al., 2014). The model governing equation and the param-
eterization of eddy diffusion are also the base of the 1-D
lake model included in the Weather Research and Forecast-
ing (WRF) model (LISSS) (Xiao et al., 2016).

3.1.3 FLake model

The FLake model was developed for use in NWP and is
currently implemented in several NWP models, for example
the Consortium for Small-scale Modeling (COSMO) from
the German Weather Service (Mironov et al., 2010), the
High Resolution Limited Area Model (HIRLAM) from the
Finnish Meteorological Institute, the Icosahedral Nonhydro-
static (ICON) model from the German Weather Service, and
the Integrated Forecast System (IFS) from the European Cen-
tre for Medium-Range Weather Forecasts. The model has
also been used to evaluate the effects of lakes in the cli-
mate system (Gula and Peltier, 2012; Le Moigne et al., 2016)
and in future scenarios for lake water temperature and mix-
ing regimes (Kirillin, 2010; Shatwell et al., 2019). Concep-
tually, FLake belongs to the family of “bulk” mixed layer
models (Kraus and Turner 1967), widely used in lake stud-
ies (e.g., DYRESM: Magee and Wu, 2017; GLM: Hipsey et
al., 2019; CSLM: MacKay, 2019). A distinguishing feature
of FLake consists of the extension of the bulk approach on
the stratified part of the lake water column from the base
of the mixed layer down to the lake bottom. The extension
relies on the concept of thermocline self-similarity (Kitaig-
orodskii and Miropolsky, 1970), i.e., preserved shape of the
temperature profile in the stratified part of the water column.
In FLake, a waterbody can be represented as a two-layered
system, wherein the vertical profile of water temperature is
parameterized as

T =

{
Ts at 0≤ z ≤ h
Ts − (Ts − Tb) ·8T (ζ ) at h≤ z ≤D

, (4)

where z is the vertical coordinate, h is the surface mixed layer
depth, D is the lake depth, Ts is the mixed layer temperature
and, Tb the temperature at the water–sediment interface in
the bottom, and 8T (ζ ) is the self-similarity function (di-
mensionless temperature).
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3.1.4 Artificial neural network

The prototyping and building of the ANN were implemented
with the Python library NeuPy (Shevchuk, 2015). NeuPy
uses Tensorflow (an open-source platform for machine learn-
ing) as a computational back end for deep learning models
(Abadi et al., 2016). The momentum algorithm used in the
selected ANN is an iterative first-order optimization method
that uses a gradient calculated from the average loss of a neu-
ral network (usually the mean squared error). The “momen-
tum” applies to information about past gradients during the
training in a way that promotes a gradual transition in the
balance between stability and rate of change (Qian, 1999).

In addition to the input and output layers, the chosen net-
work has one hidden layer with 24 nodes. Each of these used
rectified linear activation functions (ReLus). Training data
were shuffled before training, weights were randomly initi-
ated, and the loss function included the MSE (see further be-
low) to measure the accuracy of the results. Additionally, it
used L2 regularization (the adopted regularization constant
was 0.002). The step decay algorithm was used to regular-
ize the learning rate (initial value 0.05, reduction frequency
750).

3.2 Forcing and calibration data

The W2 hydrology scenario was forced by monthly records
of inflow and discharge for the period 1989–2008. To charac-
terize inflow daily temperatures of 70 reservoir tributaries, a
total of 31 air and water temperature linear regressions were
additionally computed from 8492 pairs of values (x̄ = 274;
SD±565). The mean R2 considering all regressions varied
from 0.75 to 0.90 (x̄ = 0.82; SD±0.03). The calibration of
the baseline scenario was performed on 677 water temper-
ature profiles (x̄ = 53 per reservoir) and 3738 surface ob-
served values (x̄ = 163 per reservoir). The hydrometric and
water quality data were collected by the Portuguese Environ-
mental Agency, Energies of Portugal, and the Alqueva Devel-
opment and Infrastructure Company; they are available from
https://snirh.apambiente.pt/ (last access: 5 January 2022).

A deeper insight into the relationship between the air
and surface temperatures may be obtained by application of
more detailed semi-stochastic models (Toffolon and Piccol-
roaz, 2015), while the effects of the reservoir volume (depth)
and the flow would require specific attention in this case
(Calamita et al., 2021).

3.2.1 Meteorology

The hourly meteorological datasets of air temperature, rela-
tive humidity, and wind velocity used as forcing of reservoir
models were produced by a high-resolution (9 km horizon-
tal grid spacing) simulation with the Weather Research and
Forecasting model (WRF; Skamarock et al., 2008) forced by
20 years of ERA-Interim reanalysis (1989–2008) and nested

in a domain with a 27 km× 27 km cell size. A more detailed
description of the model set-up and simulation results are
provided by Soares et al. (2012a) and Cardoso et al. (2013).
The WRF hindcast simulation results were extensively vali-
dated for inland surface variables, namely temperatures and
precipitation in Portugal (Soares et al., 2012a), Iberian pre-
cipitation (Cardoso et al., 2013), and wind (Soares et al.,
2014; Rijo et al., 2018; Nogueira et al., 2019). Cloud cover
datasets were derived from mean monthly values described
in the climatological normal of Portugal (1951–1980), while
solar shortwave radiation was computed with an algorithm
based on the EPA method (Thackston and Parker, 1971).
Cloud cover reduction of shortwave radiation uses the ap-
proach defined by Wunderlich (1972). The daily meteorolog-
ical datasets, also used to force the models, correspond to the
daily mean values obtained from the hourly meteorological
datasets.

3.3 Evaluation metrics

Model assessment was undertaken by relying primarily on
the mean bias (bias), the mean absolute error (MAE), the
root mean square root error (RMSE), the centered root mean
square error (RMSEc), the coefficient of determination (R2),
and the Kling–Gupta efficiency (KGE) (Kling et al., 2012).
The metrics were computed with the following equations,
where mi and oi are the modeled and observed values, and
m̄ and ō are their means.

Bias= m̄− ō (5)

MAE=
1
N

∑N

i=1
|mi − oi | (6)

RMSE=

√
1
N

∑N

i=1
(mi − oi)

2 (7)

RMSEc=

√
1
N

∑N

i=1
((mi − m̄)− (oi − ō))

2 (8)

R2
=

∑N
i=1(mi − ō)

2∑N
i=1(oi − ō)

2
× 100 (9)

KGE= 1−

√
(r − 1)2+

(
σm

σo
− 1

)2

+

(
µm

µo
− 1

)2

(10)

Here, r is the Pearson coefficient, σm is the standard devia-
tion of the modeled values, σo is the standard deviation of the
observed values, µm is the modeled value mean and µo is the
observed value mean.

When assessing differences between the models, mi and
oi are the values obtained for reservoir and lake simulations,
respectively.
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4 Results

4.1 Model calibration and validation

The wind-sheltering coefficient reducing the wind effect on
the surface fluxes was found to be the most relevant cal-
ibration parameter for the 2-D model (W2 hydrology-D
scenario). The overall mean value of the wind-sheltering
coefficient was of 0.6, with a minimum value of 0.1 in
Bouçã (R10) and a maximum of 1.0 in Fronhas (R11), Pe-
drógão (R14), Aguieira (R21), and Alqueva (R24) reser-
voirs. The light extinction coefficient was also adjusted
during calibration with its value varying from 0.25 to 1.0
(x̄ = 0.38; SD±0.22). Other coefficients involved in the wa-
ter temperature calibration had a significantly smaller ef-
fect and were kept with their default values: 1 m2 s−1 for
longitudinal eddy viscosity and diffusivity, 70 m2 s−1 for
the Chézy coefficient, and 0.45 for solar radiation percent-
age absorbed in the surface layer (β). The water temper-
ature profiles and surface temperature time series obtained
at the downstream edge of the reservoirs (near the dams)
suggested that the reservoirs were reasonably well simu-
lated by the 2-D model (W2 hydrology-D scenario) after
the calibration forced with daily meteorology. When com-
paring the model results with a total of 3608 observed sur-
face temperature values (Fig. 3a), the MAE varied from
0.87 to 3.54 ◦C (x̄ = 1.89 ◦C; SD±0.40 ◦C), the RMSE var-
ied from 1.49 to 4.58 ◦C (x̄ = 2.41 ◦C SD±0.50 ◦C), and the
KGE values varied from 0.61 to 0.96 (x̄ = 0.78; SD±0.09).
The three highest RMSE values were obtained for reser-
voirs with short WRT, suggesting that the major source
of inaccuracy was attributed to the inflow temperatures
(R11: 4.58 ◦C, WRT: 21.6 d; R1: 3.44 ◦C, WRT: 0.79 d; R4:
3.44 ◦C, 91.50 d). For the 677 observed water temperature
profiles (Fig. 3b), the MAE varied from 1.64 to 2.62 ◦C
(x̄ = 2.14 ◦C; SD±1.35 ◦C) (Fig. 3c), the RMSE varied from
1.77 to 3.52 ◦C (x̄ = 2.46 ◦C; SD±1.49 ◦C) (Fig. 3d), and the
KGE values varied from 0.62 to 0.76 (x̄ = 0.71; SD±0.04)
(Fig. 3e). The results show that a KGE value above 0.6 de-
scribes a reasonable fit between both datasets.

Additionally, daily and hourly SWT results were com-
pared with the observed SWT values in order to assess the
performance of the different models and the influence of the
model time resolution. Simulations with the daily time step
had a similar accuracy in all models (Table 5), with the HLM
results being slightly closer to the observed time series. Daily
metrics were obtained by comparing SWT values observed
at a specific hour in the reservoirs with the daily averages
obtained with the model. Therefore, they tend to level the
metric results for each model, in particular the bias (Table 5).
In simulations with the hourly time step, the 2-D model per-
formed expectedly the best among the process-based mod-
els, highlighting the robustness of the baseline scenario (W2
hydrology-H). FLake had a worse performance than HLM
considering the hourly results, which can be attributed to

differences in the conceptualization of diurnal variations of
SWT. Complete mixing within the mixed layer of FLake re-
duced the diurnal temperature variations (Martynov et al.,
2010). The differences in the diurnal SWT variability were
observed across all reservoirs.

The ANN performed best in terms of similarity to obser-
vations. The results obtained for each dataset show that the
RMSE obtained with the 2-D model and with the ANN had
fewer variations across all reservoirs than the results obtained
with the 1-D models (Fig. 4). This result can be attributed to
the wind forcing treatment by 1-D models. The latter do not
consider the wind-sheltering effect, which was the most rele-
vant parameter for calibration of the 2-D model, reducing the
wind velocity by around 34 %. The response to wind stress of
elongated reservoirs depends strongly on whether the domi-
nant wind is directed across or along the reservoir main axis
(Mackay, 2019). Therefore, wind direction can significantly
affect SWT predictions by influencing surface mass and heat
fluxes, which is evaluated in more detail in Sect. 4.3. Ad-
ditionally, the comparison of W2 hydrology and W2 sce-
nario results suggests that the SWTs of reservoirs R3, R10,
and R22 were particularly affected by inflows and outflows
and/or water level variations. The difference of RMSE values
between W2 hydrology and W2 scenarios reached 2.7, 1.2,
and 0.9 ◦C, respectively (Fig. 4).

The ensemble analysis of the results obtained with the 1-
D models for the period 2005–2008 (Fig. 4d) shows that the
models had a similar performance. Overall, results highlight
the large interannual variability of reservoir SWT and em-
phasize the difficulties that arise when modeling these sys-
tems.

4.2 Model intercomparison: 1-D models and the ANN

4.2.1 Model accuracy

In order to evaluate the consistency and accuracy of the mod-
els, the SWT time series were compared with the baseline
scenario W2 hydrology (Table 6). When forced with hourly
meteorological data, the ANN significantly reduced the er-
ror in SWT predictions for the period 2005–2008 (Fig. 5).
This fact emphasizes both the potential of data-driven mod-
els to simulate the SWT and the importance of the temporal
resolution of the training datasets. Overall, the ANN results
remained consistent across both dry and wet seasons, reduc-
ing the annual RMSE to 0.86 ◦C (±0.31; daily meteorology)
and to 0.71 ◦C (±0.21; hourly meteorology), as well as the
interannual variability of RMSE. Accordingly, the KGE val-
ues are above 0.96 (Table 6).

Results of both 1-D models were similar to each other
(Fig. 5), with both models reproducing the seasonal variation
of SWT well and exhibiting a significant variation between
the simulations performed with daily and hourly meteoro-
logical forcing and during the wet and dry seasons. Never-
theless, FLake and HLM demonstrated a reasonable perfor-
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Figure 3. Number of SWT values (a) and number of water temperature profiles (b) observed in the 24 reservoirs. MAE and standard
deviation (c), RMSE and standard deviation (d), and KGE and standard deviation (e) between 2-D baseline scenario (W2 hydrology; daily
meteorology) simulations and observed water temperature profiles.

Table 5. MAE, RMSE, bias, and KGE (with standard deviation) between observed SWT values and SWT values obtained with all models,
forced with daily and hourly meteorology for the 24 waterbodies.

MAE, ◦C (mean) RMSE, ◦C (mean) Bias, ◦C (mean) KGE (mean)

Time period Model Daily Hourly Daily Hourly Daily Hourly Daily Hourly

1989–2008

W2 hydrology 1.89 (±0.40) 1.85 (±0.46) 2.45 (±0.50) 2.41 (±0.49) 0.20 (±0.77) 0.71 (±0.78) 0.78 (±0.10) 0.81 (±0.07)
W2 2.13 (±0.69) 2.16 (±0.71) 2.71 (±0.75) 2.74 (±0.75) 0.32 (±1.13) 0.81 (±1.16) 0.72 (±0.23) 0.75 (±0.22)
HLM 1.72 (±0.62) 1.93 (±0.64) 2.27 (±0.62) 2.46 (±0.64) 0.19 (±1.26) 0.76 (±1.04) 0.85 (±0.11) 0.82 (±0.14)
FLake 1.75 (±0.56) 2.67 (±0.72) 2.32 (±0.56) 3.20 (±0.70) 0.74 (±0.92) 2.16 (±1.07) 0.84 (±0.12) 0.77 (±0.15)
ANN – – – – – – – –

2005–2008

W2 hydrology 1.89 (±0.40) 1.81 (±0.35) 2.45 (±0.50) 2.33 (±0.70) 0.20 (±0.77) 0.81 (±0.80) 0.79 (±0.10) 0.82 (±0.07)
W2 2.08 (±0.74) 2.14 (±0.64) 2.62 (±1.02) 2.72 (±0.88) 0.34 (±1.02) 0.80 (±1.22) 0.74 (±0.23) 0.73 (±0.27)
HLM 1.75 (±0.69) 1.94 (±0.66) 2.25 (±0.85) 2.53 (±0.75) 0.34 (±1.29) 0.88 (±1.11) 0.85 (±0.11) 0.80 (±0.13 )
FLake 1.66 (±0.53) 2.63 (±0.67) 2.22 (±0.86) 3.16 (±0.77) 0.74 (±0.92) 2.13 (±1.07) 0.84 (±0.12) 0.78 (±0.13 )
ANN 1.77 (±0.48) 1.78 (±0.44) 2.28 (±0.71) 2.24 (±0.58) 0.10 (±0.93) 0.60 (±1.03) 0.76 (±0.20) 0.83 (±0.07)
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Figure 4. RMSE between simulated and observed SWT time series considering hourly meteorology for the 24 waterbodies and standard
deviation (time period: 1989–2008, except ANN – time period: 2005–2008). The ensemble graphic describes the mean, maximum, and
minimum RMSE value obtained with the 1-D models – time period: 2005–2008 (box plot description: maximum, 75th percentile, median,
25th percentile, and minimum).

mance (Table 6) similar to that reported in previous studies
(Stepanenko et al., 2010, 2013; Thiery et al., 2014, 2016;
Guo et al., 2021).

The two 1-D models revealed a contradictory behavior
with respect to the temporal resolution. In contrast to the
HLM, the FLake model had a slightly better performance
with the daily than with the hourly meteorological input,
which can also be attributed to differences in the conceptu-
alization of diurnal variations of SWT. Therefore, with daily
simulations, these differences between models are much less
pronounced.

Considering the bias values obtained for each reservoir
(Fig. 5), FLake and the HLM underestimated the SWT in
83 % and 54 % of cases, respectively. The negative SWT bias
can be primarily ascribed to the overestimation by 1-D mod-
els of the wind stress effect on the surface heat flux due to
ignoring the wind direction variability over wind-sheltered
elongated reservoirs. The lower bias in the HLM than in
FLake is more consistent with the 34 % wind velocity reduc-

tion obtained in the 2-D model calibration, suggesting that
the FLake performance was affected by other factors, such
as the diurnal SWT variability.

The analysis of the mean annual RMSE obtained with
the HLM-H, FLake-H, and the W2-H scenarios considering
the hourly meteorology indicate that Penide reservoir (R3),
with a WRT of approximately 0.04 d, had the highest mean
RMSE, clearly highlighting the relevance of inflows and out-
flows in SWTs. HLM had a worse performance for reservoirs
R3, R11, R14, and R1 as well as for the six deepest reser-
voirs (R19, R20, R21, R22, R23, and R24), which indicates
that the vertical heat diffusion was not optimally computed
(Fig. 5b). Specifically, the explicit approximation of convec-
tive mixing in the HLM by convective adjustment of unsta-
ble temperature profiles is apparently too rough to simulate
convective mixing in deep lakes (Bennington et al., 2014).
However, it is relevant to mention that the KGE values ob-
tained for 1-D models indicate that, overall, they performed
well (Table 6).
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Figure 5. Evaluation of simulation bias, RMSE, and KGE. 2-D baseline scenario (W2 hydrology-H) simulated SWT versus (a) the exclusion
of inflows and outflows (W2-H), (b) HLM-H, (c) Flake-H, and (d) ANN-H. Models forced with hourly meteorology for the 24 waterbodies
(2005–2008). The ensemble graphic in (e) shows a box plot of RMSE values (maximum, 75th percentile, median, 25th percentile, and
minimum) considering the 1-D model results (2005–2008). In (f) the wind-sheltering coefficient considered during the calibration of the W2
hydrology scenario is presented.

The analysis of the ensemble of RMSE results obtained
with all models (Fig. 5e) reveals a high variability among
SWT predictions by different models. In general, the perfor-
mance of 1-D models suggests that their simplified nature
and the neglect of inflows and outflows can impose high un-
certainties in SWT predictions (Table 6).

Overall, the statistical comparison by Taylor diagrams
(Fig. 6) suggests that FLake had a slightly better performance
than HLM in simulating SWT. It is noteworthy that the stan-
dard deviation of the simulations forced with hourly meteo-
rology was consistently closer to the standard deviation of the
baseline scenario (W2 hydrology-H) (Fig. 6c and d), show-
ing the importance of meteorological data temporal resolu-
tion. ANN results were closer to the baseline scenario than
the 2-D model (W2-H) regardless of the meteorological data
discretization.

4.2.2 Modeling computation time

The analysis of computation times was conducted through
the comparison of the mean CPU time per time step in the
case of the 1-D models, with the mean CPU time per pre-
diction sample obtained with the ANN, across all reservoirs.
The results (Table 7) show, considering the hourly simu-
lations, that the prediction phase of the ANN is approxi-
mately 26 times faster than FLake, the fastest process-based
1-D model optimized for coupling with climate models. The
HLM code written in Python is approximately 45 times
slower than FLake; nevertheless, it is important to men-
tion that a Fortran implementation of Hostetler can be much
faster as described by Thiery et al. (2016). In their work the
Hostetler model was only 3.6 times slower than FLake during
the modeling of a deep lake (60 m deep). Table 7 also shows
the significant difference in computational time between the
2-D model and all the other models.
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Figure 6. Taylor diagrams showing the standard deviation (◦C), RMSEc (◦C), and correlation of SWT for the baseline scenario (W2 hydrol-
ogy) and for each other scenario: (a) 1989–2008 (daily met.), (b) 2005–2008 (daily met.), (c) 1989–2008 (hourly met.), and (d) 2005–2008
(hourly met.). Statistics are calculated over all 24 reservoirs and lakes for the 1989–2008 period and over 22 reservoirs and lakes for the
2005–2008 period (Alqueva, R24 and Pedrógão, R14, reservoirs were not modeled with the ANN).

It is important to mention that the performance of the mod-
els depends on the software implementation; therefore, the
computation time values can vary significantly from the ones
presented in this research.

4.3 The influence of reservoir inflows and level
variations on SWT predictions

Additionally, to fully evaluate the influence of the inflows
and level variations on SWT predictions in the reservoirs,
and as a result on surface latent and sensible heat fluxes, we
considered the mean annual SWT results obtained with all
models for six reservoirs with SWT most sensitive to the ex-
clusion of inflows and outflows. The reservoirs were chosen
based on the six highest maximum RMSE values obtained
between the 2-D baseline scenario (W2 hydrology-H) SWT
time series and SWT time series simulated with the exclu-

sion of inflows and outflows (W2-H) (Fig. 7). Mean annual
wind velocity, surface latent heat flux, and sensible heat flux
in these reservoirs are presented in Figs. 8, 9, and 10, respec-
tively. The results for the small Penide reservoir (R3), with a
maximum depth of 9 m and an average volume of 0.11 hm3,
while revealing large errors in all model runs, also show that
these errors were significantly improved by the ANN. The
HLM overperformed the FLake model in four of the six wa-
terbodies (R1, R16, R5, and R22). Nevertheless, both 1-D
models had an overall comparable performance. The ANN
significantly reduced the annual maximum RMSE obtained
for all reservoirs with all the models (Fig. 7).

The aggregated analysis of results presented in Figs. 8, 9,
and 10 allows estimating the combined effect of the wind
forcing and the influence of inflows and level variations on
the surface heat fluxes. Separation of the wind effects from
the mass budget variability is possible because the differ-
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Figure 7. Mean annual SWT values obtained with W2 hydrology-H (W2 hydro.-H), W2-H, HLM-H, FLake-H, and ANN-H scenarios
considering hourly meteorology (2005–2008). Annual maximum RMSE between W2 hydrology-H (W2 hydro.-H) and the other scenarios’
SWT results (graphics are ordered from the highest to the lowest RMSE values obtained for W2-H scenarios).

ences between W2 hydrology-H and W2-H scenarios de-
scribe only the combined influence of inflows and level vari-
ations on SWT, whereas the results obtained with the 1-D
models describe the joint influence of the wind forcing and
the influence of inflows and level variations (Figs. 9 and 10).
The results obtained for reservoirs R1, R3, R5, and R10 show
an appreciable effect on the surface heat fluxes caused by the
neglect of inflows. As expected, the mean annual surface heat
fluxes increased and decreased during the dry and wet sea-
sons, respectively (Figs. 9 and 10). However, results obtained
with the 1-D models reveal a strong effect of the wind forcing
across all reservoirs except reservoir R16. The differences
in surface heat fluxes were, as expected, less pronounced

in reservoir R16 due to the smaller difference between the
wind forcing of the models (15 %) (Fig. 8). Generally, the
1-D models overestimated the latent heat fluxes, in particu-
lar HLM, because the FLake model results demonstrated a
significant underestimation of SWT for reservoirs R1, R5,
R10, and R22 as described by the corresponding maximum
RMSE (Fig. 7). Accordingly, the mean annual sensible heat
fluxes had a larger daily variability due to the need to balance
the differences between air and water temperatures reach-
ing 21.09 W m−2 with SD±4.12 W m−2 (Fig. 10). The ANN
significantly reduced the annual bias obtained for the surface
heat fluxes for all reservoirs with all the models (Figs. 9 and
10). The only exception were the results obtained for R16, a
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Table 7. Computation time for process-based physical models and for the ANN prediction phase.

Daily meteorological forcing Programming language

Model Number of layers Number of time steps CPU time (s)/time step Total CPU time (s)
W2 Vide Table 4 (∗) (∗) 3774± 5818 Fortran 90/95
HLM 30.0± 14.1 6209± 1786 0.8± 1.7× 10−2 9.5± 5.0 Python 3.7 (NumPy 1.19.1)
Flake 2 6209± 1786 1.8× 10−2

± 0.2× 10−2 0.2± 3.7× 10−2 Fortran 77
Model Number of training samples Number of predictions CPU time (s)/number of prediction samples Total CPU time (s) Programming language
ANN 3577± 1185 1192± 395 0.7× 10−3 6.9× 10−3

± 8.0× 10−4 C++ and Python 3.7

Hourly meteorological forcing

Model Number of layers Number of time steps CPU time (s)/time step Total CPU time (s) Programming language
W2 Vide Table 4 (∗) (∗) 4200± 5848 Fortran 90/95
HLM 30.0± 14.1 149 016± 42 866 0.8± 1.7× 10−2 163.0± 89.2 Python 3.7 (NumPy 1.19.1)
Flake 2 149 016± 42 866 1.9× 10−2

± 0.2× 10−2 3.0± 0.9 Fortran 77
Model Number of training samples Number of predictions CPU time (s)/number of prediction samples Total CPU time (s) Programming language
ANN 117 924± 36 785 29 481± 9196 0.7× 10−3 1.8× 10−2

± 3.2× 10−3 C++ and Python 3.7

∗ The model dynamically computes a “stable” time step with the auto-stepping algorithm (vide Cole and Wells, 2008).

run-of-the-river hydropower scheme for which the 2-D mod-
eling results were strongly affected by computation insta-
bility due to large inflow values. The training of the ANN
partially reflected this instability in the final ANN structure,
causing a small overestimation of the surface heat fluxes dur-
ing the dry season (Figs. 9 and 10).

Overall, the results show that the water level variations are
clearly related to surface water temperature simulation bias;
besides, the outflow (deep abstraction) reduces the volume
of hypolimnion and increases the volume of the epilimnion
(mixed layer) by lowering the thermocline. Herewith, water
level reduction increases the area-to-the-epilimnion volume
ratio, which results in an increase in epilimnetic tempera-
ture (e.g., Carr et al., 2020). The hypolimnion water tem-
perature (HWT) was generally higher in the W2 hydrology
scenarios than in the W2 scenarios due to the heat transported
by interflow and underflow currents.

The differences between W2 hydrology and W2 scenarios
describe the combined influence of inflows and level varia-
tions in SWT evolution quite well, which can be parameter-
ized using the WRT. The results obtained for both scenar-
ios reveal a significant logarithmic correlation (Eq. 11) be-
tween the RMSE of SWT from the two scenarios and WRT
(Fig. 11a):

RMSE =−0.36ln(WRT)+ 2.73,
R2

= 0.88;MAE= 0.27◦C,
(11)

with RMSE and WRT expressed in degrees Celsius (◦C) and
in days, respectively.

The results additionally show that the computed SWT val-
ues in reservoirs with a residence time shorter than 100 d may
have large errors if simulated without inflows and outflows
(Fig. 11).

5 Discussion and conclusions

The thermodynamics of natural and artificial lakes are simi-
lar. Nevertheless, the evolution of SWT in lakes and reser-
voirs differs substantially as a result of heat advection by
inflows, outflows, and to a lesser extent water level varia-
tions. Evaluation of differences between thermal regimes of
lakes and reservoirs from observational data is limited by the
availability of comparable waterbodies. The model-based ap-
proach used in the present study provides an effective alter-
native that is complementary to studies evaluating the ther-
mal structure differences between lakes (similar to a seep-
age lake) and reservoirs across the latitudinal gradient (e.g.,
Doubek and Carey, 2017; Hayes et al., 2017). We show that,
for the same morphometry and under Mediterranean climatic
conditions, the SWT in reservoirs (approximately 46 %) is
higher than the SWT in lakes (similar to a seepage lake). The
results also suggest that SWT predictions can be significantly
affected by the water surface level variations. Nevertheless,
in the present study only the combined effect of advection
and level variation was evaluated, and the individual effect
of level variations was not correlated with the SWT simula-
tion errors. Therefore, the partial contribution of this variable
to SWT was not fully explored and requires a future in-depth
analysis.

One of the main novel aspects of the study lies in the fact
that computationally efficient models (1-D and ANN) are
compared against a baseline target instead of among them-
selves. Additionally, the study relies on the analysis of a
large number of waterbodies and simulations conducted over
a period several decades long. The methodological approach
exposed the strengths and weaknesses associated with the
simulation of the SWT of reservoirs by both process-based
physical and data-driven models. We demonstrated that in-
flows and outflows have a relevant effect on the evolution
of SWT, with broader implications for the quality of GCMs
and RCMs used in numerical weather prediction and cli-
mate modeling. It was also shown that there are other fac-
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Figure 8. Mean annual wind velocity values obtained with W2 hydrology-H (W2 hydro.-H), W2-H (accounting for the wind-sheltering
effect), HLM-H, and FLake-H scenarios taking into consideration hourly meteorology (2005–2008). Bias between W2 hydrology-H and the
other scenarios’ mean wind velocity values.

tors besides inflows and outflows that affect SWT. Examples
are the wind forcing, the temporal sampling of the meteoro-
logical forcing data, and the simplification of processes for
quantifying turbulent energy flows. The low computational
cost of 1-D process-based models, in particular of the FLake
model, is the decisive factor for their integration in numer-
ous GCMs and RCMs. Indeed, 1-D models such as FLake
and HLM present a particularly good alternative to model
reservoirs with missing field data and external parameters.
Overall, Hostetler and FLake models demonstrated a rea-
sonable performance, with the latter being slightly better in
modeling SWTs. Nevertheless, the results highlight the fact
that their SWT predictions can diverge significantly from ob-

served values unless advective heat transport by inflows and
outflows as well as water level variations are integrated in
the models. As an alternative to process-based models, an
improvement can be achieved in both accuracy and computa-
tional requirements by using data-driven models. The ANN
approach demonstrated a remarkably good performance by
reducing the average value of RMSE of hourly simulations
by at least 64 % and running 26 times faster than the FLake
model. Nevertheless, there are two important limitations to
the implementation of ANNs in GCM or RCM contexts. The
first is the need for a sufficient amount of accurate observa-
tional data to train the model; the second is the availability
of river inflow temperatures. Both are still scarce, but their
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Figure 9. Mean annual latent heat values obtained with W2 hydrology (W2 hydro.-H), W2 scenarios (W2-H), HLM, and FLake considering
hourly meteorology (2005–2008). Bias between W2 hydrology (W2 hydro.-H) and the other models’ SWT results.

availability is rapidly increasing due to recent developments
in remote sensing.

The present results suggest that reservoirs with a WRT
shorter than 100 d, if simulated without representation of in-
flows and outflows, tend to exhibit an important deviation in
the computed SWT values regardless of their morphological
characteristics. Neglecting inflows and outflows while mod-
eling these waterbodies may cause an overestimation of the
turbulent energy fluxes, which can produce spurious local in-
stabilities if surface water temperatures are higher than mean
air temperatures.

Incorporation of inflows and outflows in 1-D models for
regional and global climate simulations will decrease com-
putation efficiency and add an additional layer of uncer-

tainty in the modeling of systems whose real nature is three-
dimensional. The data-driven model considered in this study
outperformed process-based physical models in computation
time and accuracy, being capable of accounting for the in-
fluence of inflows and outflows. In the context of water-
body simulation within numerical weather prediction and
climate models, the use of data-driven approaches to com-
plement their process-based counterparts may be highly effi-
cient when data necessary to train the models are available.
Given the growing capabilities and increasingly common use
of remote sensing data acquisition techniques, the possibility
of improving the performance of GCMs and RCMs through
the enhanced modeling of waterbody–atmosphere turbulent
heat exchanges is promising.
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Figure 10. Mean annual sensible heat values obtained with W2 hydrology (W2 hydro.-H), W2 scenarios (W2-H), HLM, and FLake consid-
ering hourly meteorology (2005–2008). Bias between W2 hydrology (W2 hydro.-H) and the other models’ SWT results.

Figure 11. RMSE as a function of WRT between the W2 hydrology-H scenario and simulated SWT with (a) the exclusion of inflows
and outflows (W2-H, 1989–2008), (b) HLM-H (1989–2008), (c) FLake-H (1989–2008), and (d) ANN-H (2005–2008) driven with hourly
meteorology.
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Code availability. The exact version of the models’ source code
is archived on Zenodo at https://doi.org/10.5281/zenodo.4803480
(Almeida, 2021a). The current version of the open-source CE-
QUAL-W2 model (version 3.6) used in this study is also avail-
able from the project website (http://www.ce.pdx.edu/w2/, last ac-
cess: 5 January 2022). FLake (version 1.0) is freely available un-
der the terms of the GNU Lesser General Public License (https:
//www.gnu.org/licenses/lgpl-3.0.html, last access: 5 January 2022).
The model source code, a windows executable, and a comprehen-
sive model description are freely available from the official FLake
website (http://www.lakemodel.net, last access: 5 January 2022).
For completeness, the Windows pre-compiled version of FLake
as used in the present calculations is also archived on Zenodo
(Almeida, 2021a). The open-source Hostetler model source code
is also available from the repository. The Python library used to
construct the ANN, NeuPy version 0.8.2, is available from the Ne-
uPy website (http://neupy.com/pages/home.html, last access: 5 Jan-
uary 2022) under the terms of the MIT license, and the ANN source
code and scripts used to train the model are archived on Zenodo
(Almeida, 2021a).

Data availability. Input files needed to run the models and the hy-
drometric water quality and meteorological datasets used to force
and validate each model are freely available and are archived
on Zenodo at https://doi.org/10.5281/zenodo.4756312 (Almeida,
2021b).
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