Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-661-2021
https://doi.org/10.5194/gmd-14-661-2021
Development and technical paper
 | 
02 Feb 2021
Development and technical paper |  | 02 Feb 2021

Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0)

Franziska Winterstein and Patrick Jöckel

Related authors

Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
EGUsphere, https://doi.org/10.5194/egusphere-2023-2140,https://doi.org/10.5194/egusphere-2023-2140, 2023
Short summary
Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021,https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Model simulations of atmospheric methane (1997–2016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020,https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
Implication of strongly increased atmospheric methane concentrations for chemistry–climate connections
Franziska Winterstein, Fabian Tanalski, Patrick Jöckel, Martin Dameris, and Michael Ponater
Atmos. Chem. Phys., 19, 7151–7163, https://doi.org/10.5194/acp-19-7151-2019,https://doi.org/10.5194/acp-19-7151-2019, 2019
Short summary
The community atmospheric chemistry box model CAABA/MECCA-4.0
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019,https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634, https://doi.org/10.5194/gmd-16-6609-2023,https://doi.org/10.5194/gmd-16-6609-2023, 2023
Short summary
Monte Carlo drift correction – quantifying the drift uncertainty of global climate models
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608, https://doi.org/10.5194/gmd-16-6593-2023,https://doi.org/10.5194/gmd-16-6593-2023, 2023
Short summary
Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023,https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 2: assessing aerosols, clouds, and aerosol–cloud interactions via field campaign and long-term observations
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023,https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
CIOFC1.0: a common parallel input/output framework based on C-Coupler2.0
Xinzhu Yu, Li Liu, Chao Sun, Qingu Jiang, Biao Zhao, Zhiyuan Zhang, Hao Yu, and Bin Wang
Geosci. Model Dev., 16, 6285–6308, https://doi.org/10.5194/gmd-16-6285-2023,https://doi.org/10.5194/gmd-16-6285-2023, 2023
Short summary

Cited articles

Austin, J., Wilson, J., Li, F., and Vömel, H.: Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations, B. Am. Meteorol. Soc., 64, 905–921, https://doi.org/10.1175/JAS3866.1, 2007. a
Bergamaschi, P., Brühl, C., Brenninkmeijer, C. A. M., Saueressig, G., Crowley, J. N., Grooß, J. U., Fischer, H., and Crutzen, P. J.: Implications of the large carbon kinetic isotope effect in the reaction CH4+ Cl for the 13C12C ratio of stratospheric CH4, Geophys. Res. Lett., 23, 2227–2230, https://doi.org/10.1029/96GL02139, 1996. a
Bigeleisen, J.: Isotope Effects in Chemistry and Biology, chap. 01, Theoretical Basis of Isotope Effects from an Autobiographical Perspective, Taylor and Taylor and Francis Group, LLC, 1–40, https://doi.org/10.1201/9781420028027, 2005. a
Boville, B. A., Kiehl, J. T., Rasch, P. J., and Bryan, F. O.: Improvements to the NCAR CSM-1 for Transient Climate Simulations, J. Climate, 14, 164–179, https://doi.org/10.1175/1520-0442(2001)014<0164:ITTNCF>2.0.CO;2, 2001. a
Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F., and Tans, P.: An improved Kalman Smoother for atmospheric inversions, Atmos. Chem. Phys., 5, 2691–2702, https://doi.org/10.5194/acp-5-2691-2005, 2005. a
Download
Short summary
Atmospheric methane is currently a hot topic in climate research. This is partly due to its chemically active nature. We introduce a simplified approach to simulate methane in climate models to enable large sensitivity studies by reducing computational cost but including the crucial feedback of methane on stratospheric water vapour. We further provide options to simulate the isotopic content of methane and to generate output for an inverse optimization technique for emission estimation.