Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-661-2021
https://doi.org/10.5194/gmd-14-661-2021
Development and technical paper
 | 
02 Feb 2021
Development and technical paper |  | 02 Feb 2021

Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0)

Franziska Winterstein and Patrick Jöckel

Related authors

Chemistry-climate feedback of atmospheric methane in a methane emission flux driven chemistry-climate model
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2938,https://doi.org/10.5194/egusphere-2024-2938, 2024
Short summary
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024,https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021,https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Model simulations of atmospheric methane (1997–2016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020,https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
Implication of strongly increased atmospheric methane concentrations for chemistry–climate connections
Franziska Winterstein, Fabian Tanalski, Patrick Jöckel, Martin Dameris, and Michael Ponater
Atmos. Chem. Phys., 19, 7151–7163, https://doi.org/10.5194/acp-19-7151-2019,https://doi.org/10.5194/acp-19-7151-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025,https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025,https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025,https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025,https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary

Cited articles

Austin, J., Wilson, J., Li, F., and Vömel, H.: Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations, B. Am. Meteorol. Soc., 64, 905–921, https://doi.org/10.1175/JAS3866.1, 2007. a
Bergamaschi, P., Brühl, C., Brenninkmeijer, C. A. M., Saueressig, G., Crowley, J. N., Grooß, J. U., Fischer, H., and Crutzen, P. J.: Implications of the large carbon kinetic isotope effect in the reaction CH4+ Cl for the 13C12C ratio of stratospheric CH4, Geophys. Res. Lett., 23, 2227–2230, https://doi.org/10.1029/96GL02139, 1996. a
Bigeleisen, J.: Isotope Effects in Chemistry and Biology, chap. 01, Theoretical Basis of Isotope Effects from an Autobiographical Perspective, Taylor and Taylor and Francis Group, LLC, 1–40, https://doi.org/10.1201/9781420028027, 2005. a
Boville, B. A., Kiehl, J. T., Rasch, P. J., and Bryan, F. O.: Improvements to the NCAR CSM-1 for Transient Climate Simulations, J. Climate, 14, 164–179, https://doi.org/10.1175/1520-0442(2001)014<0164:ITTNCF>2.0.CO;2, 2001. a
Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F., and Tans, P.: An improved Kalman Smoother for atmospheric inversions, Atmos. Chem. Phys., 5, 2691–2702, https://doi.org/10.5194/acp-5-2691-2005, 2005. a
Download
Short summary
Atmospheric methane is currently a hot topic in climate research. This is partly due to its chemically active nature. We introduce a simplified approach to simulate methane in climate models to enable large sensitivity studies by reducing computational cost but including the crucial feedback of methane on stratospheric water vapour. We further provide options to simulate the isotopic content of methane and to generate output for an inverse optimization technique for emission estimation.
Share